MA642: Real Analysis -1

(Assignment 2: Metric and Normed Linear Spaces) July - November, 2025

- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) If X is a finite metric space, does it imply that C(X), the space of continuous functions on X, is a finite dimensional normed linear space?
 - (b) If every countable closed set in a metric space (X,d) is complete, does it imply X is complete?
 - (c) The totally boundedness property is preserved by homeomorphism.
 - (d) Let $f_n:[0,1]\to\mathbb{R}$ be defined by $f_n=\chi_{[0,1/n]}$ and f_n converges point-wise to f. Then the set $\{f, f_n : n = 1, 2, ...\}$ is compact in B[0, 1].
 - (e) Let $f_n \in C^1[0,1]$. Then it implies that the set $\{f_n : n = 1, 2, \ldots\}$ is compact in C[0,1].
 - (f) Whether $\{x=(x_1,x_2,\ldots)\in l^2: |x_n|\leq \frac{1}{n}\}$ is totally bounded in l^2 ?
- 2. If every countable closed subset of a metric space X is complete, show that X is complete.
- 3. Show that a subset A of a metric space X is closed if and only if $A \cap K$ is compact for every compact set K in X.
- 4. Find a subset of l^{∞} which is closed and bounded but not totally bounded.
- 5. Show that a subset A of a metric space (X, d) is totally bounded if and only if for every sequence (x_n) has a subsequence (x_{n_k}) satisfying $d(x_{n_k}, x_{n_{k+1}}) \leq 2^{-k}$.
- 6. Let K and F be two non-empty subsets of a metric space (X, d). If K is compact and F closed, then show that $\operatorname{dist}(K,F)>0$, whenever $K\cap F=\emptyset$. Does the the same conclusion holds if K is closed but not compact?
- 7. A function $f:(X,d)\to\mathbb{R}$ is called lower semi-continuous if for each $\alpha\in\mathbb{R}$ the set $\{x\in X:$ $f(x) > \alpha$ is open in X.
 - (a) Show that f is lower semi-continuous if and only if $f(x) \leq \lim_{n \to \infty} \inf f(x_n)$, whenever $x_n \to x$.
 - (b) If X is compact metric space, prove that every lower semi-continuous function is bounded below and attains its minimum.
- 8. Letp $f:(X,d)\to\mathbb{R}$ be lower semi-continuous (LSC). Show that for every $x\in X$, and every sequence $x_n \to x$, implies $f(x) \leq \lim_{n \to \infty} \inf f(x_n)$. 9. If X is compact metric space, and let $f: X \to X$ satisfy d(f(x), f(y)) = d(x, y) for $x, y \in X$.
- Show that f is an onto map. Is compactness of X is necessary?
- 10. If X is compact metric space, and let $f: X \to X$ satisfy $d(f(x), f(y)) \ge d(x, y)$ for $x, y \in X$. Show that f is an onto isometry.
- 11. Let X be a compact metric space, and let $f: X \to X$ be bijective and satisfy $d(f(x), f(y)) \le 1$ d(x,y) for $x,y \in X$. Show that f is an isometry.
- 12. Let X be a compact metric space, and \mathcal{F} is a subset of (C(X)).

- (a) Prove that an equicontinuous subset \mathcal{F} is pointwise bounded if and only if \mathcal{F} is uniformly bounded.
- (b) Prove that \mathcal{F} is pointwise equicontinuous if and only if \mathcal{F} uniformly equicontinuous.
- 13. Let X be a compact metric space, and (f_n) is a sequence in (C(X)).
 - (a) Let (f_n) be equicontinuous and pointwise convergent. Show that f_n is uniformity convergent.
 - (b) If (f_n) decreases pointwise to 0, show that (f_n) is equicontinuous.
 - (c) If (f_n) is equicontinuous, show that $\{x \in X : (f_n(x)) \text{ converges}\}$ is a closed set in X.
- 14. For fixed k > 0 and $0 < \alpha \le 1$, denote $\operatorname{Lip}_k \alpha = \{ f \in C[0,1] : |f(x) f(y)| \le k|x y|^{\alpha} \}$. Show that $\{ f \in \operatorname{Lip}_k \alpha : f(0) = 0 \}$ is compact subset of C[0,1]. Whether the set $\{ f \in \operatorname{Lip}_k \alpha : \int_0^1 f(t) dt = 1 \}$ is compact?
- 15. Let K(x,t) be a continuous function on the square $[0,1] \times [0,1]$. For $f \in C[0,1]$, define $Tf(x) = \int_0^1 f(t)K(x,t)dt$. Show that T maps bounded sets into equicontinuous sets.
- 16. Let $f_n \in C[0,1]$ be satisfying $||f_n||_{\infty} \leq 1$. Let $F_n(x) = \int_0^x f_n(t)dt$. Show that F_n has a convergent subsequence.
- 17. If $f \in B[0,1]$, show that $B_n(f)(x) \to f(x)$ at each point of continuity of f.
- 18. Give an example of sequence of function $f_n \in C[0,1]$, which decreases point wise to f but not uniformly.
- 19. For a given polynomial p and $\epsilon > 0$, show that there exits a polynomial q of rational coefficients such that $||p q||_{\infty} < \epsilon$ on [0, 1].
- 20. Let (x_i) be a sequence in (0,1) such that $\frac{1}{n}\sum_{i=1}^n x_i^k$ is convergent for each k=0,1,2..., then $\frac{1}{n}\sum_{i=1}^n f(x_i)$ is convergent for each $f\in C[0,1]$.
- 21. For $f \in C[0,1]$ and $\epsilon > 0$, show that there exists a polynomial p such that $||f p||_{\infty} < \epsilon$ and $||f' p'||_{\infty} < \epsilon$.
- 22. Let $f:[1,\infty)\to\mathbb{R}$ be continuous and $\lim_{x\to\infty}f(x)$ exists. For $\epsilon>0$, show that there exists a polynomial p such that $|f(x)-p(1/x)|<\epsilon$ for all $x\geq 1$.