Assignment 3: Measure and Integration.

- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) There exists an unbounded subset A of \mathbb{R} such that $m^*(A) = 5$.

 - (b) There exists an open subset A of $\mathbb R$ such that $[\frac{1}{2}, \frac{3}{4}] \subset A$ and $m(A) = \frac{1}{4}$. (c) There exists an open subset A of $\mathbb R$ such that $m(A) < \frac{1}{5}$ but $A \cap (a, b) \neq \emptyset$ for all $a, b \in \mathbb R$ with a < b.
 - (d) If A and B are open subsets of \mathbb{R} such that $A \subseteq B$, then it is necessary that m(A) < m(B).
 - (e) A subset E of \mathbb{R} is Lebesgue measurable iff $m^*(A \cup B) = m^*(A) + m^*(B)$ for each $A \subset E$ and for each $B \subset \mathbb{R} \setminus E$.
 - (f) If $f: \mathbb{R} \to \mathbb{R}$ is continuous a.e. on \mathbb{R} , then there must exist a continuous function $g: \mathbb{R} \to \mathbb{R}$ such that f = g a.e. on \mathbb{R} .
 - (g) If $g: \mathbb{R} \to \mathbb{R}$ is continuous and if $f: \mathbb{R} \to \mathbb{R}$ is such that f = g a.e. on \mathbb{R} , then f must be continuous a.e. on \mathbb{R} .
 - (h) If $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are continuous such that f = g a.e. on \mathbb{R} , then it is necessary that f(x) = q(x) for all $x \in \mathbb{R}$.
- 2. Let $f:[0,2) \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x^2 & \text{if } 0 \le x \le 1, \\ 3-x & \text{if } 1 < x < 2. \end{cases}$ Find $m^*(A)$, where $A = f^{-1}((\frac{9}{16}, \frac{5}{4})) = \{x \in [0,2) : f(x) \in (\frac{9}{16}, \frac{5}{4})\}.$
- 3. Let $B \subset A \subset \mathbb{R}$ such that $m^*(B) = 0$. Show that $m^*(A \setminus B) = m^*(A)$.
- 4. Let $A \subset \mathbb{R}$ such that $m^*(A) > 0$. Show that there exists $B \subset A$ such that B is bounded and $m^*(B) > 0.$
- 5. If $A \subset \mathbb{R}$, then show that $m^*(A) = \inf\{m(G) : A \subset G, G \text{ is an open set in } \mathbb{R}\}$.
- 6. Let $E = \{x \in [0,1] : \text{ The decimal representation of } x \text{ does not contain the digit 5} \}$. Show that m(E) = 0.
- 7. Let $A_n \subset \mathbb{R}$ for n = 1, 2, ... such that $\sum_{n=1}^{\infty} m^*(A_n) < \infty$. If $E = \{x \in \mathbb{R} : x \in A_n \text{ for infinitely many } n\}$, then show that m(E) = 0.
- 8. If G is a nonempty open subset of \mathbb{R} , then show that m(G) > 0.
- 9. Show that a subset E of \mathbb{R} is Lebesgue measurable iff $m^*(I) = m^*(I \cap E) + m^*(I \setminus E)$ for every bounded open interval I of \mathbb{R} .
- 10. Let $A \subset E \subset B \subset \mathbb{R}$ such that A, B are Lebesgue measurable and $m(A) = m(B) < \infty$. Show that E is Lebesgue measurable. More generally, let $A \subset B \subset \mathbb{R}$ such that A is Lebesgue measurable and $m^*(B) = m(A) < \infty$. Show that B is Lebesgue measurable.
- 11. Let $A, B \subset \mathbb{R}$ such that $m^*(A) = 0$ and $A \cup B$ is Lebesgue measurable. Show that B is Lebesgue measurable.

