Assignment 3: Measure and Integration.

1. State TRUE or FALSE giving proper justification for each of the following statements.
(a) There exists an unbounded subset A of \mathbb{R} such that $m^{*}(A)=5$.
(b) There exists an open subset A of \mathbb{R} such that $\left[\frac{1}{2}, \frac{3}{4}\right] \subset A$ and $m(A)=\frac{1}{4}$.
(c) There exists an open subset A of \mathbb{R} such that $m(A)<\frac{1}{5}$ but $A \cap(a, b) \neq \emptyset$ for all $a, b \in \mathbb{R}$ with $a<b$.
(d) If A and B are open subsets of \mathbb{R} such that $A \subsetneq B$, then it is necessary that $m(A)<m(B)$.
(e) A subset E of \mathbb{R} is Lebesgue measurable iff $m^{*}(A \cup B)=m^{*}(A)+m^{*}(B)$ for each $A \subset E$ and for each $B \subset \mathbb{R} \backslash E$.
(f) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous a.e. on \mathbb{R}, then there must exist a continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f=g$ a.e. on \mathbb{R}.
(g) If $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and if $f: \mathbb{R} \rightarrow \mathbb{R}$ is such that $f=g$ a.e. on \mathbb{R}, then f must be continuous a.e. on \mathbb{R}.
(h) If $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous such that $f=g$ a.e. on \mathbb{R}, then it is necessary that $f(x)=g(x)$ for all $x \in \mathbb{R}$.
2. Let $f:[0,2) \rightarrow \mathbb{R}$ be defined by $f(x)= \begin{cases}x^{2} & \text { if } 0 \leq x \leq 1, \\ 3-x & \text { if } 1<x<2 .\end{cases}$

Find $m^{*}(A)$, where $A=f^{-1}\left(\left(\frac{9}{16}, \frac{5}{4}\right)\right)=\left\{x \in[0,2): f(x) \in\left(\frac{9}{16}, \frac{5}{4}\right)\right\}$.
3. Let $B \subset A \subset \mathbb{R}$ such that $m^{*}(B)=0$. Show that $m^{*}(A \backslash B)=m^{*}(A)$.
4. Let $A \subset \mathbb{R}$ such that $m^{*}(A)>0$. Show that there exists $B \subset A$ such that B is bounded and $m^{*}(B)>0$.
5. If $A \subset \mathbb{R}$, then show that $m^{*}(A)=\inf \{m(G): A \subset G, G$ is an open set in $\mathbb{R}\}$.
6. Let $E=\{x \in[0,1]$: The decimal representation of x does not contain the digit 5$\}$. Show that $m(E)=0$.
7. Let $A_{n} \subset \mathbb{R}$ for $n=1,2, \ldots$ such that $\sum_{n=1}^{\infty} m^{*}\left(A_{n}\right)<\infty$.

