Assignment 2: Metric and Normed Linear Spaces.

- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) There exists a metric space having exactly 36 open sets.
 - (b) It is impossible to define a metric d on \mathbb{R} such that only finitely many subsets of \mathbb{R} are open in (\mathbb{R}, d) .
 - (c) If A and B are open (closed) subsets of a normed vector space X, then $A + B = \{a + b : a \in A \}$ $a \in A, b \in B$ } is open (closed) in X.
 - (d) If A and B are closed subsets of $[0,\infty)$ (with the usual metric), then A+B is closed in $[0,\infty)$.
 - (e) It is possible to define a metric d on \mathbb{R} such that the sequence (1,0,1,0,...) converges in
 - (f) It is possible to define a metric d on \mathbb{R}^2 such that $((\frac{1}{n}, \frac{n}{n+1}))$ is not a Cauchy sequence in
 - (g) It is possible to define a metric d on \mathbb{R}^2 such that in (\mathbb{R}^2, d) , the sequence $((\frac{1}{n}, 0))$ converges but the sequence $\left(\left(\frac{1}{n},\frac{1}{n}\right)\right)$ does not converge.
 - (h) If (x_n) is a sequence in a complete normed vector space X such that $||x_{n+1} x_n|| \to 0$ as $n \to \infty$, then (x_n) must converge in X.
 - (i) If (f_n) is a sequence in C[0,1] such that $|f_{n+1}(x)-f_n(x)|\leq \frac{1}{n^2}$ for all $n\in\mathbb{N}$ and for all $x \in [0,1]$, then there must exist $f \in C[0,1]$ such that $\int_{0}^{1} |f_n(x) - f(x)| dx \to 0$ as $n \to \infty$.
 - (j) If (x_n) is a Cauchy sequence in a normed vector space, then $\lim_{n\to\infty} ||x_n||$ must exist.
 - (k) $\{f \in C[0,1] : ||f||_1 \le 1\}$ is a bounded subset of the normed vector space $(C[0,1], ||\cdot||_{\infty})$.
- 2. Examine whether (X, d) is a metric space, where
 - (a) $X = \mathbb{R}$ and $d(x, y) = \frac{|x-y|}{1+|xy|}$ for all $x, y \in \mathbb{R}$.
 - (b) $X = \mathbb{R}$ and $d(x, y) = \min\{\sqrt{|x y|}, |x y|^2\}$ for all $x, y \in \mathbb{R}$.

 - (c) $X = \mathbb{R}$ and $d(x, y) = \lim_{X \to y} |x y|^p$ for all $x, y \in \mathbb{R}$ (0). $(d) <math>X = \mathbb{R}$ and for all $x, y \in \mathbb{R}$, $d(x, y) = \begin{cases} 1 + |x y| & \text{if exactly one of } x \text{ and } y \text{ is positive,} \\ |x y| & \text{otherwise.} \end{cases}$ (e) $X = \mathbb{R}^2$ and $d(x, y) = (|x_1 y_1| + |x_2 y_2|^{\frac{1}{2}})^{\frac{1}{2}}$ for all $x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$. (f) $X = \mathbb{R}^n$ and $d(x, y) = [(x_1 y_1)^2 + \frac{1}{2}(x_2 y_2)^2 + \dots + \frac{1}{n}(x_n y_n)^2]^{\frac{1}{2}}$ for all $x = (x_1, \dots, x_n)$,

 - (g) $X = \mathbb{C}$ and for all $z, w \in \mathbb{C}$, $d(z, w) = \begin{cases} \min\{|z| + |w|, |z 1| + |w 1| & \text{if } z \neq w, \\ 0 & \text{if } z = w. \end{cases}$ (h) $X = \mathbb{C}$ and for all $z, w \in \mathbb{C}$, $d(z, w) = \begin{cases} |z w| & \text{if } \frac{z}{|z|} = \frac{w}{|w|}, \\ |z| + |w| & \text{otherwise.} \end{cases}$

 - (i) $X = \mathbb{C}$ and $d(z, w) = \frac{2|z-w|}{\sqrt{1+|z|^2}\sqrt{1+|w|^2}}$ for all $z, w \in \mathbb{C}$.
 - (j) X = The class of all finite subsets of a nonempty set and d(A, B) = The number of elementsof the set $A \triangle B$ (the symmetric difference of A and B).
 - (k) X = C[0,1] and $d(f,g) = (\int_{0}^{1} |f(t) g(t)|^{2} dt)^{\frac{1}{2}}$ for all $f,g \in C[0,1]$.
- 3. Examine whether $\|\cdot\|$ is a norm on \mathbb{R}^2 , where for each $(x,y)\in\mathbb{R}^2$,
 - (a) $||(x,y)|| = (\sqrt{|x|} + \sqrt{|y|})^2$.

