Assignment 3

- 1. (a) If Λ' is a compactly supported distribution, does it imply Λ is also a compactly supported distribution ?
 - (b) Is it necessary that every compactly supported distribution is of finite order ?
- 2. Suppose f is a continuous function on \mathbb{R}^n such that $\int_{\mathbb{R}^n} f\varphi = 0$, whenever $\varphi \in \mathcal{D}(\mathbb{R}^n)$. Show that f = 0.
- 3. Let $\Lambda = \Lambda_f$, where f is a continuous function on \mathbb{R}^n . Show that $\operatorname{supp} \Lambda_f = \operatorname{supp} f$. Does it hold true for locally integrable functions ?
- 4. Show that there exists $\psi \in \mathcal{D}(\mathbb{R})$ such that $\varphi = \psi^{(k)}$ (the k derivative) if and only if $\int_{\mathbb{R}} p(x)\varphi(x)dx = 0$ for each polynomial p of degree at most k 1.
- 5. If $\Lambda \in \mathcal{D}'(\mathbb{R})$ satisfies $\Lambda' = 0$, then show that $\Lambda = \Lambda_c$, for some constant c.
- 6. Show that every $\varphi \in \mathcal{D}(\mathbb{R}^n)$ can be expressed as $\varphi = \psi' + c\varphi_o$, where φ_o is fixed test function in $\mathcal{D}(\mathbb{R})$ with $\int_{\mathbb{R}} \varphi_o \neq 0$.
- 7. Show that every $\varphi \in \mathcal{D}(\mathbb{R}^n)$ can be expressed as $\varphi = x \psi + c\varphi_o$, where φ_o is fixed test function in $\mathcal{D}(\mathbb{R})$ with $\varphi_o(0) \neq 0$. For $\Lambda \in \mathcal{D}'(\mathbb{R})$, deduce that $x \Lambda = 0$ implies $\Lambda = c\delta_o$.
- 8. Find all those $f \in C^{\infty}(\mathbb{R})$ such that $f \delta'_o = 0$.
- 9. If $\Lambda \in \mathcal{D}'(\mathbb{R})$ is compactly supported then show that Λ' is also compactly supported.
- 10. Show that $\langle \Lambda, \varphi \rangle = \sum_{n=1}^{\infty} \varphi^{(n)}(n)$ defines a distribution on \mathbb{R} . Is Λ compactly supported ?
- 11. Let $H = \chi_{(-\infty,0)}$ and h_n be sequence of differentiable functions such that $h_n \to H$ in $\mathcal{D}'(\mathbb{R})$. Show that $h'_n \to \delta_o$ in $\mathcal{D}'(\mathbb{R})$. Does the conclusion remains same if $H = \chi_{(-\infty,0]}$?
- 12. Let $\Lambda_n \in \mathcal{D}'(\mathbb{R})$ be defined by $\langle \Lambda_n, \varphi \rangle = n \left(\varphi(\frac{1}{n}) \varphi(-\frac{1}{n}) \right)$, What distribution is $\lim \Lambda_n$?
- 13. For a > 0, define

$$\langle \Lambda_a, \varphi \rangle = \left(\int_{-\infty}^{-a} + \int_a^{\infty} \right) \frac{\varphi(x)}{|x|} dx + \int_{-a}^{a} \frac{\varphi(x) - \varphi(0)}{|x|} dx.$$

Show that Λ is a distribution on $\mathcal{D}(\mathbb{R})$. Find the $\lim_{a\to 0} \Lambda_a$ in $\mathcal{D}'(\mathbb{R})$. What is the distributional derivative of $\lim_{a\to 0} \Lambda_a$?

- 14. For $\Lambda \in \mathcal{D}'(\mathbb{R})$, define $\langle G, \varphi \rangle = \int_{\mathbb{R}} \langle \Lambda, \varphi_y \rangle dy$, where for $\varphi \in \mathcal{D}(\mathbb{R}^2)$ and $\varphi_y(x) = \varphi(x, y)$. Show that $G \in \mathcal{D}'(\mathbb{R}^2)$.
- 15. Let $\Lambda_i \in \mathcal{D}'(\mathbb{R}), i = 1, 2$ be such that $\langle \Lambda_1, \varphi \rangle = 0$ if and only if $\langle \Lambda_2, \varphi \rangle = 0$. Show that $\langle \Lambda_1, \varphi \rangle = c \langle \Lambda_2, \varphi \rangle$.
- 16. If $\Lambda \in \mathcal{D}'(\mathbb{R})$ be such that $\Lambda^k = 0$, then show that Λ is a polynomial of degree at most k 1.
- 17. Let $\Omega = (0, \infty)$. Define $\langle \Lambda, \varphi \rangle = \sum_{n=1}^{\infty} \varphi^{(n)}(\frac{1}{n})$, where $\varphi \in \mathcal{D}(\Omega)$. Show that Λ is a distribution of infinite order. Further, show that Λ cannot be extended to a distribution on \mathbb{R} .
- 18. If $\Lambda \in \mathcal{D}'(\mathbb{R})$ is of order N, then show that $\Lambda = f^{(N+2)}$ in $\mathcal{D}'(\mathbb{R})$ for some continuous function f. If $\Lambda = \delta_o$, then what are possibilities for f?

- 19. For $k \in \mathbb{N}$, define $f_k = k\chi_{\left(\frac{1}{k}, \frac{2}{k}\right)}$. Show that $f_k \to \delta_o$ in $\mathcal{D}'(\mathbb{R})$. Further, show that $f_k^2(x) \to 0$ point-wise but f_k^2 does not converge in the sense of distribution.
- 20. Let

$$f(x) = \begin{cases} x^2 & \text{if } x < 1, \\ x^2 + 2x & \text{if } 1 \le x \le 2, \\ 2x & \text{if } x \ge 2. \end{cases}$$

Find the distributional derivative of f.

21. Let

$$f(t) = \begin{cases} e^{-t} & \text{if } t > 0, \\ -e^t & \text{if } t < 0. \end{cases}$$

Show that $f'' = 2\delta'_o + f$. Deduce that the Fourier transform of f is given by $\hat{f}(x) = -\frac{2ix}{1+x^2}$.

22. If $H = \chi_{-\infty,0}$, then show that

(a)
$$H * \varphi(x) = \int_{-\infty}^{x} \varphi(t) dt$$
 (b) $\delta'_{o} * H = \delta_{o}$ (c) $1 * \delta'_{o} = 0$
(d) $1 * (\delta'_{o} * H) = 1 * \delta_{o} = 1$ (e) $(1 * \delta'_{o}) * H = 0 * H = 0.$

23. Let $\{x_k\}$ be sequence of real numbers such that $\lim |x_k| = \infty$. Show that $\delta_{(x-x_k)} \to 0$ in the sense of distribution.