Assignment 4

1. State TRUE or FALSE giving proper justification for each of the following statements.
(a) Every orthonormal set in a Hilbert space H must be closed in H.
(b) In any infinite dimensional Hilbert space, there exists a convergent series which is not absolutely convergent.
(c) If $\left(x_{n}\right)$ is a sequence in a Hilbert space H such that $\sum_{n=1}^{\infty}\left\|x_{n}\right\|^{2}<\infty$, then the series $\sum_{n=1}^{\infty} x_{n}$ must converge in H.
(d) If $\left(u_{n}\right)$ is an orthonormal sequence in a Hilbert space H and if $x \in H$, then the series $\sum_{n=1}^{\infty}\left\langle x, u_{n}\right\rangle u_{n}$ must converge in H but not necessarily to x.
(e) If $\left\{u_{n}: n \in \mathbb{N}\right\}$ is a countably infinite orthonormal basis of a Hilbert space H and if $x \in H$, then the series $\sum_{n=1}^{\infty}\left\langle x, u_{n}\right\rangle u_{n}$ in H must be absolutely convergent.
(f) If in a Hilbert space H, every weakly convergent sequence is norm convergent, then H must be separable.
2. Let $(X,\langle.,\rangle$.$) be an inner product space. Prove the following generalized parallelogram law.$

$$
\sum_{\epsilon_{k}= \pm 1}\left\|\sum_{k=1}^{n} \epsilon_{k} x_{k}\right\|^{2}=2^{n} \sum_{k=1}^{n}\left\|x_{k}\right\|^{2} .
$$

3. Let ω be a primitive nth root of unity and $n>2$. Then Show that for x, y in an inner product space X following holds.

$$
\langle x, y\rangle=\frac{1}{n} \sum \omega^{p}\left\|x+\omega^{p} y\right\|^{2} .
$$

