- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) Every orthonormal set in a Hilbert space H must be closed in H.
 - (b) In any infinite dimensional Hilbert space, there exists a convergent series which is not absolutely convergent.
 - (c) If (x_n) is a sequence in a Hilbert space H such that $\sum_{n=1}^{\infty} ||x_n||^2 < \infty$, then the series $\sum_{n=1}^{\infty} x_n$ must converge in H.
 - (d) If (u_n) is an orthonormal sequence in a Hilbert space H and if $x \in H$, then the series $\sum_{n=1}^{\infty} \langle x, u_n \rangle u_n$ must converge in H but not necessarily to x.
 - (e) If $\{u_n : n \in \mathbb{N}\}$ is a countably infinite orthonormal basis of a Hilbert space H and if $x \in H$, then the series $\sum_{n=1}^{\infty} \langle x, u_n \rangle u_n$ in H must be absolutely convergent.
 - (f) If in a Hilbert space H, every weakly convergent sequence is norm convergent, then H must be separable.
- 2. Let $(X, \langle ., . \rangle)$ be an inner product space. Prove the following generalized parallelogram law.

$$\sum_{\epsilon_k=\pm 1} \left\| \sum_{k=1}^n \epsilon_k x_k \right\|^2 = 2^n \sum_{k=1}^n \|x_k\|^2.$$

3. Let ω be a primitive nth root of unity and n > 2. Then Show that for x, y in an inner product space X following holds.

$$\langle x, y \rangle = \frac{1}{n} \sum \omega^p \|x + \omega^p y\|^2.$$

- 4. Let X be an inner product space, let $x \in X$ and let (x_n) be a sequence in X such that $||x_n|| \to ||x||$ and $\langle x_n, x \rangle \to \langle x, x \rangle$. Show that $x_n \to x$ in X.
- 5. Let X be an inner product space and (x_n) and (y_n) be sequences in $\overline{B(0,1)}$ such that $\|\frac{1}{2}(x_n+y_n)\| \to 1$ as $n \to \infty$. Show that $\|x_n-y_n\| \to 0$ as $n \to \infty$.
- 6. Let X be an inner product space and let $y, z \in X$. If $Tx = \langle x, y \rangle z$ for all $x \in X$, then show that ||T|| = ||y|| ||z||.
- 7. Consider $C_{\mathbb{R}}[0,1]$ with the usual inner product. Let $S = \{p_n : n = 0, 1, 2, ...\}$, where $p_n(t) = t^n$ for all $t \in [0,1]$ and for n = 0, 1, 2, ... Prove that the orthogonal complement of S in $C_{\mathbb{R}}[0,1]$ is $\{0\}$.
- 8. Let M be a closed subspace of a Hilbert space H. If $x \in M$ and if (x_n) is a sequence in M, then show that $x_n \xrightarrow{w} x$ in H iff $x_n \xrightarrow{w} x$ in M.
- 9. Using Riesz representation theorem, show that $\{(x_n) \in l^2 : \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} x_n = 0\}$ is not a closed subset of the Hilbert space l^2 .
- 10. Determine ||f|| for the linear functional $f: (l^2, ||\cdot||_2) \to \mathbb{C}$, defined by $f(x) = \sum_{n=1}^{\infty} \frac{x_n}{\sqrt{n(n+1)}}$, for all $x = (x_1, x_2, \ldots) \in l^2$.

- 11. Let $\{e_n : n \in \mathbb{N}\}$ be an orthonormal basis of a Hilbert space H. If $f(x) = \sum_{n=1}^{\infty} \frac{1}{3^n} \langle x, e_n \rangle$ for all $x \in H$, then determine ||f||.
- 12. Let *H* be a Hilbert space and let (T_n) be a sequence in B(H, H) such that for each $x, y \in H$, $\lim_{n \to \infty} \langle T_n x, y \rangle$ exists. Show that $\sup\{\|T_n\| : n \in \mathbb{N}\} < \infty$.
- 13. Let $(X, \|\cdot\|)$ be a separable Hilbert space with an orthonormal basis $\{e_n : n \in \mathbb{N}\}$. If $\|x\|_0 = \sum_{n=1}^{\infty} \frac{1}{2^n} |\langle x, e_n \rangle|$ for all $x \in X$, then show that $\|\cdot\|_0$ is a norm on X which is not equivalent to $\|\cdot\|$.
- 14. Let $T: L^2[0,1] \to L^2[0,1]$ be a linear map which is defined by $(Tf)(x) = \int_0^x f(t)dt$. Define $\langle Tf,g \rangle = \langle f,T^* \rangle$. Find the adjoint operator T^* of T.
- 15. Let T be linear operator on a Hilbert space H such that $\langle Tx, y \rangle = \langle x, Ty \rangle$. Show that T is continuous.
- 16. Let H be a Hilbert space and let $T: H \to H$ be linear. If $\langle T^2x, x \rangle \ge 0$ and $\langle Tx, x \rangle = 0$ for all $x \in H$, then show that T = 0.
- 17. If A is a subset of an inner product space such that $A^0 \neq \emptyset$, then show that $A^{\perp} = \{0\}$.
- 18. If A is a dense subset of an inner product space, then show that $A^{\perp} = \{0\}$.
- 19. Let $\{e_n : n \in \mathbb{N}\}$ be an orthonormal basis for a separable Hilbert space H. Define a linear map $T : H \to H$ by $T(e_n) = a_n e_n$, $n = 1, 2, \ldots$ Show that T is bounded if and only if sequence $\{a_n\}$ is bounded.
- 20. Let T be a normal operator on a Hilbert space H. Show that $||T^2|| = ||T||^2$.
- 21. Let M be a closed subspace of a Hilbert space H and let $x \in H \setminus M$. Prove that $d(x, M) = \sup\{|\langle x, y \rangle| : y \in M^{\perp}, \|y\| \le 1\}.$
- 22. Let $\{e_n\}$ be an orthonormal basis for a Hilbert space H and $(\alpha_1, \alpha_2, \ldots) \in l^{\infty}$. Define a linear map $T: H \to H$ by $T(x) = \sum_{n=1}^{\infty} \langle x, e_n \rangle \alpha_n e_n$. Prove that T is continuous and $||T|| = \sup |\alpha_n|$.
- 23. Let φ be a bounded function on \mathbb{R} . Define $T: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ by $T(f)(t) = \varphi(t)f(t)$. Show that T is a bounded operator. Find the adjoint operator T^* of T.
- 24. Suppose T is a bounded linear operator on a complex Hilbert space H such that $\langle Tx, x \rangle = 0$, for all $x \in H$. Show that T = 0.
- 25. Let T be a bounded and self-adjoint operator on a Hilbert space H. Suppose there exists k > 0 such that $||Tx|| \ge k ||x||$, for each $x \in H$. Prove that the equation Tx = y has a unique solution for each $y \in H$.