MA15010H: Multi-variable Calculus

(Assignment 3: Directional derivatives and differentiability) September - November, 2025

- 1. Let S be a nonempty open subset of \mathbb{R}^2 and let $f: S \to \mathbb{R}$ be such that the partial derivatives f_x and f_y exist at each point of S. If $f_x: S \to \mathbb{R}$ and $f_y: S \to \mathbb{R}$ are bounded, then show that f is continuous.
- 2. Find all $u \in \mathbb{R}^2$ with ||u|| = 1 for which the directional derivative $D_u f(0,0)$ exists (in \mathbb{R}), if for all $(x,y) \in \mathbb{R}^2$,

$$f(x,y) = \begin{cases} 1 & \text{if } y < x^2 < 2y, \\ 0 & \text{otherwise.} \end{cases}$$

- 3. State TRUE or FALSE with justification: If $f: \mathbb{R}^2 \to \mathbb{R}$ is continuous such that all the directional derivatives of f at (0,0) exist (in \mathbb{R}), then f must be differentiable at (0,0).
- 4. Determine all the points of \mathbb{R}^2 where $f:\mathbb{R}^2\to\mathbb{R}$ is differentiable, if for all $(x,y)\in\mathbb{R}^2$,

$$f(x,y) = \begin{cases} x^{4/3} \sin\left(\frac{y}{x}\right) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

- 5. Let $f: S \subseteq \mathbb{R}^m \to \mathbb{R}$ be differentiable at $x_0 \in S^0$ and let $f(x_0) = 0$. If $g: S \to \mathbb{R}$ is continuous at x_0 , then show that $fg: S \to \mathbb{R}$, defined by (fg)(x) = f(x)g(x) for all $x \in S$, is differentiable at x_0 .
- 6. Show that $f: S \subseteq \mathbb{R}^2 \to \mathbb{R}$ is differentiable at $(x_0, y_0) \in S^0$ iff there exist functions $\varphi, \psi: S \to \mathbb{R}$ such that φ, ψ are continuous at (x_0, y_0) and $f(x, y) f(x_0, y_0) = (x x_0)\varphi(x, y) + (y y_0)\psi(x, y)$ for all $(x, y) \in S$.
- 7. Let the temperature T(x,y) at any point $(x,y) \in \mathbb{R}^2$ be given by $T(x,y) = 2x^2 + xy + y^2$. An insect is at the point (1,1).
 - (a) What is the best direction for the insect to move to feel cooler?
 - (b) In which direction should the insect move to feel no change in temperature?