Assignment 2

- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) $\{x \in \mathbb{R} : x^6 6x^4 \text{ is irrational}\}\$ is a Lebesgue measurable subset of \mathbb{R} .
 - (b) If A is a Lebesgue measurable subset of \mathbb{R} and if B is a Lebesgue non-measurable subset of \mathbb{R} such that $B \subset A$, then it is necessary that $m^*(A \setminus B) > 0$.
 - (c) Whether the set $E = \bigcup_{x \in \mathbb{R}} (x + \mathbb{Q})$ is Lebesgue measurable?
 - (d) If A and B are disjoint subsets of \mathbb{R} such that A is Lebesgue measurable and B is Lebesgue non-measurable, then it is possible that $m^*(A \cup B) < m^*(A) + m^*(B)$.
- 2. Let E be a Lebesgue measurable subset of \mathbb{R} and $F \subset \mathbb{R}$ be a countable set. Show that E + F is Lebesgue measurable.
- 3. If $A \subset \mathbb{R}$, then show that there exists a Lebesgue measurable subset E of \mathbb{R} such that $m^*(A) = m(E)$.
- 4. Let $A \subset [0,1]$ be Lebesgue measurable with m(A)=1. If $B \subset [0,1]$, then show that $m^*(A \cap B)=m^*(B)$.
- 5. For i = 1, ..., n, let $E_i \subset (0, 1)$ be Lebesgue measurable such that $\sum_{i=1}^n m(E_i) > n 1$. Show that $m(\bigcap_{i=1}^n E_i) > 0$.
- 6. Let $\{E_i\}$ be a decreasing sequence of Lebesgue measurable sets in [0,1] which satisfying $\sum_{i=1}^{n} m(E_i) > n \frac{1}{n}$. Show that $m\left(\bigcap_{i=1}^{\infty} E_i\right) = 1$.
- 7. Let $A \subset \mathbb{R}$ such that $m^*(A) > 0$. Show that there exist $x, y \in A$ such that $x y \in \mathbb{R} \setminus \mathbb{Q}$.
- 8. Let A and B be Lebesgue measurable subsets of (0,1) such that $m(A) > \frac{1}{2}$ and $m(B) > \frac{1}{2}$. Prove that there exist $a \in A$ and $b \in B$ such that a + b = 1.
- 9. Suppose F is a closed subset of [0,1] such that $F \cap (a,b) \neq \emptyset$ for all $a,b \in [0,1]$ with a < b. Show that m(F) = 1.
- 10. Let A be an unbounded Lebesgue measurable subset of \mathbb{R} such that $m(A) < \infty$. Show that for each $\varepsilon > 0$, there exists a bounded Lebesgue measurable set B in \mathbb{R} such that $B \subset A$ and $m(A \setminus B) < \varepsilon$.
- 11. For $n \in \mathbb{N}$, write $E = \bigcup_{n=1}^{\infty} \left[n, n + \frac{1}{n^{3/2}} \right]$. Show that $m(E) < \infty$ and $m^*(\{x^2 : x \in E\}) = \infty$.
- 12. If $A \subset \mathbb{R}$ such that $m^*(A) = 0$, then show that $m^*(\{x^2 : x \in A\}) = 0$.
- 13. Let $A, B \subset \mathbb{R}$ such that $A \cup B$ is Lebesgue measurable and $m(A \cup B) = m^*(A) + m^*(B) < \infty$. Show that both A and B are Lebesgue measurable.
- 14. Let $\{A_n\}_{n=1}^{\infty}$ be a sequence of subsets of \mathbb{R} and let $\{E_n\}_{n=1}^{\infty}$ be a sequence of pairwise disjoint Lebesgue measurable subsets of \mathbb{R} such that $A_n \subset E_n$ for each $n \in \mathbb{N}$. Show that $m^*(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} m^*(A_n)$.

