MA642: Real Analysis -1

(Assignment 3: Metric and Normed Linear Spaces) January - April, 2025

- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) It is possible that \mathbb{R}^2 can be written as countable union of connected paths.
 - (b) The cardinality of set of all the polynomials on \mathbb{R} such that complement of their zero set are connected is countable.
 - (c) There exists a non-empty open and connected set $A \subset \mathbb{R}^n$ such that every real valued function on A is continuous.
 - (d) If a metric space X is path connected, then there exists a continuous function f: $[0,1] \to X$ which is onto.
 - (e) Let $f:(X,d)\to\mathbb{R}$ be such that $G_f=\{(x,f(x)):x\in X\}$ is connected. Does it imply X is connected?
 - (f) There exists a discontinuous function $f : \mathbb{R} \to \mathbb{R}$ such that the graph G_f is connected in \mathbb{R}^2 but $\operatorname{int}(\overline{G}_f)$ is non-empty in \mathbb{R}^2 .
- 2. Let A be a connected subset of a metric space X, and let B be an open and closed set in X such that $A \cap B \neq \emptyset$. Show that $A \subset B$.
- 3. If E is connected subset of metric space X and $E \subset A \cup B$, where A and B are disjoint open subsets of X. Show that either $E \subset A$ or $E \subset B$.
- 4. Prove that $E \subset X$ is disconnected if and only if there exists non-empty open sets A and B such that $E = A \cup B$, where $A \cap \bar{B} = \emptyset$ and $\bar{A} \cap B = \emptyset$.
- 5. If every pair points in X is contained in some connected set, show that X itself is connected.
- 6. If E and F are connected subsets of X and $E \cap F \neq \emptyset$, show that $E \cup F$ is connected.
- 7. If E and F are non-empty subsets of X such that $E \cup F$ is connected, show that $\bar{E} \cap \bar{F} \neq \emptyset$.
- 8. Show that the complement of any countable set E in \mathbb{R}^2 is path connected.
- 9. Prove that X is disconnected if and only if there exists a continuous function $f: X \to \mathbb{R}$ such that $f^{-1}(\{0\}) = \emptyset$, while $f^{-1}((-\infty, 0)) \neq \emptyset$ and $f^{-1}((0, \infty)) \neq \emptyset$.
- 10. If X is connected and has at leat two point, show that X is uncountable.
- 11. Let $f:[a,b] \to \mathbb{R}$ be satisfying intermediate value property, and $f^{-1}(\{y\})$ is closed for every $y \in \mathbb{R}$. Show that f is continuous.
- 12. If $f:[a,b] \to [a,b]$ is continuous, show that f has a fixed point.
- 13. Let $f:[0,2] \to \mathbb{R}$ be continuous and f(0)=f(2). Show that there exists $x \in [0,1]$ such that f(x)=f(x+1).

- 14. If $f: \mathbb{R} \to \mathbb{R}$ is continuous and open, show that f is strictly monotone.
- 15. If $f: \mathbb{R} \to \mathbb{R}$ is continuous and one to one, show that f is strictly monotone.
- 16. Prove that there does not exists continuous function $f : \mathbb{R} \to \mathbb{R}$ such that $f(\mathbb{Q}) \subseteq \mathbb{R} \setminus \mathbb{Q}$ and $f(\mathbb{R} \setminus \mathbb{Q}) \subseteq \mathbb{Q}$.
- 17. If A and B are closed subsets of X such that $A \cup B$ and $A \cap B$ are connected, show that A and B both are connected.
- 18. Let $I = (\mathbb{R} \setminus \mathbb{Q}) \cap [0, 1]$ and $Q = \mathbb{Q} \cap [0, 1]$. Show that there exists a continuous map from I onto Q, but thee does not exist a continuous map from [0, 1] to Q.
- 19. Suppose $f: \mathbb{R} \to \mathbb{R}$ is satisfying IVP. If G_f is closed, show that f is continuous.
- 20. If $f: \mathbb{R} \to \mathbb{R}$ is differentiable, show that f' satisfies has intermediate value property (IVP).
- 21. Justify that $\{(x,y) \in \mathbb{R}^2 : x^2 + y^3 \in \mathbb{R} \setminus \mathbb{Q} \}$ is a disconnected subset of \mathbb{R}^2 (with the usual topology).
- 22. Show that $GL_n(\mathbb{C})$ is path connected by using the fact that every polynomial on \mathbb{C} has finitely many zeros. Does the set $GL_n(\mathbb{C})$ is open in $M_n(\mathbb{C})$?
- 23. Let $A \in GL_n(\mathbb{C})$. Show that the set $E = \{B \in L_n(\mathbb{C}) : \|B A\| < \frac{1}{2\|A^{-1}\|}\}$ is open in $GL_n(\mathbb{C})$. And hence reduce that E is path connected in $L_n(\mathbb{C})$.