- 12. Let $A, B \subset \mathbb{R}$ such that A is Lebesgue measurable and $m^*(A \triangle B) = 0$. Show that B is Lebesgue measurable.
- 13. Let $A \subset \mathbb{R}$ such that $A \cap B$ is Lebesgue measurable for every bounded subset B of \mathbb{R} . Show that A is Lebesgue measurable.
- 14. If E is a Lebesgue measurable subset of \mathbb{R} and if $x \in \mathbb{R}$, then show that E + x is Lebesgue measurable.
- 15. Let A be a countable subset of \mathbb{R} and let $B \subset \mathbb{R}$ such that $m^*(B) = 0$. Show that $m^*(A+B) = 0$.
- 16. If E and F are Lebesgue measurable subsets of \mathbb{R} , then show that $m(E \cup F) + m(E \cap F) = m(E) + m(F)$. More generally, let E be a Lebesgue measurable subset of \mathbb{R} and let $A \subset \mathbb{R}$. Show that $m^*(E \cap A) + m^*(E \cup A) = m^*(E) + m^*(A)$.
- 17. Let I and J be disjoint open intervals in \mathbb{R} and let $A \subset I$, $B \subset J$. Show that $m^*(A \cup B) = m^*(A) + m^*(B)$.
- 18. Let $A \subset [0,1]$ be Lebesgue measurable with m(A) = 1. If $B \subset [0,1]$, then show that $m^*(A \cap B) = m^*(B)$.
- 19. Let $E_i \subset (0,1)$ (i=1,...,n) be Lebesgue measurable sets such that $\sum_{i=1}^n m(E_i) > n-1$. Show that $m(\bigcap_{i=1}^n E_i) > 0$.
- 20. If $A \subset \mathbb{R}$, then show that there exists a Lebesgue measurable subset E of \mathbb{R} such that $m^*(A) = m(E)$.
- 21. Let $A \subset \mathbb{R}$ such that $m^*(A) > 0$. Show that there exist $x, y \in A$ such that $x y \in \mathbb{R} \setminus \mathbb{Q}$.
- 22. Let A and B be Lebesgue measurable subsets of (0,1) such that $m(A) > \frac{1}{2}$ and $m(B) > \frac{1}{2}$. Prove that there exist $a \in A$ and $b \in B$ such that a + b = 1.
- 23. Let A be an unbounded Lebesgue measurable subset of \mathbb{R} such that $m(A) < \infty$. Show that for each $\varepsilon > 0$, there exists a bounded Lebesgue measurable set B in \mathbb{R} such that $B \subset A$ and $m(A \setminus B) < \varepsilon$.
- 24. Show that the Borel σ -algebra on \mathbb{R} is generated by the class $\{(-\infty, x] : x \in \mathbb{Q}\}$.
- 25. Let $A \subset \mathbb{R}$ such that $m^*(A) = 0$. Show that $m^*(\{x^2 : x \in A\}) = 0$.
- 26. Let $A, B \subset \mathbb{R}$ such that $A \cup B$ is Lebesgue measurable and $m(A \cup B) = m^*(A) + m^*(B) < \infty$. Show that both A and B are Lebesgue measurable.
- 27. Examine whether \mathcal{F} is a σ -algebra of subsets of \mathbb{R} , where
 - (a) $\mathcal{F} = \{ A \subset \mathbb{R} : m^*(A) = 0 \text{ or } m^*(\mathbb{R} \setminus A) = 0 \}.$
 - (b) $\mathcal{F} = \{A \subset \mathbb{R} : m^*(A) < \infty \text{ or } m^*(\mathbb{R} \setminus A) < \infty\}.$
 - (c) $\mathcal{F} = \{ A \subset \mathbb{R} : A \text{ or } \mathbb{R} \setminus A \text{ is an open subset of } \mathbb{R} \}.$

- 28. Let X be an uncountable set. Show that $\{E \subset X : E \text{ is countable or } X \setminus E \text{ is countable}\}$ is a σ -algebra of subsets of X and that it is generated by the class $\{\{x\} : x \in X\}$.
- 29. Examine whether μ is an/a outer measure/measure on \mathbb{R} , where for each $A \subset \mathbb{R}$,

(a)
$$\mu(A) = \begin{cases} 0 & \text{if } A = \emptyset, \\ 1 & \text{if } A \neq \emptyset. \end{cases}$$

(b)
$$\mu(A) = \begin{cases} 0 & \text{if } A \text{ is bounded,} \\ 1 & \text{if } A \text{ is unbounded.} \end{cases}$$

