Assignment 3

- 1. Let X and Y be two normed linear spaces and $T \in B(X, Y)$. Define the linear map $T^*: Y^* \to X^*$ by $T^*(f) = f \circ T$, for all $f \in Y^*$. Show that
 - (a) ker $T^* = (\text{Im}T)^{\perp}$.
 - (b) T is bijective implies T^* is bijective.
- 2. Let K be a compact set in \mathbb{C} . Then there exists an operator $T \in B(l^2(\mathbb{N}))$ such that $\sigma(T) = K$.
- 3. Let $T: L^2[0,1] \to L^2[0,1]$ be a linear map which is defined by

$$T(f)(x) = \int_0^x f(t)dt.$$

Show that

- (a) T is bounded, compact and $||T|| = \frac{2}{\pi}$. Does T invertible?
- (b) Define $\langle Tf, g \rangle = \langle f, T^*g \rangle$. Find the adjoint operator T^* of T.
- (b) Prove that spectral radius r(T) = 0 and $0 \in \sigma_c(T)$, continuous spectrum.
- 4. Let T be linear operator on a Hilbert space H such that (Tx, y) = (x, Ty). Show that T is continuous.
- 5. Let $\{e_n : n \in \mathbb{N}\}$ be an orthonormal basis for a separable Hilbert space H. Define a linear map $T : H \to H$ by $T(e_n) = a_n e_n$, $n = 1, 2, \ldots$ Show that
 - (a) T is bounded if and only if sequence $\{a_n\}$ is bounded.
 - (b) T is compact if and only if $\lim_{n \to \infty} a_n = 0$.
- 6. Let $g \in C[0,1]$ and $T: L^2[0,1] \to L^2[0,1]$ be a linear map which is defined by

$$T(f)(t) = g(t)f(t).$$

Find the spectrum $\sigma(T)$ and deduce that T is not compact.

- 7. Let $T: l^2(\mathbb{Z}) \to l^2(\mathbb{Z})$. For $x = (x_k)_{-\infty}^{\infty} \in l^2(\mathbb{Z})$, define $T(x) = (x_{k-1})_{-\infty}^{\infty}$ (right shift operator). Show that
 - (a) the point spectrum $\sigma_p(T) = \emptyset$,
 - (b) $\operatorname{Im}(\lambda I T) = l^2(\mathbb{Z})$ if $|\lambda| \neq 1$,
 - (c) spectrum $\sigma(T) = \{\lambda : |\lambda| = 1\}$.

- 8. Let $T: l^2(\mathbb{N}) \to l^2(\mathbb{N})$. For $x \in l^2(\mathbb{N})$, define $T(x) = (x_2, x_3, \ldots)$. Prove that
 - (a) $\rho(T) = \{\lambda \in \mathbb{C} : |\lambda| > 1\}.$ (b) $\sigma_c((T) = \{\lambda \in \mathbb{C} : |\lambda| = 1\}.$ (c) $\sigma_p((T) = \{\lambda \in \mathbb{C} : |\lambda| < 1\}.$ (d) $\sigma_r(T) = \emptyset.$
- 9. Let g be a continuous and bounded function on \mathbb{R} . Let $T: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ be linear map defined by T(f)(t) = g(t)f(t). Show that T is bounded and spectrum

$$\sigma(T) = \overline{\{g(x) : x \in \mathbb{R}\}}.$$

- 10. Let X be a Banach space and $T \in B(X)$. Prove that $\exp(T) = \sum_{0}^{\infty} \frac{T^n}{n!}$ is invertible and $\sigma(\exp T) = \exp(\sigma(T))$.
- 11. Let P be a bounded linear projection on a Hilbert space H. Show that $\sigma(P) = \sigma_p(P) = \{0, 1\}$ and for $\lambda \notin \{0, 1\}$, resolvent function for P is given by

$$R(\lambda) = (\lambda I - P)^{-1} = \frac{I}{\lambda} + \frac{1}{\lambda(1 - \lambda)}P.$$

- 12. A bounded linear operator T on a separable Hilbert space H is called Hilbert-Schmidt operator if there exists an orthonormal basis $\{e_n : n \in \mathbb{N}\}$ such that $\sum ||Te_n||^2 < \infty$. Write $||T||_{\text{H.S.}} = (\sum ||Te_n||^2)^{1/2}$. Show that
 - (a) T is a compact operator.
 - (b) $||T^*||_{\text{H.S.}} = ||T||_{\text{H.S.}}$.
 - (c) Hilbert-Schmidt norm is independent of choice of orthonormal basis.
- 13. Let T be a normal operator on a Hilbert space H. Show that $||T^2|| = ||T||^2$.