Assignment 3

- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) If $f : \mathbb{R} \to \mathbb{R}$ is continuous *m*-a.e. on \mathbb{R} , then there must exist a continuous function $g : \mathbb{R} \to \mathbb{R}$ such that f = g *m*-a.e. on \mathbb{R} .
 - (b) If $f : \mathbb{R} \to \mathbb{R}$ is continuous and if $g : \mathbb{R} \to \mathbb{R}$ is such that f = g *m*-a.e. on \mathbb{R} , then *g* must be continuous *m*-a.e. on \mathbb{R} .
 - (c) If $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are continuous such that f = g *m*-a.e. on \mathbb{R} , then it is necessary that f(x) = g(x) for all $x \in \mathbb{R}$.
- 2. If (X, \mathcal{A}) is a measurable space and $A \subset X$, then show that $\chi_A : X \to \mathbb{R}$ is \mathcal{A} -measurable iff A is \mathcal{A} -measurable.
- 3. If (X, \mathcal{A}) is a measurable space, then show that $f : X \to [-\infty, +\infty]$ is \mathcal{A} -measurable iff $\{x \in X : f(x) > r\} \in \mathcal{A}$ for each $r \in \mathbb{Q}$.
- 4. Let f_n , f be real valued measurable functions on \mathbb{R} . Let $E = \{x \in \mathbb{R} : \lim f_n(x) = f(x)\}$. Show that E is Lebesgue measurable.
- 5. Let (X, \mathcal{A}) be a measurable space and let $f : X \to \mathbb{R}$ be \mathcal{A} -measurable. For each $x \in X$, let $g(x) = \begin{cases} f(x) & \text{if } |f(x)| \leq 5, \\ 0 & \text{if } |f(x)| > 5. \end{cases}$ Show that $g : X \to \mathbb{R}$ is \mathcal{A} -measurable.
- 6. Let (X, \mathcal{A}) be a measurable space and let $f : X \to \mathbb{R}$ be \mathcal{A} -measurable. For each $x \in X$, let $g(x) = \begin{cases} 0 & \text{if } f(x) \in \mathbb{Q}, \\ 1 & \text{if } f(x) \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$ Show that $g : X \to \mathbb{R}$ is \mathcal{A} -measurable.
- 7. Let (X, \mathcal{A}) be a measurable space and let $f : X \to \mathbb{R}$ be \mathcal{A} -measurable. For each $x \in X$, let $g(x) = \begin{cases} -2 & \text{if } f(x) < -2, \\ f(x) & \text{if } -2 \leq f(x) \leq 3, \\ 3 & \text{if } f(x) > 3. \end{cases}$ Show that $g : X \to \mathbb{R}$ is \mathcal{A} -measurable.
- 8. Let $f:[0, 1] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } 0 < x \le 1, \\ 0 & \text{if } x = 0. \end{cases}$$

Find the measure of the set $\{x \in \mathbb{R} : f(x) \ge 0\}$.

- 9. Let (X, \mathcal{A}) be a measurable space and let $f : X \to \mathbb{R}$ be \mathcal{A} -measurable. If $g : \mathbb{R} \to \mathbb{R}$ is continuous, then show that $g \circ f$ is \mathcal{A} -measurable.
- 10. Does there exist a continuous function $f : \mathbb{R} \to \mathbb{R}$ such that $f = \chi_{[0,1]}$ m-a.e. on \mathbb{R} ? Justify.
- 11. Let (X, \mathcal{A}) be a measurable space and let $f : X \to \mathbb{R}$, $g : X \to \mathbb{R}$ be \mathcal{A} -measurable. If G is an open subset of \mathbb{R}^2 , then show that $\{x \in X : (f(x), g(x)) \in G\}$ is \mathcal{A} -measurable.
- 12. If $f : \mathbb{R} \to \mathbb{R}$ is continuous *m*-a.e. on \mathbb{R} , then show that *f* is Lebesgue measurable.
- 13. If $f : \mathbb{R} \to \mathbb{R}$ is a differentiable function, then show that $f' : \mathbb{R} \to \mathbb{R}$ is Lebesgue measurable.
- 14. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be such that f(x, .) and f(., y) are continuous then f is Lebesgue measurable.
- 15. Let *E* be a compact subset of \mathbb{R} . If $O_n = \{x \in \mathbb{R} : d(x, E) < \frac{1}{n}\}$, then $m(E) = \lim m(O_n)$. Does this conclusion true for *E* a bounded measurable set or unbounded closed set?

- 16. Let (X, \mathcal{A}, μ) be a measure space with $\mu(X) < \infty$ and let $f : X \to \mathbb{R}$ be measurable. Let $A_n = \{x \in X : |f(x)| > n\}$. Show that A_n is \mathcal{A} -measurable and $\lim \mu(A_n) = 0$.
- 17. Let $f : [a,b] \to \mathbb{R}$ be Lebesgue measurable. Let $N = \{x \in [a,b] : f(x) = 0\}$. Show that $g = \chi_N + \frac{1}{f}\chi_{N^c}$ is Lebesgue measurable.
- 18. Let $f : \mathbb{R} \to \mathbb{R}$. Suppose for each $\epsilon > 0$ there exists an open set O such that $m(O) < \epsilon$ and f is constant on $\mathbb{R} \setminus O$. Show that f is Lebesgue measurable.
- 19. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous one-one and onto map. Then f sends Borels onto Borel sets.
- 20. Let $f : [a, b] \to \mathbb{R}$ be a continuous function. Then a Lebesgue measurable $E \subset [a, b]$ satisfies m(E) = 0 implies m(f(E)) = 0 if and only if for every Lebesgue measurable subset $A \subset [a, b]$ the set f(A) is Lebesgue measurable.