- 30. If $A \subset \mathbb{R}$, then show that χ_A is a Lebesgue measurable function iff A is a Lebesgue measurable set.
- 31. Let E be a Lebesgue measurable subset of \mathbb{R} . Show that $f: E \to \mathbb{R}$ is Lebesgue measurable iff $\{x \in E: f(x) > r\}$ is Lebesgue measurable for each $r \in \mathbb{Q}$.
- 32. Let E be a Lebesgue measurable subset of $\mathbb R$ and let $f:E\to\mathbb R$ be a Lebesgue measurable function. For each $x\in E$, let $g(x)=\left\{\begin{array}{cc} f(x) & \text{if } |f(x)|\leq 5,\\ 0 & \text{if } |f(x)|>5. \end{array}\right.$ Show that $g:E\to\mathbb R$ is Lebesgue measurable.
- 33. Let E be a Lebesgue measurable subset of \mathbb{R} and let $f:E\to\mathbb{R}$ be a Lebesgue measurable function. For each $x\in E$, let $g(x)=\begin{cases} 0 & \text{if } f(x)\in\mathbb{Q},\\ 1 & \text{if } f(x)\in\mathbb{R}\setminus\mathbb{Q}. \end{cases}$ Show that $g:E\to\mathbb{R}$ is Lebesgue measurable.
- 34. Let E be a Lebesgue measurable subset of $\mathbb R$ and let $f:E\to\mathbb R$ be a Lebesgue measurable function. For each $x\in E$, let $g(x)=\begin{cases} -2 & \text{if } f(x)<-2,\\ f(x) & \text{if } -2\leq f(x)\leq 3,\\ 3 & \text{if } f(x)>3. \end{cases}$ Show that $g:E\to\mathbb R$ is Lebesgue measurable.
- 35. Let E be a Lebesgue measurable subset of \mathbb{R} and let $f:E\to\mathbb{R}$ be a Lebesgue measurable function. If $g:\mathbb{R}\to\mathbb{R}$ is continuous, then show that $g\circ f$ is Lebesgue measurable.
- 36. Does there exist a continuous function $f: \mathbb{R} \to \mathbb{R}$ such that $f = \chi_{[0,1]}$ a.e. on \mathbb{R} ? Justify.
- 37. Let E be a Lebesgue measurable subset of \mathbb{R} and let $f: E \to \mathbb{R}$, $g: E \to \mathbb{R}$ be Lebesgue measurable functions. If G is an open subset of \mathbb{R}^2 , then show that $\{x \in E: (f(x), g(x)) \in G\}$ is a Lebesgue measurable subset of \mathbb{R} .
- 38. Let $f:[a,b]\to\mathbb{R}$ be a differentiable function. Show that $f':[a,b]\to\mathbb{R}$ is Lebesgue measurable.
- 39. For each $x \in [0,1]$, let $f(x) = \begin{cases} \frac{1}{n} & \text{if } x = \frac{m}{n} \text{ for some } m, n \in \mathbb{N} \text{ with g.c.d.}(m,n) = 1, \\ 0 & \text{otherwise.} \end{cases}$ Evaluate the Lebesgue integral $\int_{[0,1]} f$.

40. For each $x \in [0, 1]$, let $f(x) = \begin{cases} x^2 & \text{if } x = \frac{1}{2^n} \text{ for some } n \in \mathbb{N}, \\ x^3 & \text{if } x = \frac{1}{3^n} \text{ for some } n \in \mathbb{N}, \\ x^4 & \text{otherwise.} \end{cases}$

Evaluate the Lebesgue integral $\int f$.

41. Let
$$f(x) = \begin{cases} \sin(\pi x) & \text{if } x \in [0, \frac{1}{2}] \setminus C, \\ \cos(\pi x) & \text{if } x \in (\frac{1}{2}, 1] \setminus C, \\ x^2 & \text{if } x \in C. \end{cases}$$

(C denotes the Cantor set.) Evaluate the Lebesgue integral $\int f$.

- 42. Evaluate the Lebesgue integral $\int e^{-[x]} dx$.
- 43. Let $f(x) = \begin{cases} e^{[x]} & \text{if } x \in \mathbb{Q}, \\ e^{-[x]} & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$ Evaluate the Lebesgue integral $\int f$.

44. Let
$$f(x) = \begin{cases} e^{|x|} & \text{if } x \in \mathbb{Q}, \\ e^{-|x|} & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$
 Evaluate the Lebesgue integral $\int_{\mathbb{R}} f$.

45. Evaluate the Lebesgue integral $\int_{(0,1]} \frac{1}{\sqrt[3]{x}} dx$.

46. Let
$$f(x) = \begin{cases} \frac{1}{\sqrt{x}} & \text{if } 0 < x \le 1, \\ \frac{1}{x} & \text{if } x > 1. \end{cases}$$

Evaluate the Lebesgue integral $\int_{(0,\infty)} f$.

47. Evaluate the following:

(a)
$$\lim_{n \to \infty} \int_{-2}^{2} \frac{x^{2n}}{1+x^{2n}} dx$$

(b) $\lim_{n \to \infty} \int_{[0,1]} \frac{1+nx}{(1+x)^n} dx$

(b)
$$\lim_{n \to \infty} \int_{[0,1]}^{-2} \frac{1+nx}{(1+x)^n} dx$$

(c)
$$\int_{0}^{1} \left(\sum_{n=1}^{\infty} \frac{x^{n}}{n}\right) dx$$

(d)
$$\lim_{n \to \infty} \int_{1}^{\infty} \frac{1}{1 + x^{2n}} dx$$

(e)
$$\sum_{n=0}^{\infty} \int_{0}^{1} \frac{x^2}{(1+x^2)^n} dx$$

- 48. For any measure space, if $f \in L^1 \cap L^\infty$, then show that $f \in L^p$ for each $p \in (1, \infty)$.
- 49. For any measure space, show that $L^q \subset L^p + L^r$ if 0 .