If $E=\left\{x \in \mathbb{R}: x \in A_{n}\right.$ for infinitely many $\left.n\right\}$, then show that $m(E)=0$.
8. If G is a nonempty open subset of \mathbb{R}, then show that $m(G)>0$.
9. Show that a subset E of \mathbb{R} is Lebesgue measurable iff $m^{*}(I)=m^{*}(I \cap E)+m^{*}(I \backslash E)$ for every bounded open interval I of \mathbb{R}.
10. Let $A \subset E \subset B \subset \mathbb{R}$ such that A, B are Lebesgue measurable and $m(A)=m(B)<\infty$. Show that E is Lebesgue measurable.
More generally, let $A \subset B \subset \mathbb{R}$ such that A is Lebesgue measurable and $m^{*}(B)=m(A)<\infty$. Show that B is Lebesgue measurable.
11. Let $A, B \subset \mathbb{R}$ such that $m^{*}(A)=0$ and $A \cup B$ is Lebesgue measurable. Show that B is Lebesgue measurable.
12. Let $A, B \subset \mathbb{R}$ such that A is Lebesgue measurable and $m^{*}(A \triangle B)=0$. Show that B is Lebesgue measurable.
13. Let $A \subset \mathbb{R}$ such that $A \cap B$ is Lebesgue measurable for every bounded subset B of \mathbb{R}. Show that A is Lebesgue measurable.
14. If E is a Lebesgue measurable subset of \mathbb{R} and if $x \in \mathbb{R}$, then show that $E+x$ is Lebesgue measurable.
15. Let A be a countable subset of \mathbb{R} and let $B \subset \mathbb{R}$ such that $m^{*}(B)=0$. Show that $m^{*}(A+B)=0$.
16. If E and F are Lebesgue measurable subsets of \mathbb{R}, then show that
$m(E \cup F)+m(E \cap F)=m(E)+m(F)$.
More generally, let E be a Lebesgue measurable subset of \mathbb{R} and let $A \subset \mathbb{R}$. Show that $m^{*}(E \cap A)+m^{*}(E \cup A)=m^{*}(E)+m^{*}(A)$.
17. Let I and J be disjoint open intervals in \mathbb{R} and let $A \subset I, B \subset J$. Show that $m^{*}(A \cup B)=$ $m^{*}(A)+m^{*}(B)$.
18. Let $A \subset[0,1]$ be Lebesgue measurable with $m(A)=1$. If $B \subset[0,1]$, then show that $m^{*}(A \cap B)=m^{*}(B)$.
19. Let $E_{i} \subset(0,1)(i=1, \ldots, n)$ be Lebesgue measurable sets such that $\sum_{i=1}^{n} m\left(E_{i}\right)>n-1$. Show that $m\left(\cap_{i=1}^{n} E_{i}\right)>0$.
20. If $A \subset \mathbb{R}$, then show that there exists a Lebesgue measurable subset E of \mathbb{R} such that $m^{*}(A)=m(E)$.
21. Let $A \subset \mathbb{R}$ such that $m^{*}(A)>0$. Show that there exist $x, y \in A$ such that $x-y \in \mathbb{R} \backslash \mathbb{Q}$.
22. Let A and B be Lebesgue measurable subsets of $(0,1)$ such that $m(A)>\frac{1}{2}$ and $m(B)>\frac{1}{2}$. Prove that there exist $a \in A$ and $b \in B$ such that $a+b=1$.
23. Let A be an unbounded Lebesgue measurable subset of \mathbb{R} such that $m(A)<\infty$. Show that for each $\varepsilon>0$, there exists a bounded Lebesgue measurable set B in \mathbb{R} such that $B \subset A$ and $m(A \backslash B)<\varepsilon$.
24. Show that the Borel σ-algebra on \mathbb{R} is generated by the class $\{(-\infty, x]: x \in \mathbb{Q}\}$.
25. Let $A \subset \mathbb{R}$ such that $m^{*}(A)=0$. Show that $m^{*}\left(\left\{x^{2}: x \in A\right\}\right)=0$.
26. Let $A, B \subset \mathbb{R}$ such that $A \cup B$ is Lebesgue measurable and $m(A \cup B)=m^{*}(A)+m^{*}(B)<\infty$. Show that both A and B are Lebesgue measurable.
27. Examine whether \mathcal{F} is a σ-algebra of subsets of \mathbb{R}, where
(a) $\mathcal{F}=\left\{A \subset \mathbb{R}: m^{*}(A)=0\right.$ or $\left.m^{*}(\mathbb{R} \backslash A)=0\right\}$.
(b) $\mathcal{F}=\left\{A \subset \mathbb{R}: m^{*}(A)<\infty\right.$ or $\left.m^{*}(\mathbb{R} \backslash A)<\infty\right\}$.
(c) $\mathcal{F}=\{A \subset \mathbb{R}: A$ or $\mathbb{R} \backslash A$ is an open subset of $\mathbb{R}\}$.
28. Let X be an uncountable set. Show that $\{E \subset X: E$ is countable or $X \backslash E$ is countable $\}$ is a σ-algebra of subsets of X and that it is generated by the class $\{\{x\}: x \in X\}$.
29. Examine whether μ is an/a outer measure/measure on \mathbb{R}, where for each $A \subset \mathbb{R}$,
(a) $\mu(A)= \begin{cases}0 & \text { if } A=\emptyset, \\ 1 & \text { if } A \neq \emptyset .\end{cases}$
(b) $\mu(A)= \begin{cases}0 & \text { if } A \text { is bounded, } \\ 1 & \text { if } A \text { is unbounded. }\end{cases}$
30. If $A \subset \mathbb{R}$, then show that χ_{A} is a Lebesgue measurable function iff A is a Lebesgue measurable set.
31. Let E be a Lebesgue measurable subset of \mathbb{R}. Show that $f: E \rightarrow \mathbb{R}$ is Lebesgue measurable iff $\{x \in E: f(x)>r\}$ is Lebesgue measurable for each $r \in \mathbb{Q}$.
32. Let E be a Lebesgue measurable subset of \mathbb{R} and let $f: E \rightarrow \mathbb{R}$ be a Lebesgue measurable function. For each $x \in E$, let $g(x)=\left\{\begin{array}{cl}f(x) & \text { if }|f(x)| \leq 5, \\ 0 & \text { if }|f(x)|>5 .\end{array}\right.$ Show that $g: E \rightarrow \mathbb{R}$ is Lebesgue measurable.
33. Let E be a Lebesgue measurable subset of \mathbb{R} and let $f: E \rightarrow \mathbb{R}$ be a Lebesgue measurable function. For each $x \in E$, let $g(x)= \begin{cases}0 & \text { if } f(x) \in \mathbb{Q}, \\ 1 & \text { if } f(x) \in \mathbb{R} \backslash \mathbb{Q} \text {. }\end{cases}$
Show that $g: E \rightarrow \mathbb{R}$ is Lebesgue measurable.
34. Let E be a Lebesgue measurable subset of \mathbb{R} and let $f: E \rightarrow \mathbb{R}$ be a Lebesgue measurable function. For each $x \in E$, let $g(x)=\left\{\begin{array}{cl}-2 & \text { if } f(x)<-2, \\ f(x) & \text { if }-2 \leq f(x) \leq 3, \\ 3 & \text { if } f(x)>3 .\end{array}\right.$
Show that $g: E \rightarrow \mathbb{R}$ is Lebesgue measurable.
35. Let E be a Lebesgue measurable subset of \mathbb{R} and let $f: E \rightarrow \mathbb{R}$ be a Lebesgue measurable function. If $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, then show that $g \circ f$ is Lebesgue measurable.
36. Does there exist a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f=\chi_{[0,1]}$ a.e. on \mathbb{R} ? Justify.
37. Let E be a Lebesgue measurable subset of \mathbb{R} and let $f: E \rightarrow \mathbb{R}, g: E \rightarrow \mathbb{R}$ be Lebesgue measurable functions. If G is an open subset of \mathbb{R}^{2}, then show that $\{x \in E:(f(x), g(x)) \in G\}$ is a Lebesgue measurable subset of \mathbb{R}.
38. Let $f:[a, b] \rightarrow \mathbb{R}$ be a differentiable function. Show that $f^{\prime}:[a, b] \rightarrow \mathbb{R}$ is Lebesgue measurable.
39. For each $x \in[0,1]$, let $f(x)= \begin{cases}\frac{1}{n} & \text { if } x=\frac{m}{n} \text { for some } m, n \in \mathbb{N} \text { with g.c.d. }(m, n)=1, \\ 0 & \text { otherwise. }\end{cases}$ Evaluate the Lebesgue integral $\int_{[0,1]} f$.
40. For each $x \in[0,1]$, let $f(x)= \begin{cases}x^{2} & \text { if } x=\frac{1}{2^{n}} \text { for some } n \in \mathbb{N}, \\ x^{3} & \text { if } x=\frac{1}{3^{n}} \text { for some } n \in \mathbb{N}, \\ x^{4} & \text { otherwise. }\end{cases}$