 - (b) $\|(x,y)\| = \sqrt{\frac{x^2}{9} + \frac{y^2}{4}}$. (c) $\|(x,y)\| = \begin{cases} \sqrt{x^2 + y^2} & \text{if } xy \ge 0, \\ \max\{|x|,|y|\} & \text{if } xy < 0. \end{cases}$

- 4. Let $||f|| = \min\{||f||_{\infty}, 2||f||_1\}$ for all $f \in C[0, 1]$. Prove that $||\cdot||$ is not a norm on C[0, 1].
- 5. If $\mathbf{x} \in \mathbb{R}^n$, then show that $\lim_{p \to \infty} \|\mathbf{x}\|_p = \|\mathbf{x}\|_{\infty}$.
- 6. If $1 \le p < q \le \infty$, then show that $||x||_q \le ||x||_p$ for all $x \in \ell^p$.
- 7. Let d be a metric on a real vector space X satisfying the following two conditions:
 - (i) d(x+z, y+z) = d(x, y) for all $x, y, z \in X$,
 - (ii) $d(\alpha x, \alpha y) = |\alpha| d(x, y)$ for all $x, y \in X$ and for all $\alpha \in \mathbb{R}$. Show that there exists a norm $\|\cdot\|$ on X such that $d(x, y) = \|x - y\|$ for all $x, y \in X$.
- 8. Let \mathbb{R}^{∞} be the real vector space of all sequences in \mathbb{R} , where addition and scalar multiplication are defined componentwise. Let $d((x_n), (y_n)) = \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{|x_n y_n|}{1 + |x_n y_n|}$ for all $(x_n), (y_n) \in \mathbb{R}^{\infty}$. Show that d is a metric on \mathbb{R}^{∞} but that no norm on \mathbb{R}^{∞} induces d.
- 9. Let $(X, \|\cdot\|)$ be a nonzero normed vector space. Consider the metrics d_1, d_2 and d_3 on X:

$$d_1(x,y) := \min\{1, ||x-y||\},\,$$

$$d_2(x,y) := \frac{\|x - y\|}{1 + \|x - y\|},$$

$$d_3(x,y) := \begin{cases} 1 + ||x - y|| & \text{if } x \neq y, \\ 0 & \text{if } x = y, \end{cases}$$

for all $x, y \in X$. Prove that none of d_1, d_2 and d_3 is induced by any norm on X.

- 10. Let X be a normed vector space containing more than one point, let $x, y \in X$ and let $\varepsilon, \delta > 0$. If $B_{\varepsilon}[x] = B_{\delta}[y]$, show that x = y and $\varepsilon = \delta$. Does the result remain true if X is assumed to be a metric space? Justify.
- 11. Examine whether the following sets are open/closed in \mathbb{R}^2 (with the usual metric).
 - (a) $\{(x,y) \in \mathbb{R}^2 : xy > 0\}$
 - (b) $\{(x, x) : x \in \mathbb{R}\}$
 - (c) $(0,1) \times \{0\}$
 - (d) $\{(x,y) \in \mathbb{R}^2 : 0 < x < y\}$
 - (e) $\{(x,y) \in \mathbb{R}^2 : x+y < 1\}$
 - (f) $\{(x,y) \in \mathbb{R}^2 : y \in \mathbb{Z}\}$
- 12. Let $A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 < 1\}$ and $B = \{(x, y, z) \in \mathbb{R}^3 : z = 0\}$. Examine whether $A \cap B$ is a closed/an open subset of \mathbb{R}^3 with respect to the usual metric on \mathbb{R}^3 .
- 13. Examine whether a finite subset of a metric space is open/closed.
- 14. For all $x, y \in \mathbb{R}$, let $d_1(x, y) = |x y|$, $d_2(x, y) = \min\{1, |x y|\}$ and $d_3(x, y) = \frac{|x y|}{1 + |x y|}$. If G is an open set in any one of the three metric spaces (\mathbb{R}, d_i) (i = 1, 2, 3), then show that G is also open in the other two metric spaces.
- 15. Let X be a nonzero normed vector space. Show that $\{x \in X : ||x|| < 1\}$ is not closed in X and $\{x \in X : ||x|| \le 1\}$ is not open in X.

