Assignment 4

- 1. Let $f \in L^1(X, S, \mu)$ and $E_n = \{x \in X : |f(x)| \ge n\}$. Show that $\lim_{n \to \infty} n \cdot \mu(E_n) = 0$.
- 2. Let $f \in L^1(X, S, \mu)$, then show that for each $\epsilon > 0$ there exist $\delta > 0$ and set $E \in S$ such that $\int_E |f| d\mu < \epsilon$, whenever $\mu(E) < \delta$.
- 3. Let $\mu(X) < \infty$ and $f_n \in L^1(X, S, \mu)$ such that $f_n \to f$ uniformly. Show that $f \in L^1(X, S, \mu)$ and $\int_X f = \lim_X \int_X f_n$.
- 4. Let $\mu(X) < \infty$ and $f: X \to [0, \infty]$ be a measurable function. Show that $f \in L^1(X, S, \mu)$ if and only if $\sum_{n=0}^{\infty} \mu\{x \in X : f(x) \ge n\} < \infty$.
- 5. Let $f_n: X \to [0, \infty]$ be a decreasing sequence of measurable functions and $f_n \to f$ point wise. If $f_1 \in L^1(X, S, \mu)$. Then show that $\int_X f = \lim_X \int_X f_n$.
- 6. Let $f \in L^1(\mathbb{R}, M, m)$ be such that $\int_I f = 0$, for any open interval $I \subset \mathbb{R}$, then show that f = 0 a.e. on X.
- 7. Let $f_n, g: X \to \overline{\mathbb{R}}$ be measurable functions such that $f_n \leq g, \ \forall n \in \mathbb{N}$ and $g \in L^1(X, S, \mu)$. Show that $\limsup_X \int_X f_n \leq \int_X \limsup_X f_n$.
- 8. Let $f_n: X \to [0, \infty]$ be a sequence of measurable functions and $f_n \to f$ point wise such that $\int\limits_X f = \lim \int\limits_X f_n < \infty$. Show that $\int\limits_E f = \lim \int\limits_E f_n$, for any $E \in S$.
- 9. Let $f_n, f, g_n, g \in L^1(X, S, \mu)$ be such that $|f_n| \leq g_n, f_n \to f$ and $g_n \to g$ point wise. Show that $\int_X g = \lim \int_X g_n$ implies $\int_X f = \lim \int_X f_n$.
- 10. Let $f_n, f \in L^1(X, S, \mu)$ be such that $f_n \to f$ point wise. Prove that $\lim_X |f_n f| = 0$ if and only if $\int_X |f| = \lim_X |f_n|$. (Hint: Use question 9.)
- 11. Let μ be the counting measure on the measurable space $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ and let $f : \mathbb{N} \to [0, +\infty]$. Show that $\int_E f \, d\mu = \sum_{n \in E} f(n)$ for every $E \subset \mathbb{N}$ and hence, in particular, $\int_{\mathbb{N}} f \, d\mu = \sum_{n=1}^{\infty} f(n)$.
- 12. Let X be a set, $x \in X$ and let δ_x be the Dirac measure at x on the measurable space $(X, \mathcal{P}(X))$. If $f: X \to [0, +\infty]$ and $E \subset X$, then show that $\int_E f \, d\delta_x = \begin{cases} f(x) & \text{if } x \in E, \\ 0 & \text{if } x \notin E. \end{cases}$ (Hence, in particular, $\int_X f \, d\delta_x = f(x)$.)
- 13. Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f = \frac{1}{\sqrt{x}}\chi_{(0,1)}$. Let $g(x) = \sum_{r_n \in \mathbb{Q}} 2^{-n} f(x r_n)$, then show that the function g belongs to $L^1(\mathbb{R}, M, m)$.
- function g belongs to $L^1(\mathbb{R}, M, m)$. 14. For each $x \in [0, 1]$, let $f(x) = \begin{cases} \frac{1}{n} & \text{if } x = \frac{k}{n} \text{ for some } k, n \in \mathbb{N} \text{ with g.c.d.}(k, n) = 1, \\ 0 & \text{otherwise.} \end{cases}$ Evaluate the Lebesgue integral $\int_{[0, 1]} f \, dm$.
- 15. Let (X, \mathcal{S}, μ) be a measure space and let $f, g: X \to [0, +\infty]$ be \mathcal{S} -measurable. If $\lambda(E) = \int_E f \, d\mu$ for all $E \in \mathcal{S}$, then show that λ is a measure on (X, \mathcal{S}) and that $\int_X g \, d\lambda = \int_X g f \, d\mu$.

16. For each
$$x \in [0, 1]$$
, let $f(x) = \begin{cases} x^2 & \text{if } x = \frac{1}{2^n} \text{ for some } n \in \mathbb{N}, \\ x^3 & \text{if } x = \frac{1}{3^n} \text{ for some } n \in \mathbb{N}, \\ x^4 & \text{otherwise.} \end{cases}$

Evaluate the Lebesgue integral $\int_{[0,1]} f \, dm$.

17. Let
$$f(x) = \begin{cases} \sin(\pi x) & \text{if } x \in [0, \frac{1}{2}] \setminus C, \\ \cos(\pi x) & \text{if } x \in (\frac{1}{2}, 1] \setminus C, \\ x^2 & \text{if } x \in C. \end{cases}$$

Evaluate the Lebesgue integral $\int_{[0,1]} f \, dm$.

(Here C denotes the Cantor set.)

18. Evaluate the Lebesgue integrals: (a)
$$\int_{[0,+\infty)} e^{-[x]} dx$$
 (b) $\int_{(0,1]} \frac{1}{\sqrt[3]{x}} dx$

19. Let
$$f(x) = \begin{cases} e^{[x]} & \text{if } x \in \mathbb{Q}, \\ e^{-[x]} & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Evaluate the Lebesgue integral $\int_{(0,+\infty)} f \, dm$.

20. Let
$$f(x) = \begin{cases} e^{|x|} & \text{if } x \in \mathbb{Q}, \\ e^{-|x|} & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$
 Evaluate the Lebesgue integral $\int_{\mathbb{R}} f \, dm$.

21. Let
$$f(x) = \begin{cases} \frac{1}{\sqrt{x}} & \text{if } 0 < x \le 1, \\ \frac{1}{x} & \text{if } x > 1. \end{cases}$$

Evaluate the Lebesgue integral $\int_{(0,+\infty)}^x f \, dm$.

22. Evaluate the following: (a)
$$\lim_{n \to \infty} \int_{-2}^{2} \frac{x^{2n}}{1+x^{2n}} dx$$
 (b) $\lim_{n \to \infty} \int_{[0,1]} \frac{1+nx}{(1+x)^n} dx$ (c) $\int_{0}^{1} (\sum_{n=1}^{\infty} \frac{x^n}{n}) dx$

(b)
$$\lim_{n \to \infty} \int_{[0,1]} \frac{1+nx}{(1+x)^n} dx$$

(c)
$$\int_{0}^{1} \left(\sum_{n=1}^{\infty} \frac{x^{n}}{n}\right) dx$$

(d)
$$\lim_{n \to \infty} \int_{1}^{\infty} \frac{1}{1+x^{2n}} dx$$
 (e) $\sum_{n=0}^{\infty} \int_{0}^{1} \frac{x^2}{(1+x^2)^n} dx$

(e)
$$\sum_{n=0}^{\infty} \int_{0}^{1} \frac{x^2}{(1+x^2)^n} dx$$