Assignment 2: Functions of several variables.

. State TRUE or FALSE giving proper justification for each of the following statements.

(a) There exists a continuous function f : R — R? such that f(cosn) = (n, =) for all n € N.

(b) There exists a non-constant continuous function f : R? — R such that f(z,y) = 5 for all
(z,y) € R? with 2% +3? < 1.

(c) There exists a one-one continuous function from {(x,y) € R?: 2? + y* < 1} onto R

(d) There exists a continuous function from {(z,y) € R?: 22 4+ y* < 1} onto R

(e) If f : R* — R is continuous such that f,(0,0) exists, then f,(0,0) must exist.

(f) There exists a function f : R? — R? which is differentiable only at (1,0).

(g) If f : R? — R is continuous such that all the directional derivatives of f at (0,0) exist, then
f must be differentiable at (0, 0).
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(h) If f: R? — R? is differentiable with f(0,0) = (1,1) and [f'(0,0)] = { -

cannot exist a differentiable function g : R* — R? with g(1,1) = (0,0) and (f o g)(z,y) =
(y,z) for all (z,y) € R%

(i) A continuously differentiable function f : R* — R? cannot be one-one and onto if
det[f'(x,y)] = 0 for some (z,y) € R

(j) The equation sin(zyz) = z defines x implicitly as a differentiable function of y and z locally
around the point (z,y,2) = (§,1,1).

(k) The equation sin(zyz) = z defines z implicitly as a differentiable function of z and y locally

around the point (z,y,2) = (3,1,1).

} , then there

. Let o € (0,1) and let x,, = (n*a™, L[na]) for all n € N. (For each € R, [z] denotes the
greatest integer not exceeding z.) Examine whether the sequence (x,) converges in R?. Also,

find lim x,, if it exists.
n—o0

. Examine whether the following limits exist and find their values if they exist.

23y 23 — 2y?
a lim ——— b lim —— c lim
(@) (z,9)—(0,0) 4 + y? (®) (2,9)—(0,0) 22 + Y2 (©) (@y)—(0,0) 2y? + (22 — y?)?
, A p— , 1 — cos(z? + y?) , Vatyr+1-1
(d) lim —e (e) lim g (f) lim >
(2,9)—(0,0) ¥ (@y)—00) (22 +y?) (@y)—00) 224y

. Examine the continuity of f : R*> — R at (0,0), where for all (z,y) € R?

- xy ifzy >0,
(a) f(z,y) —{ —xy if xy < 0.

1 ifz>0and 0 <y < 22
0 otherwise.

o) floi) = {

. Determine all the points of R? where f : R? — R is continuous, if for all (z,y) € R?

2y if
@ fea)={ T et

. Let €2 be an open subset of R” and let f : Q2 — R™ and ¢ : {2 — R™ be continuous at xq € €.
If for each € > 0, there exist x,y € B.(x¢) such that f(x) = ¢(y), then show that f(xo) = g(xo).
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Let A(# @) C R™ be such that every continuous function f : A — R is bounded. Show that A
is a closed and bounded subset of R".

Let f: R? — R be continuous at (xg,y9) € R? and let f(xg,y9) # 0. Show that there exists
§ > 0 such that f(z,y) # 0 for all (z,y) € R? satisfying (z — x0)* + (y — yo)* < 0.

Let T : R — R” be linear and let f(x) = T'(x) - x for all x € R". Find f'(x), where x € R™.

Examine the differentiability of f at 0, where

(a) f:R™ — R satisfies |f(x)| < ||x]|3 for all x € R".

(b) f:R?* — R is defined by f(x,y) = +/|zy| for all (z,y) € R?.

(c) f:R?* = Ris defined by f(z,y) = ||z| — |y|| — |z| — |y| for all (z,y) € R
) [

Y 2 2
(d R2—>Risdeﬁnedbyf(x,y)={ Vat+y? ify #0,

ly

0 if y=0.
(sin®z + 2?sin L, y?) if x #0,
(0,9?) if x = 0.

(f) f:R™ — R" is defined by f(x) = [|x[|2x for all x € R™.

(e) f:R?*— R?is defined by f(z,y) = {

Let f(x,y) = (2% + 32,23 + y?, 22%y?) for all (z,y) € R?. Examine whether f : R? — R? is
differentiable at (1,2) and find f’(1,2) if f is differentiable at (1, 2).

Determine all the points of R? where f : R? — R is differentiable, if for all (z,y) € R?,
2?2 +y? if both z,y € Q,
(a) flz,y) = { 0 otherwise.

Y3gin(L) i
o o= { O E24

2 2\ 1 :
(°+y )Sm(\/xg—ﬂz) if (z,y) # (0,0),

0 if (z,y) = (0,0).
Show that f is differentiable at (0,0) although neither f, nor f, is continuous at (0,0).

Let f:R?* — R be defined by f(z,y) =

2?y(e—y)
Let f:R* — R be defined by f(z,y) = 22 +y? ?f (z,y) # (0,0),
0 if (z,y) = (0,0).

Examine whether f,,(0,0) = f,.(0,0).

zy(x?—y3) .
Let f : R? R be defined by f(z,y) = 4 =x 1 (@) #(0,0),
0 if (z,y) = (0,0).

Determine all the points of R? where f,, and f,, are continuous.