- 16. Let X be a normed vector space and let $Y \neq X$ be a subspace of X. Show that Y is not open in X.
- 17. Let (x_n) and (y_n) be Cauchy sequences in a metric space (X,d). Show that the sequence $(d(x_n,y_n))$ is convergent.
- 18. Let (x_n) be a sequence in a complete metric space (X,d) such that $\sum_{n=1}^{\infty} d(x_n,x_{n+1}) < \infty$. Show that (x_n) converges in (X, d).
- 19. Let (x_n) be a sequence in a metric space X such that each of the subsequences (x_{2n}) , (x_{2n-1}) and (x_{3n}) converges in X. Show that (x_n) converges in X.
- 20. Show that the following are incomplete metric spaces.

 - (a) (\mathbb{N}, d) , where $d(m, n) = \left|\frac{1}{m} \frac{1}{n}\right|$ for all $m, n \in \mathbb{N}$ (b) $((0, \infty), d)$, where $d(x, y) = \left|\frac{1}{x} \frac{1}{y}\right|$ for all $x, y \in (0, \infty)$ (c) (\mathbb{R}, d) , where $d(x, y) = \left|\frac{x}{1+|x|} \frac{y}{1+|y|}\right|$ for all $x, y \in \mathbb{R}$ (d) (\mathbb{R}, d) , where $d(x, y) = \left|e^x e^y\right|$ for all $x, y \in \mathbb{R}$
- 21. Examine whether the following metric spaces are complete.

 - (a) ([0,1), d), where $d(x,y) = \left| \frac{x}{1-x} \frac{y}{1-y} \right|$ for all $x, y \in [0,1)$ (b) ((-1,1), d), where $d(x,y) = \left| \tan \frac{\pi x}{2} \tan \frac{\pi y}{2} \right|$ for all $x, y \in (-1,1)$
- 22. For $X(\neq \emptyset) \subset \mathbb{R}$, let $d(x,y) = \frac{|x-y|}{1+|x-y|}$ for all $x,y \in X$. Examine the completeness of the metric space (X, d), where X is
 - (a) $[0,1] \cap \mathbb{Q}$.
 - (b) $[-1,0] \cup [1,\infty)$.
 - (c) $\{n^2 : n \in \mathbb{N}\}.$
- 23. Examine whether the sequence (f_n) is convergent in $(C[0,1],d_\infty)$, where for all $n \in \mathbb{N}$ and for all $t \in [0, 1]$,

 - all $t \in [0, 1]$, (a) $f_n(t) = \frac{nt^2}{1+nt}$. (b) $f_n(t) = 1 + t + \frac{t^2}{2!} + \dots + \frac{t^n}{n!}$. (c) $f_n(t) = \begin{cases} nt & \text{if } 0 \le t \le \frac{1}{n}, \\ \frac{1}{nt} & \text{if } \frac{1}{n} < t \le 1. \end{cases}$
 - (d) $f_n(t) = \begin{cases} nt & \text{if } 0 \le t \le \frac{1}{n}, \\ \frac{n}{n-1}(1-t) & \text{if } \frac{1}{n} < t \le 1. \end{cases}$
- 24. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be continuous and let there exist $\alpha > 0$ such that $||f(\mathbf{x}) f(\mathbf{y})|| \ge \alpha ||\mathbf{x} \mathbf{y}||$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Prove that f is one-one, onto and that $f^{-1} : \mathbb{R}^n \to \mathbb{R}^n$ is continuous.
- 25. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a contraction and let $g(\mathbf{x}) = \mathbf{x} f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$. Show that $g:\mathbb{R}^n\to\mathbb{R}^n$ is one-one and onto. Also, show that both g and $g^{-1}:\mathbb{R}^n\to\mathbb{R}^n$ are continuous.