Assignment 3

1. State TRUE or FALSE giving proper justification for each of the following statements.
(a) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous m-a.e. on \mathbb{R}, then there must exist a continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f=g m$-a.e. on \mathbb{R}.
(b) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and if $g: \mathbb{R} \rightarrow \mathbb{R}$ is such that $f=g m$-a.e. on \mathbb{R}, then g must be continuous m-a.e. on \mathbb{R}.
(c) If $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous such that $f=g m$-a.e. on \mathbb{R}, then it is necessary that $f(x)=g(x)$ for all $x \in \mathbb{R}$.
2. If (X, \mathcal{A}) is a measurable space and $A \subset X$, then show that $\chi_{A}: X \rightarrow \mathbb{R}$ is \mathcal{A}-measurable iff A is \mathcal{A}-measurable.
3. If (X, \mathcal{A}) is a measurable space, then show that $f: X \rightarrow[-\infty,+\infty]$ is \mathcal{A}-measurable iff $\{x \in X: f(x)>r\} \in \mathcal{A}$ for each $r \in \mathbb{Q}$.
4. Let f_{n}, f be real valued measurable functions on \mathbb{R}. Let $E=\left\{x \in \mathbb{R}: \lim f_{n}(x)=f(x)\right\}$. Show that E is Lebesgue measurable.
5. Let (X, \mathcal{A}) be a measurable space and let $f: X \rightarrow \mathbb{R}$ be \mathcal{A}-measurable. For each $x \in X$, let $g(x)=\left\{\begin{array}{cc}f(x) & \text { if }|f(x)| \leq 5, \\ 0 & \text { if }|f(x)|>5 .\end{array}\right.$ Show that $g: X \rightarrow \mathbb{R}$ is \mathcal{A}-measurable.
6. Let (X, \mathcal{A}) be a measurable space and let $f: X \rightarrow \mathbb{R}$ be \mathcal{A}-measurable. For each $x \in X$, let

7. Let (X, \mathcal{A}) be a measurable space and let $f: X \rightarrow \mathbb{R}$ be \mathcal{A}-measurable. For each $x \in X$, let $g(x)=\left\{\begin{array}{cl}-2 & \text { if } f(x)<-2, \\ f(x) & \text { if }-2 \leq f(x) \leq 3, \\ 3 & \text { if } f(x)>3 .\end{array}\right.$ Show that $g: X \rightarrow \mathbb{R}$ is \mathcal{A}-measurable.
8. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}x \sin \frac{1}{x} & \text { if } 0<x \leq 1 \\ 0 & \text { if } x=0\end{cases}
$$

Find the measure of the set $\{x \in \mathbb{R}: f(x) \geq 0\}$.
9. Let (X, \mathcal{A}) be a measurable space and let $f: X \rightarrow \mathbb{R}$ be \mathcal{A}-measurable. If $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, then show that $g \circ f$ is \mathcal{A}-measurable.
10. Does there exist a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f=\chi_{[0,1]} m$-a.e. on \mathbb{R} ? Justify.
11. Let (X, \mathcal{A}) be a measurable space and let $f: X \rightarrow \mathbb{R}, g: X \rightarrow \mathbb{R}$ be \mathcal{A}-measurable. If G is an open subset of \mathbb{R}^{2}, then show that $\{x \in X:(f(x), g(x)) \in G\}$ is \mathcal{A}-measurable.
12. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous m-a.e. on \mathbb{R}, then show that f is Lebesgue measurable.
13. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function, then show that $f^{\prime}: \mathbb{R} \rightarrow \mathbb{R}$ is Lebesgue measurable.
14. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be such that $f(x,$.$) and f(., y)$ are continuous then f is Lebesgue measurable.
15. Let E be a compact subset of \mathbb{R}. If $O_{n}=\left\{x \in \mathbb{R}: d(x, E)<\frac{1}{n}\right\}$, then $m(E)=\lim m\left(O_{n}\right)$. Does this conclusion true for E a bounded measurable set or unbounded closed set?
16. Let (X, \mathcal{A}, μ) be a measure space with $\mu(X)<\infty$ and let $f: X \rightarrow \mathbb{R}$ be measurable. Let $A_{n}=\{x \in X:|f(x)|>n\}$. Show that A_{n} is \mathcal{A}-measurable and $\lim \mu\left(A_{n}\right)=0$.
17. Let $f:[a, b] \rightarrow \mathbb{R}$ be Lebesgue measurable. Let $N=\{x \in[a, b]: f(x)=0\}$. Show that $g=\chi_{N}+\frac{1}{f} \chi_{N^{c}}$ is Lebesgue measurable.
18. Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Suppose for each $\epsilon>0$ there exists an open set O such that $m(O)<\epsilon$ and f is constant on $\mathbb{R} \backslash O$. Show that f is Lebesgue measurable.
19. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous one-one and onto map. Then f sends Borels onto Borel sets.
20. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Then a Lebesgue measurable $E \subset[a, b]$ satisfies $m(E)=0$ implies $m(f(E))=0$ if and only if for every Lebesgue measurable subset $A \subset[a, b]$ the set $f(A)$ is Lebesgue measurable.

