Assignment 2

- 1. Let f be a linear functional on a linear space X. Show that the dimension of quotient space $X/\ker f$ is one.
- 2. Let f and g be linear functional on linear space X such that ker $f = \ker g$. Then f = cg, for some scalar c.
- 3. Let f be a linear functional on a normed linear space X. Then f is bounded if and only if ker f is closed.
- 4. Let M be a proper subspace of a normed linear subspace X. Suppose $x_o \notin M$ and $\inf_{m \in M} ||x_o m|| = \delta > 0$. Then there exist $f \in X^*$ such that ||f|| = 1, $f(x_o) = \delta$ and f(x) = 0, $\forall x \in M$. Does such f exist uniquely?
- 5. Let X^* be the dual space of a normed linear space X. For $x \in X$, show that $||x|| = \sup\{|f(x)|: f \in X^* \text{ and } ||f|| = 1\}.$
- 6. Suppose X can be made Banach space with respect to norms $\|.\|_1$ and $\|.\|_2$. If there exists m > 0 such that $\|x\|_1 \le m \|x\|_2$ for all $x \in X$. Then both norms are equivalent.
- 7. Let M be a closed proper subspace of a normed linear space X. Then M is nowhere dense in X.
- 8. Let $X = (C[0, 1], \|.\|_{\infty})$. For $f \in C[0, 1]$ define

$$T(f)(t) = \int_{s=0}^{t} f(s)ds.$$

Then show that for each $n \in \mathbb{N}$, the power of operator T satisfies $||T^n|| = \frac{1}{n!}$.

9. Let $C_c(\mathbb{R})$ be the class of all compactly supported continuous functions on \mathbb{R} . Does the linear functional given by

$$T(f) = \int_{-\infty}^{\infty} f(t)dt$$

is continuous? What happen when T is defined on $C_c(\mathbb{C})$ with respect to complex measure on \mathbb{C} ?

- 10. Let X and Y be two Banach spaces and $T: X \to Y$ is a continuous linear bijection. Then show that $\inf\{\|x\|: \|Tx\| = 1\} = \|T^{-1}\|$.
- 11. Prove that an infinite dimensional Banach space X can not be expressed as the countable union of compact subsets of X.

- 12. Let X be a Banach space and Y be a normed linear space. Suppose $T_n \in B(X, Y)$ such that $\lim_{n\to\infty} T_n(x)$ exists for each $x \in X$. Write $T(x) = \lim_{n\to\infty} T_n(x)$. Show that T is bounded.
- 13. Let X and Y be two normed linear spaces and $T_n, T \in B(X, Y)$ such that $T_n \to T$. Suppose $x_n \to x$. Then show that $T_n x_n \to Tx$ in Y.
- 14. Show that $\{(x_n) \in l_2 : |x_n| \leq \frac{1}{n}\}$ is a compact convex set of l^2 with empty interior.
- 15. Let X and Y be two normed linear spaces and $T \in B(X, Y)$ sends each open subset in X to an open subset in Y. Prove that T is onto.
- 16. Let X and Y be two Banach spaces and $T \in B(X, Y)$. Show that followings are equivalent:
 - (a). T is injective and has closed range.
 - (b). There is $k \ge 0$ such that $||x|| \le k ||T(x)||$ for all $x \in X$.
- 17. Let X and Y be two normed linear spaces and $T: X \to Y$ such that dim $T(X) < \infty$ and ker T is closed. Then show that T is bounded.
- 18. Let X and Y be two Banach spaces and $T_n, T \in B(X, Y)$ such that $T_n \to T$ weakly. Then $\sup_n ||T_n|| < \infty$.
- 19. Let X and Y be two Banach spaces and $T: X \to Y$ such that $f \circ T \in X^*$ for each $f \in Y^*$. Then T is continuous.
- 20. Let X and Y be two Banach spaces and $S: X \to Y$ and $T: Y^* \to X^*$ are linear maps such that $f \circ S = T(f)$, for all $f \in Y^*$. Then show that S continuous. (Hint: use close graph theorem).
- 21. Let $X = c_o$. Show that $X^* = l^1$ and $X^{**} = l^{\infty}$. For $x = (x_n) \in X$, prove that $x \mapsto \sum_{1}^{\infty} x_n$ is weakly continuous but not weak^{*} continuous.
- 22. Let X be a reflexive Banach space and $f \in X^*$. Show that there exists $x_o \in B(0,1)$ such that $f(x_o) = ||f||$.
- 23. Let K be a closed bounded convex subset of a reflexive Banach space X. Prove that K is weakly compact.
- 24. Suppose M is a subspace of a Banach space X. Then M^{\perp} is weak^{*} closed subspace of X^* .