Advanced Course on Hardy spaces

(MA650: Assignment 2)
January- April, 2022

1. State TRUE or FALSE giving proper justification for each of the following statements.
(a) Infinite Blaschke product has only finitely many repeated factors.
(b) Non-tangential limits and radial limits is identical for functions in $H^{p}(\mathbb{D}), 0<p<1$.
(c) Can non-zero functions $f \in H^{p}(\mathbb{T}), 0<p<1$ be zero on a set of positive measure?
(d) If $f \in H^{1}(\mathbb{D})$ is outer, then necessarily $\log |f| \in L^{1}(\mathbb{T})$?
(e) If $f \in L^{\infty}(\mathbb{T})$, then there exist two inner functions θ_{1} and θ_{2} and polynomial P_{n} such that $P_{n}\left(\bar{\theta}_{1} \theta_{2}\right) \rightarrow f$ uniformly.
2. Let $S_{1}=\{z \in \mathbb{D}:|z-1| \leq c(1-|z|)\}$. For $z=r e^{i \tau},|\tau| \leq \pi$ and $0<r<1$, show that $\frac{|\tau|}{1-r}$ is uniformly bounded on S_{1}.
3. Show that \mathbb{P}_{+}^{0} is dense in H^{p} for $1 \leq p<\infty$ and in $H^{\infty} \cap C(\overline{\mathbb{D}})$.
4. Prove that H^{∞} is not separable.
5. Show that $H^{p} \backslash H^{q} \neq 0$ if $q<p$.
6. Let $\xi \in \mathbb{D}$ and $1 \leq p<\infty$. Define $\varphi_{\xi}: H^{p} \rightarrow \mathbb{C}$ by $\varphi_{\xi}(f)=f(\xi)$. Show that $\left\|\varphi_{\xi} / H^{p}\right\|=$ $\left(1-|\xi|^{2}\right)^{-1 / p}$.
7. The Nevanlinna class is defined by

$$
\operatorname{Nev}=N(\mathbb{D})=\left\{f \in \operatorname{Hol}(\mathbb{D}): \sup _{0<r<1} \int_{\mathbb{T}} \log ^{+}\left|f_{r}\right| d m<\infty\right\}
$$

where $\log ^{+} t=\max (0, \log t)$ for $t>0$ and $f_{r}(z)=f(r z)$.
(i) Let $f \in N(\mathbb{D})$ and $f \neq 0$. Set $h_{r}(\xi)=\max \left(1,\left|f_{r}(\xi)\right|\right)$ for $\xi \in \mathbb{T}$ and $0<r<1$, and $\Phi_{r}=\left[h_{r}\right]$. Show that $\max \left(1,\left|f_{r}(z)\right|\right) \leq\left|\Phi_{r}(z)\right|$ for $z \in \mathbb{D}$, and $\Phi_{r}(0) \leq e^{c}$, where $c=\sup _{0<r<1} \int_{\mathbb{T}} \log ^{+}\left|f_{r}\right| d m$.
(ii) Derive from (i) that $f_{r}=\psi_{r} / \varphi_{r}$, where $\varphi_{r}=1 / \Phi_{r} \in H^{\infty}$ with $\left|\psi_{r}\right| \leq 1$ and $\varphi_{r} \mid \leq 1$ in \mathbb{D} and $\left|\varphi_{r}(0)\right| \geq e^{-c}$ for all $0<r<1$. Apply the Montel compactness theorem, conclude that there exist $\varphi, \psi \in H^{\infty}$ such that $f=\psi / \varphi$.
(iii) Show that $N(\mathbb{D})=\left\{\psi / \varphi: \varphi, \psi \in H^{\infty}\right\} \cap \operatorname{Hol}(\mathbb{D})$. Hence for every $f \in N(\mathbb{D})$, the non-tangential limits exist a.e., $\log |f| \in L^{1}$, and $f=\lambda B V_{\mu}[h](h=|f|)$, where $V_{\mu}(z)=\exp \left(\int_{\mathbb{T}} \frac{\zeta+z}{\zeta-z} d \mu(\zeta)\right)$ for $|z|<1$ for singular measure μ on \mathbb{T}.
(iv) Conversely, $\lambda B V_{\mu}[h] \in N(\mathbb{D})$ for every λ, B, V_{μ}, and for all $h>0$ with $\log h \in L^{1}$. Moreover, $H^{p} \subset l^{p} \cap N(\mathbb{D})$, for every $p>0$, and $H^{p}=L^{p} \cap N_{+}$, where $N_{+}=$ $\left\{\lambda B V_{\mu}[h] \in N(\mathbb{D}): \mu \geq 0\right\}$.
(v) Let $f_{k} \in L^{2}(\mathbb{T}), k=1,2, \ldots, n$ and $E=\overline{\operatorname{span}}\left\{z^{m} f_{k}: m \geq 0,1 \leq k \leq n\right\}$. Show that E is simply invariant (i.e., $z E \subset E, z E \neq E$) if and only if
(a) $\int_{\mathbb{T}} \log \left|f_{k}\right| d m>-\infty$ for all k, and
(b) $\theta \frac{f_{j}}{f_{k}} \in N(\mathbb{D})$ for all j, k, where θ is an inner function.
8. Let $f \in N(\mathbb{D}), f(0) \neq 0$, and $\left(\lambda_{n}\right)_{n \geq 1}=Z(f)$ counting multiplicity and μ satisfy $V_{\mu}(z)=$ $\exp \left(\int_{\mathbb{T}} \frac{\zeta+z}{\zeta-z} d \mu(\zeta)\right)$.
(i) Show that

$$
\log |f(0)|+\sum_{n \geq 1} \log \frac{1}{|\lambda|}+\mu(\mathbb{T})=\int_{\mathbb{T}} \log |f| d m
$$

(ii) Let $f \in H^{\infty}$ with $|f(z)| \leq 1$ in \mathbb{D}, and $f(0)>0$. Show that f is Blaschke product if and only if $\lim _{r \rightarrow 1} \int_{\mathbb{T}} \log \left|f_{r}\right| d m=0$.
(iii) Let $f \in \operatorname{Hol}(\mathbb{D})$ and $f(0)>0$. Show that f is a Blaschke product if and only if $\lim _{r \rightarrow 1} \int_{\mathbb{T}} \log \left|f_{r}\right| d m=0$.
(iv) Let Let $f \in \operatorname{Hol}\left(\mathbb{D}_{R}\right), R>0$, and let $\left(\lambda_{n}\right)_{n \geq 1}=Z(f)$ counting multiplicity, let $n(s)=\operatorname{card}\left\{\lambda_{k}:|\lambda| \leq s\right\}, s \geq 0$.
(a) By assuming $f(0) \neq 0$ show that

$$
\left.\log |f(0)|+\int_{0}^{r} \frac{n(s)}{s} d s=\int_{\mathbb{T}} \log \right\rvert\, f(r \xi) d m(\xi), \text { for all } r<R
$$

(b) Assume that $f(0) \neq 0$, and let $0 \leq a<R$. Show that

$$
\left.\int_{a}^{r} \frac{n(s)}{s} d s \leq \int_{\mathbb{T}} \log \right\rvert\, f(r \xi) d m(\xi)+C
$$

for $a<r<R$, where $C=C(f, a)$ (constant depends on f and a).

