Advanced Course on Hardy spaces

(MA650: Assignment 2)

January- April, 2022

- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) Infinite Blaschke product has only finitely many repeated factors.
 - (b) Non-tangential limits and radial limits is identical for functions in $H^p(\mathbb{D}), 0 .$
 - (c) Can non-zero functions $f \in H^p(\mathbb{T})$, 0 be zero on a set of positive measure?
 - (d) If $f \in H^1(\mathbb{D})$ is outer, then necessarily $\log |f| \in L^1(\mathbb{T})$?
 - (e) If $f \in L^{\infty}(\mathbb{T})$, then there exist two inner functions θ_1 and θ_2 and polynomial P_n such that $P_n(\bar{\theta}_1\theta_2) \to f$ uniformly.
- 2. Let $S_1 = \{z \in \mathbb{D} : |z-1| \le c(1-|z|)\}$. For $z = re^{i\tau}$, $|\tau| \le \pi$ and 0 < r < 1, show that $\frac{|\tau|}{1-r}$ is uniformly bounded on S_1 .
- 3. Show that \mathbb{P}^0_+ is dense in H^p for $1 \leq p < \infty$ and in $H^{\infty} \cap C(\overline{\mathbb{D}})$.
- 4. Prove that H^{∞} is not separable.
- 5. Show that $H^p \smallsetminus H^q \neq 0$ if q < p.
- 6. Let $\xi \in \mathbb{D}$ and $1 \leq p < \infty$. Define $\varphi_{\xi} : H^p \to \mathbb{C}$ by $\varphi_{\xi}(f) = f(\xi)$. Show that $\|\varphi_{\xi}/H^p\| = (1 |\xi|^2)^{-1/p}$.
- 7. The Nevanlinna class is defined by

Nev =
$$N(\mathbb{D}) = \left\{ f \in \operatorname{Hol}(\mathbb{D}) : \sup_{0 < r < 1} \int_{\mathbb{T}} \log^+ |f_r| dm < \infty \right\},\$$

where $\log^+ t = \max(0, \log t)$ for t > 0 and $f_r(z) = f(rz)$.

- (i) Let $f \in N(\mathbb{D})$ and $f \neq 0$. Set $h_r(\xi) = \max(1, |f_r(\xi)|)$ for $\xi \in \mathbb{T}$ and 0 < r < 1, and $\Phi_r = [h_r]$. Show that $\max(1, |f_r(z)|) \leq |\Phi_r(z)|$ for $z \in \mathbb{D}$, and $\Phi_r(0) \leq e^c$, where $c = \sup_{0 < r < 1} \int_{\mathbb{T}} \log^+ |f_r| dm$.
- (ii) Derive from (i) that $f_r = \psi_r / \varphi_r$, where $\varphi_r = 1/\Phi_r \in H^\infty$ with $|\psi_r| \le 1$ and $\varphi_r| \le 1$ in \mathbb{D} and $|\varphi_r(0)| \ge e^{-c}$ for all 0 < r < 1. Apply the Montel compactness theorem, conclude that there exist $\varphi, \psi \in H^\infty$ such that $f = \psi/\varphi$.
- (iii) Show that $N(\mathbb{D}) = \{\psi/\varphi : \varphi, \psi \in H^{\infty}\} \cap \operatorname{Hol}(\mathbb{D})$. Hence for every $f \in N(\mathbb{D})$, the non-tangential limits exist a.e., $\log |f| \in L^1$, and $f = \lambda BV_{\mu}[h] (h = |f|)$, where $V_{\mu}(z) = \exp\left(\int_{\mathbb{T}} \frac{\zeta + z}{\zeta z} d\mu(\zeta)\right)$ for |z| < 1 for singular measure μ on \mathbb{T} .
- (iv) Conversely, $\lambda BV_{\mu}[h] \in N(\mathbb{D})$ for every λ, B, V_{μ} , and for all h > 0 with $\log h \in L^1$. Moreover, $H^p \subset l^p \cap N(\mathbb{D})$, for every p > 0, and $H^p = L^p \cap N_+$, where $N_+ = \{\lambda BV_{\mu}[h] \in N(\mathbb{D}) : \mu \ge 0\}$.
- (v) Let $f_k \in L^2(\mathbb{T}), k = 1, 2, ..., n$ and $E = \overline{\operatorname{span}}\{z^m f_k : m \ge 0, 1 \le k \le n\}$. Show that E is simply invariant (i.e., $zE \subset E, zE \ne E$) if and only if
 - (a) $\int_{\mathbb{T}_{a}} \log |f_k| dm > -\infty$ for all k, and
 - (b) $\theta \frac{f_j}{f_k} \in N(\mathbb{D})$ for all j, k, where θ is an inner function.
- 8. Let $f \in N(\mathbb{D})$, $f(0) \neq 0$, and $(\lambda_n)_{n\geq 1} = Z(f)$ counting multiplicity and μ satisfy $V_{\mu}(z) = \exp\left(\int_{\mathbb{T}} \frac{\zeta+z}{\zeta-z} d\mu(\zeta)\right)$.
 - (i) Show that

$$\log|f(0)| + \sum_{n \ge 1} \log \frac{1}{|\lambda|} + \mu(\mathbb{T}) = \int_{\mathbb{T}} \log|f| dm.$$

- (ii) Let $f \in H^{\infty}$ with $|f(z)| \leq 1$ in \mathbb{D} , and f(0) > 0. Show that f is Blaschke product if and only if $\lim_{r \to 1} \int_{\mathbb{T}} \log |f_r| dm = 0$.
- (iii) Let $f \in \operatorname{Hol}(\mathbb{D})$ and f(0) > 0. Show that f is a Blaschke product if and only if $\lim_{r \to 1} \int_{\mathbb{T}} \log |f_r| dm = 0$.
- (iv) Let $f \in Hol(\mathbb{D}_R), R > 0$, and let $(\lambda_n)_{n \ge 1} = Z(f)$ counting multiplicity, let $n(s) = \operatorname{card}\{\lambda_k : |\lambda| \le s\}, s \ge 0.$
 - (a) By assuming $f(0) \neq 0$ show that

$$\log|f(0)| + \int_0^r \frac{n(s)}{s} ds = \int_{\mathbb{T}} \log|f(r\xi) dm(\xi), \text{ for all } r < R.$$

(b) Assume that $f(0) \neq 0$, and let $0 \leq a < R$. Show that

$$\int_{a}^{r} \frac{n(s)}{s} ds \leq \int_{\mathbb{T}} \log |f(r\xi)dm(\xi) + C|$$

for a < r < R, where C = C(f, a) (constant depends on f and a).