Assignment 1

1. Let $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$. For $1 \le p < q \le \infty$, prove that

$$||x||_q \le ||x||_p \le n^{\left(\frac{1}{p} - \frac{1}{q}\right)} ||x||_q.$$

2. Let $\mathbb{Q} = \{r_1, r_2, \dots, \}$ be an enumeration set of rational numbers. Define a sequence of functions $f_n : [0, 1] \to \mathbb{R}$ by

$$f_n(x) = \begin{cases} 1, & \text{if } x \in \{r_1, r_2, \dots, r_n\} \cap [0, 1], \\ 0, & \text{otherwise.} \end{cases}$$

Show that (f_n) is a Cauchy sequence in $(\mathcal{R}[0,1], \| . \|_1)$ but it does not converge to a function in $\mathcal{R}[0,1]$. Does (f_n) converge in $L^1[0,1]$?

- 3. Let $C^1[0,1]$ denote the space of all continuously differentiable functions on [0,1]. For $f \in C^1[0,1]$, define $||f|| = ||f||_{\infty} + ||f'||_{\infty}$. Show that space $(C^1[0,1], ||.||)$ is a Banach space.
- 4. Does space $(C^1[0,1], \| . \|)$, where $\|f\| = \|f'\|_1 + \|f\|_1$ a Banach space?
- 5. Let $f \in C^1[0,1]$. Write $||f|| = ||f||_2 + ||f'||_{\infty}$. Whether $(C^1[0,1], ||.||)$ is a Banach space?
- 6. Let $f \in C^1[0,1]$. Does $||f|| = \min(||f'||_2, ||f||_\infty)$ defines a norm on $C^1[0,1]$?
- 7. Let $X = \{f \in C^1[0,1] : f(0) = 0\}$. Then $||f|| = \left(\int_0^1 |f'|^2\right)^{\frac{1}{2}}$ defines a norm on $C^1[0,1]$. Whether (X, ||.||) is a Banach space ?
- 8. Let $(V, \parallel . \parallel)$ be a Banach space and X is the space of all the continuous functions from [0, 1] to V with $||f||_{\infty} = \sup_{t \in [0,1]} ||f(t)||$. Prove that $(X, \parallel . \parallel_{\infty})$ is a Banach space.
- 9. Show that $L^p[0,1]$ is proper dense subspace of $L^1[0,1]$, whenever 1 .
- 10. Let C_o be the class of all continuous functions $f : \mathbb{R} \to \mathbb{R}$ such that for each $\epsilon > 0$, there exists a compact set $K \subset \mathbb{R}$ such that $|f(x)| < \epsilon$, for all $x \in \mathbb{R} \setminus K$. Show that $(C_o, \| . \|_{\infty})$ is a Banach space.
- 11. Let $C_c(\mathbb{R}^n)$ denotes the class of all compactly supported continuous functions on \mathbb{R}^n .
 - (i) Prove that $C_c(\mathbb{R})$ is a proper dense subspace of $L^p(\mathbb{R})$, whenever $1 \leq p < \infty$.
 - (ii) Whether $C_c(\mathbb{R})$ is a dense subspace of $L^{\infty}(\mathbb{R})$?

- (iii) Prove that $C_c(\mathbb{R})$ is a dense subspace of $(C_o, \| \cdot \|_{\infty})$.
- (iii) Prove that $L^1 \cap L^p(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$, whenever 1 .
- 12. Let $1 \le p < q < \infty$. Prove that $L^q[0,1]$ is a dense proper subspace of $L^p[0,1]$.
- 13. Let $S(\mathbb{R})$ be the space of simple functions on \mathbb{R} . Prove that $S(\mathbb{R})$ is dense in $L^p(\mathbb{R})$, for $1 \leq p < \infty$. Whether $S(\mathbb{R})$ is dense in $L^{\infty}(\mathbb{R})$?
- 14. Let (x_n) be a sequence in a normed linear space X which converges to a non-zero vector $x \in X$. Show that

$$\frac{x_1 + \dots + x_n}{n^{\alpha}} \to x$$

if and only if $\alpha = 1$. If the sequence $x_n \to 0$, prove that

$$\frac{x_1 + \dots + x_n}{n^{\alpha}} \to 0, \text{ for all } \alpha \ge 1.$$

- 15. Let M be a subspace of a normed linear space X. Then show that M is closed if and only if $\{y \in M : ||y|| \le 1\}$ is closed in X.
- 16. Let $D = \{z \in \mathbb{C} : |z| < 1\}$. Let X be the class of all functions f which are analytic on D and continuous on \overline{D} . Define $||f||_{\infty} = \sup\{|f(e^{it})| : 0 \le t \le 2\pi\}$. Prove that $(X, || . ||_{\infty})$ is a Banach space.
- 17. Show that unit ball $\{x \in l^1(\mathbb{N}) : \|x\|_1 \leq 1\}$ is not compact in $l^1(\mathbb{N})$.
- 18. Show that unit ball $\{x \in l^{\infty}(\mathbb{N}) : \|x\|_{\infty} \leq 1\}$ is not compact $l^{\infty}(\mathbb{N})$.
- 19. Whether the annulus $\{x \in l^2(\mathbb{N}) : 1 \leq ||x||_2 \leq 2\}$ is a compact set in $l^2(\mathbb{N})$?
- 20. A normed linear space X is finite dimensional if and only if any ball $B_r(x)$ in X is compact.
- 21. Let M be a closed subspace of a normed linear space X. Prove that projection $\pi: X \to X/M$ defined by $\pi(x) = \tilde{x}$ is a continuous map.
- 22. Let X be a normed linear space. Prove that norm of any $x \in X$, can be expressed as $||x|| = \inf \{ |\alpha| : \alpha \in \mathbb{C} \setminus \{0\} \text{ with } ||x|| \le |\alpha| \}$.
- 23. Prove that $L^p(\mathbb{R})$ is separable for $1 \leq p < \infty$ but $L^{\infty}(\mathbb{R})$ is not separable.
- 24. Let M be a closed subspace of a normed linear space X. Then show that X is separable if and only if M and X/M both are separable.
- 25. Let X be a separable Banach space. Prove that there exists a closed subspace M of $l^1(\mathbb{N})$ such that X is isomorphic to $l^1(\mathbb{N})/M$.