Evaluate the Lebesgue integral $\int f$.
41. Let $f(x)=\left\{\begin{array}{cl}\sin (\pi x) & \text { if } x \in\left[0, \frac{1}{2}\right] \backslash C, \\ \cos (\pi x) & \text { if } x \in\left(\frac{1}{2}, 1\right] \backslash C, \\ x^{2} & \text { if } x \in C .\end{array}\right.$
(C denotes the Cantor set.) Evaluate the Lebesgue integral $\int_{[0,1]} f$.
42. Evaluate the Lebesgue integral $\int_{[0, \infty)} e^{-[x]} d x$.
43. Let $f(x)=\left\{\begin{array}{cl}e^{[x]} & \text { if } x \in \mathbb{Q}, \\ e^{-[x]} & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} \text {. }\end{array}\right.$

Evaluate the Lebesgue integral $\int_{(0, \infty)} f$.
44. Let $f(x)= \begin{cases}e^{|x|} & \text { if } x \in \mathbb{Q}, \\ e^{-|x|} & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} .\end{cases}$

Evaluate the Lebesgue integral $\int_{\mathbb{R}} f$.
45. Evaluate the Lebesgue integral $\int_{(0,1]} \frac{1}{\sqrt[3]{x}} d x$.
46. Let $f(x)= \begin{cases}\frac{1}{\sqrt{x}} & \text { if } 0<x \leq 1, \\ \frac{1}{x} & \text { if } x>1 .\end{cases}$

Evaluate the Lebesgue integral $\int_{(0, \infty)} f$.
47. Evaluate the following:
(a) $\lim _{n \rightarrow \infty} \int_{-2}^{2} \frac{x^{2 n}}{1+x^{2 n}} d x$
(b) $\lim _{n \rightarrow \infty} \int_{[0,1]} \frac{1+n x}{(1+x)^{n}} d x$
(c) $\int_{0}^{1}\left(\sum_{n=1}^{\infty} \frac{x^{n}}{n}\right) d x$
(d) $\lim _{n \rightarrow \infty} \int_{1}^{\infty} \frac{1}{1+x^{2 n}} d x$
(e) $\sum_{n=0}^{\infty} \int_{0}^{1} \frac{x^{2}}{\left(1+x^{2}\right)^{n}} d x$
48. For any measure space, if $f \in L^{1} \cap L^{\infty}$, then show that $f \in L^{p}$ for each $p \in(1, \infty)$.
49. For any measure space, show that $L^{q} \subset L^{p}+L^{r}$ if $0<p<q<r \leq \infty$.

