Assignment 3

- 1. Let $C_c(\mathbb{R})$ be the class of all compactly supported continuous functions on \mathbb{R} . Does the linear functional given by $T(f) = \int_{-\infty}^{\infty} f(t)dt$ is continuous?
- 2. Let f be a linear functional on a normed linear space X. Then f is bounded if and only if ker f is closed.
- 3. Let X^* be the dual space of a normed linear space X. For $x \in X$, show that $||x|| = \sup\{|f(x)|: f \in X^* \text{ and } ||f|| = 1\}.$
- 4. Let $1 \le p < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. For $f \in L^p(\mathbb{R})$, prove that

$$||f||_p = \sup\left\{\left|\int_{\mathbb{R}} f(x)g(x)dx\right| : g \in L^q(\mathbb{R}) \text{ and } ||g||_q = 1\right\}.$$

- 5. Define a family of linear functionals $f_n : c_o(\mathbb{N}) \to \mathbb{C}$ by $f_n(x) = \frac{1}{n} \sum_{j=1}^n x_j$. Show that $\lim_{n \to \infty} f_n(x) = 0$ but $||f_n|| = 1$.
- 6. Let $\{e_1, e_2, \ldots, e_n\}$ be a linearly independent set in an infinite dimensional normed linear space X. For $(a_1, a_2, \ldots, a_n) \in \mathbb{C}^n$, prove that there exists $f \in X^*$ such that $f(e_j) = a_j$, for $j = 1, 2, \ldots, n$.
- 7. Let $g_n \in L^2[0,1]$ be defined by

$$g_n(t) = \begin{cases} \sqrt{n} & \text{if } 0 \le t < 1/n, \\ 0 & \text{if } 1/n \le t \le 1. \end{cases}$$

Show that $||g_n||_2 = 1$ and g_n converges weakly to 0.

8. For a 2π -periodic function $f \in L^2[-\pi, \pi]$, define a sequence (φ_n) of linear functionals by

$$\varphi_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-int} dt.$$

Show that $\|\varphi_n\| = 1$ and $\varphi_n(f) \to 0$.

- 9. Let $X = c_o$. Show that $X^* = l^1$ and $X^{**} = l^{\infty}$. For $x = (x_n) \in X$, prove that $x \mapsto \sum_{1}^{\infty} x_n$ is weakly continuous but not weak^{*} continuous.
- 10. Let M be a proper subspace of a normed linear subspace X. Suppose $x_o \notin M$ and $\inf_{m \in M} ||x_o m|| = \delta > 0$. Then there exist $f \in X^*$ such that ||f|| = 1, $f(x_o) = \delta$ and f(x) = 0, $\forall x \in M$. Does such f exist uniquely?

- 11. Let X and Y be two Banach spaces and $T_n, T \in B(X, Y)$ such that $T_n \to T$ weakly. Then $\sup_n ||T_n|| < \infty$.
- 12. Let $X = (C[0,1], \|\cdot\|_{\infty})$. Define a map $T: X \to \mathbb{C}$ by $T(f) = \int_{0}^{1} tf(t)dt$, for all $f \in X$. Find a vector $f_o \in X$ such that $T(f_o) = \|T\|$.
- 13. Let X and Y be two Banach spaces and $T: X \to Y$ such that $f \circ T \in X^*$ for each $f \in Y^*$. Then T is continuous.
- 14. Let X and Y be two normed linear spaces and $T \in B(X, Y)$. Define the linear map $T^*: Y^* \to X^*$ by $T^*(f) = f \circ T$, for all $f \in Y^*$. Show that
 - (a) ker $T^* = (\operatorname{Im} T)^{\perp}$.
 - (b) T is bijective then T^* is bijective.
- 15. Let X and Y be two Banach spaces and $S: X \to Y$ and $T: Y^* \to X^*$ are linear maps such that $f \circ S = T(f)$, for all $f \in Y^*$. Then show that S continuous. (Hint: use close graph theorem).
- 16. Let X and Y be two Banach spaces and $T \in B(X, Y)$ such that range $\mathcal{R}(T)$ is closed. Prove that $\mathcal{R}(T^*) = (\ker T)^{\perp}$, where $M^{\perp} = \{f \in X^* : f(x) = 0, \forall x \in M\}$, for $M \subseteq X$.
- 17. Let X be a reflexive Banach space and $f \in X^*$. Show that there exists $x_o \in \overline{B(0,1)}$ such that $f(x_o) = ||f||$.
- 18. Let K be a closed bounded convex subset of a reflexive Banach space X. Prove that K is weakly compact.
- 19. Suppose M is a subspace of a Banach space X. Then M^{\perp} is weak^{*} closed subspace of X^* .