1

- 15. Let $E \subset \mathbb{R}$ and let $\alpha \in \mathbb{R}$. If $\alpha E = {\alpha x : x \in E}$, then show that $m^*(\alpha E) = |\alpha| m^*(E)$. Also, show that if E is Lebesgue measurable, then αE is Lebesgue measurable.
- 16. If E is a Lebesgue measurable subset of \mathbb{R} with $m(E) < +\infty$ and if $f(x) = m(E \cap (-\infty, x])$ for all $x \in \mathbb{R}$, then show that $f : \mathbb{R} \to \mathbb{R}$ is continuous.
- 17. Let E be a Lebesgue measurable subset of \mathbb{R} with $m(E) < \infty$. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = m\{E \cap (-\infty, x^2)\}$. Show that f is differentiable at 0 and f'(0) = 0.
- 18. Let $E \subset \mathbb{R}$ and $m^*(E) > 0$. Then for each $0 < \alpha < 1$, there exists an open interval I such that $m^*(E \cap I) \ge \alpha m(I)$.
- 19. Let E be a Lebesgue measurable subset of \mathbb{R} and $m(E) < \infty$. Then there exist a sequence of compact set (K_n) contained in E and a set N Lebesgue measure zero such that $E = F \cup N$, where $F = \bigcup_{n=1}^{\infty} K_n$.
- 20. Let $E \subset \mathbb{R}$ be Lebesgue measurable and $m(E) < \infty$. Show that for each $\epsilon > 0$, there exist compact set K and open set K with $K \subseteq E \subseteq K$ such that $M(K) < \epsilon$.
- 21. Let $m^*(A) > 0$. Then show that there exists at least one closed set $F \subset \mathbb{R}$ with $m(F) < \infty$ such that $A \cap F \neq \emptyset$.
- 22. Let μ be a finite measure on $M(\mathbb{R})$. Suppose for each closed set $F \subset \mathbb{R}$ with $m(F) < \infty$, implies $\mu(F) = 0$. Then show that $\mu = 0$.
- 23. Let E be a measurable subset of \mathbb{R} with $m(E) < \infty$ and $m\{E \cap (n, n+1)\} < \frac{1}{2^{|n|+2}}m(E)$, for all $n \in \mathbb{Z}$. Show that m(E) = 0.
- 24. Let $\{E_n\}$ be a sequence of Lebesgue measurable subsets of \mathbb{R} such that $\sum_{n=1}^{\infty} m(E_n) < \infty$. Show that $m\left(\bigcap_{n=1}^{\infty} E_n\right) = 0$.
- 25. Let $A \subset \mathbb{R}$ be a closed set with m(A) = 0. Show that A is nowhere dense in \mathbb{R} . But does this conclusion hold true when A is not closed?
- 26. Let $[-1,1] \cap \mathbb{Q} = \{r_1, r_2, \ldots\}$. For a Lebesgue measurable set $E \subset [0,1]$ with m(E) > 0, define $E_n = E + r_n$; $n \in \mathbb{N}$. Show that all of E_n 's can not be pairwise disjoint.
- 27. Let E be a Lebesgue measurable subset of \mathbb{R} with $m(E) = \infty$. Show that there exists a sequence $\{E_n\}$ of pairwise disjoint measurable subsets of E such that $m(E_n) < \infty$, for all n and $E = \bigcup_{n=1}^{\infty} E_n$.
- 28. Let F be a closed subset of \mathbb{R} with m(F)=0. Then for any $A\subset F$, show that $m^*\{x\in\mathbb{R}:d(x,A)=0\}=0$.
- 29. Let A be a bounded subset of \mathbb{R} . Show that $m(\overline{A}) < \infty$.
- 30. Let K be a compact subset of \mathbb{R} and $O_n = \{x \in \mathbb{R} : d(x,K) < \frac{1}{n}\}$. Show that each of O_n is Lebesgue measurable and $\lim_{n \to \infty} m(O_n) = m(K)$.