Let Q be a nonempty open subset of R". Let f : 2 — R be differentiable at xq € €2, let
f(x0) = 0 and let g : Q — R be continuous at xg. Prove that fg : Q@ — R, defined by
(fg)(x) = f(x)g(x) for all x € Q, is differentiable at x,.

Let ©Q be a nonempty open subset of R™ and let g : 2 — R"™ be continuous at xo € €. If
f: Q — Ris such that f(x) — f(x0) = g(x) - (x — X¢) for all x € Q, then show that f is
differentiable at xq.
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The directional derivatives of a differentiable function f : R* — R at (0,0) in the directions of
(1,2) and (2,1) are 1 and 2 respectively. Find f,(0,0) and f,(0,0).

Find all \% e R? for which the directional derivative f(0,0) exists, where for all (z,y) € R?,
- i
. ity #0,
0 ify=0.

Let f(z,y,2) = (23%y + y*2, 2yz) and g(z,y) = (2%y, 2y, r — 2y, 2* + 3y) for all z,y,z € R. Use
chain rule to find (g o f)'(a), where a = (1,2, —3).

Let f : R* — R be differentiable such that f(1,1) = 1, f,(1,1) = 2 and f,(1,1) = 5. If
g(x) = f(z, f(z,x)) for all z € R, determine ¢'(1).

Let o : R — R and ¢ : R — R be differentiable. Show that f : R?> — R, defined by
f(x,y) = ¢(z) + ¥(y) for all (z,y) € R?, is differentiable.

Prove that a differentiable function f : R™\ {0} — R™ is homogeneous of degree o € R (i.e.
f(tx) =t*f(x) for all x € R™\ {0} and for all ¢t > 0) iff f'(x)(x) = af(x) for all x € R"\ {0}.

Let f : R? — R be continuously differentiable such that f,(a,b) = f,(a,b) for all (a,b) € R?
and f(a,0) > 0 for all a € R. Show that f(a,b) > 0 for all (a,b) € R%

Let Q be an open subset of R such that a,b € Q and S = {(1 —t)a+tb :t € [0,1]} C Q.
If f:Q — R™ is differentiable at each point of S, then show that there exists a linear map
L :R™ — R™ such that f(b) — f(a) = L(b — a).

Let f(z,y) = (2ye*®, ze¥) for all (x,y) € R% Show that there exist open sets U and V in R?
containing (0, 1) and (2,0) respectively such that f: U — V is one-one and onto.

Determine all the points of R? where f : R? — R? is locally invertible, if for all (z,y) € R?,

(2) f(z,y) = (@* +y* zy).
(b) f(x,y) = (cosz + cosy,sinz + siny).

Determine all the points of R? where f : R® — R? is locally invertible, if for all (z,y, 2) € R3,
(a> f(~77,y,z) = (l’—l-y,:icy—i—z,y—i—z).
(b> f(‘rv Y, Z) = (xQ + y27y2 + 22, 22 + 132).

Let f(z,y) = (3z — y*, 2z + y,zy + y*) and g(z,y) = (2ye**, ze?) for all (z,y) € R?. Examine

whether (fog™)(2,0) exists (with a meaningful interpretation of g=') and find (fog~')(2,0)
if it exists.

Forn > 2, let B = {x € R" : x| < 1} and let f(x) = ||x||3x for all x € B. Show that
f : B — B is differentiable and invertible but that f~! : B — B is not differentiable at 0.

Using implicit function theorem, show that the system of equations
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can be solved locally near the point (1, —1,1) for y and z as a differentiable function of z.

Show that the system of equations
2% — ycos(uv) + 2% = 0,
x? +y? — sin(uv) + 22% = 2,
xy —sinucosv + z = 0,

s

implicitly defines (z,y, z) as a differentiable function of (u,v) nearz =1,y =1, 2 =0, u =}
and v = 0.

Using implicit function theorem, show that in a neighbourhood of any point
(20, Yo, Uo, vo) € R* which satisfies the equations

x —e“cosv =0,
v—eYsinx =0,

there exists a unique solution (u,v) = (z,y) satisfying det[p’(x,y)] = v/z.

Show that in a neighbourhood of any point (zg, ¥, 20) € R* which satisfies the equations
ot 4 (v +2)y* -3 =0,
a4+ (22 +32)y* — 6 =0,

there is a unique continuous solution y = ¢1(x), z = wa(z) of these equations.

Show that around the point (0,1, 1), the equation zy — zlogy + e = 1 can be solved locally
as y = f(x, z) but cannot be solved locally as z = g(z,y).

Show that the system of equations
Pyt —v =0,
22+ 27 + 3u? + 4? =1,

defines (u,v) implicitly as a differentiable function of (x,y) locally around the point

(z,y,u,v) = (3,0, 3,0) but does not define (z,y) implicitly as a differentiable function of (u,v)

locally around the same point.

Show that there are points (z,v, z,u, v, w) € R which satisfy the equations

v +ute’ =0,

Y+ v +ev =0,

2 +w+e'=0.
Prove that in a neighbourhood of such a point there exist unique differentiable solutions u =
p1(2,y, 2), v = pa(x,y, 2), w = ps3(x,y, 2). I © = (1,92, 03), find (2,9, 2).

Find the 3rd order Taylor polynomial of f(z,y, z) = x?y + 2 about the point (1,2,1).
Find the 4th order Taylor polynomial of g(z,y) = e*%/(1 + 2? — y) about the point (0, 0).

Let f : R? — R be continuously differentiable. Show that f is not one-one.