4. Let X be an inner product space, let $x \in X$ and let $\left(x_{n}\right)$ be a sequence in X such that $\left\|x_{n}\right\| \rightarrow\|x\|$ and $\left\langle x_{n}, x\right\rangle \rightarrow\langle x, x\rangle$. Show that $x_{n} \rightarrow x$ in X.
5. Let X be an inner product space and $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be sequences in $\overline{B(0,1)}$ such that $\left\|\frac{1}{2}\left(x_{n}+y_{n}\right)\right\| \rightarrow 1$ as $n \rightarrow \infty$. Show that $\left\|x_{n}-y_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.
6. Let X be an inner product space and let $y, z \in X$. If $T x=\langle x, y\rangle z$ for all $x \in X$, then show that $\|T\|=\|y\|\|z\|$.
7. Consider $C_{\mathbb{R}}[0,1]$ with the usual inner product. Let $S=\left\{p_{n}: n=0,1,2, \ldots\right\}$, where $p_{n}(t)=t^{n}$ for all $t \in[0,1]$ and for $n=0,1,2, \ldots$. Prove that the orthogonal complement of S in $C_{\mathbb{R}}[0,1]$ is $\{0\}$.
8. Let M be a closed subspace of a Hilbert space H. If $x \in M$ and if $\left(x_{n}\right)$ is a sequence in M, then show that $x_{n} \xrightarrow{w} x$ in H iff $x_{n} \xrightarrow{w} x$ in M.
9. Using Riesz representation theorem, show that $\left\{\left(x_{n}\right) \in l^{2}: \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} x_{n}=0\right\}$ is not a closed subset of the Hilbert space l^{2}.
10. Determine $\|f\|$ for the linear functional $f:\left(l^{2},\|\cdot\|_{2}\right) \rightarrow \mathbb{C}$, defined by $f(x)=\sum_{n=1}^{\infty} \frac{x_{n}}{\sqrt{n(n+1)}}$, for all $x=\left(x_{1}, x_{2}, \ldots\right) \in l^{2}$.
11. Let $\left\{e_{n}: n \in \mathbb{N}\right\}$ be an orthonormal basis of a Hilbert space H. If $f(x)=\sum_{n=1}^{\infty} \frac{1}{3^{n}}\left\langle x, e_{n}\right\rangle$ for all $x \in H$, then determine $\|f\|$.
12. Let H be a Hilbert space and let $\left(T_{n}\right)$ be a sequence in $B(H, H)$ such that for each $x, y \in H$, $\lim _{n \rightarrow \infty}\left\langle T_{n} x, y\right\rangle$ exists. Show that $\sup \left\{\left\|T_{n}\right\|: n \in \mathbb{N}\right\}<\infty$.
13. Let $(X,\|\cdot\|)$ be a separable Hilbert space with an orthonormal basis $\left\{e_{n}: n \in \mathbb{N}\right\}$. If $\|x\|_{0}=\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left|\left\langle x, e_{n}\right\rangle\right|$ for all $x \in X$, then show that $\|\cdot\|_{0}$ is a norm on X which is not equivalent to $\|\cdot\|$.
14. Let $T: L^{2}[0,1] \rightarrow L^{2}[0,1]$ be a linear map which is defined by $(T f)(x)=\int_{0}^{x} f(t) d t$. Define $\langle T f, g\rangle=\left\langle f, T^{*}\right\rangle$. Find the adjoint operator T^{*} of T.
15. Let T be linear operator on a Hilbert space H such that $\langle T x, y\rangle=\langle x, T y\rangle$. Show that T is continuous.
16. Let H be a Hilbert space and let $T: H \rightarrow H$ be linear. If $\left\langle T^{2} x, x\right\rangle \geq 0$ and $\langle T x, x\rangle=0$ for all $x \in H$, then show that $T=0$.
17. If A is a subset of an inner product space such that $A^{0} \neq \emptyset$, then show that $A^{\perp}=\{0\}$.
18. If A is a dense subset of an inner product space, then show that $A^{\perp}=\{0\}$.
19. Let $\left\{e_{n}: n \in \mathbb{N}\right\}$ be an orthonormal basis for a separable Hilbert space H. Define a linear $\operatorname{map} T: H \rightarrow H$ by $T\left(e_{n}\right)=a_{n} e_{n}, n=1,2, \ldots$. Show that T is bounded if and only if sequence $\left\{a_{n}\right\}$ is bounded.
20. Let T be a normal operator on a Hilbert space H. Show that $\left\|T^{2}\right\|=\|T\|^{2}$.
21. Let M be a closed subspace of a Hilbert space H and let $x \in H \backslash M$. Prove that $d(x, M)=$ $\sup \left\{|\langle x, y\rangle|: y \in M^{\perp},\|y\| \leq 1\right\}$.
22. Let $\left\{e_{n}\right\}$ be an orthonormal basis for a Hilbert space H and $\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in l^{\infty}$. Define a linear $\operatorname{map} T: H \rightarrow H$ by $T(x)=\sum_{n=1}^{\infty}\left\langle x, e_{n}\right\rangle \alpha_{n} e_{n}$. Prove that T is continuous and $\|T\|=\sup \left|\alpha_{n}\right|$.
23. Let φ be a bounded function on \mathbb{R}. Define $T: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ by $T(f)(t)=\varphi(t) f(t)$. Show that T is a bounded operator. Find the adjoint operator T^{*} of T.
24. Suppose T is a bounded linear operator on a complex Hilbert space H such that $\langle T x, x\rangle=0$, for all $x \in H$. Show that $T=0$.
25. Let T be a bounded and self-adjoint operator on a Hilbert space H. Suppose there exists $k>0$ such that $\|T x\| \geq k\|x\|$, for each $x \in H$. Prove that the equation $T x=y$ has a unique solution for each $y \in H$.
26. Let $E=\left\{e_{\alpha}: \alpha \in I\right\}$ be an orthonormal basis of a Hilbert space H. For each $x \in H$, show that the set $\left\{e_{\alpha} \in E:\left|\left\langle x, e_{\alpha}\right\rangle\right|^{2}>\left(\frac{2}{n}-e^{-n}\right)\|x\|\right\}$ is a finite set for each fixed $n \in \mathbb{N}$.
27. Let M be a proper closed subspace of a Hilbert space H. Define $\pi: H \rightarrow H / M$ by $\pi(x) \|=$ $x+M$. Show that $\|\pi\|=1$. Further, if there exists $0 \neq x \in H$ such that $\|\pi(x)=\| x \|$, then there exists a unique $0 \neq z \in M$ such that $\|z\|^{2}=2 \operatorname{Re}\langle x, z\rangle$.
