Assignment 1

- 1. If f is continuously differentiable on S^1 , then show that $\hat{f}'(n) = in\hat{f}(n)$ for all $n \in \mathbb{Z}$. Deduce that that there exists C > 0 such that $|\hat{f}(n)| \leq \frac{C}{|n|}$. Does the above conclusion hold if f is absolutely continuous?
- 2. If f is a function of bounded variation on $[-\pi,\pi]$, then show that $|\hat{f}(n)| \leq \frac{\operatorname{Var}(f)}{2\pi|n|}$ for all $n \in \mathbb{Z}$.
- 3. For $f \in L^1(S^1)$, show that $\hat{f}(n) = \frac{1}{4\pi} \int_{-\pi}^{\pi} \left[f(x) f(x + \frac{\pi}{n}) \right] e^{-inx} dx$. Further, use this identity to prove the Riemann-Lebesgue lemma.
- 4. Let $f \in L^1(S^1)$ be such that $|f(x+h) f(x)| \le M|h|^{\alpha}$, for some $0 < \alpha < 1$ and M > 0 and for all $x, h \in S^1$. Show that $\hat{f}(n) = O\left(\frac{1}{|n|^{\alpha}}\right)$.

5. Show that the Fejer's kernel F_n can be expressed as $F_n(t) = \sum_{j=-n}^n \left(1 - \frac{|j|}{n}\right) e^{ijt}$.

- 6. Let $f \in L^1(S^1)$ and $m \in \mathbb{N}$ and define $f_m(t) = f(mt)$. Prove that $\hat{f}_m(n) = \hat{f}(\frac{n}{m})$, if $(m, n) \neq 1$ and $\hat{f}_m(n) = 0$ otherwise.
- 7. Let f be a function on S^1 . For $x, y \in S^1$, define $\tau_x f(y) = f(x y)$. Show that $x \to \tau_x f$ is continuous in $L^p(S^1)$ for $1 \le p < \infty$. That is, $\|\tau_x f f\|_p \to 0$ when $|x| \to 0$. Does the above conclusion hold if $p = \infty$?
- 8. If $f \in L^1(S^1)$ and $g \in L^{\infty}(S^1)$, then show that $\lim_{n \to \infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)g(nt)dt = \hat{f}(0)\hat{g}(0)$.
- 9. For given $f \in L^1(S^1)$, define an operator T_f on $L^1(S^1)$ by $T_f(g) = f * g$. Show that T_f is a bounded operator on $L^1(S^1)$ and $||T_f|| = ||f||_1$.
- 10. Let P be a trigonometric polynomial of degree n on S^1 . Show that $||P'||_{\infty} \leq 2n ||P||_{\infty}$.
- 11. Let $1 \leq p \leq \infty$ and $p^{-1} + q^{-1} = 1$. For $f \in L^p(S^1)$ and $g \in L^q(S^1)$, show that f * g is a continuous function on S^1 .
- 12. Suppose $f \in L^{\infty}(S^1)$ satisfies $|\hat{f}(n)| \leq \frac{k}{|n|}$ for some k > 0 and for all $n \in \mathbb{Z} \setminus \{0\}$. Prove that $|S_n(f)(t)| \leq ||f||_{\infty} + 2k$, where $S_n(f) = D_n * f$.
- 13. If f is a bounded monotone function on S^1 , then show that $\hat{f}(n) = O\left(\frac{1}{|n|}\right)$.
- 14. If f is Riemann integrable on $[-\pi, \pi]$, then show that $\sum_{n=-\infty}^{\infty} |\hat{f}(n)|^2 < \infty$ and hence $\hat{f}(n) = o(1)$.
- 15. Prove that, if the series of complex numbers $\sum_{n=0}^{\infty} a_n$ converges to s, then $\sum_{n=0}^{\infty} a_n$ is Cesaro as well as Abel summable to s.
- 16. Prove that, if the series of complex numbers $\sum_{n=0}^{\infty} a_n$ is Cesaro summable to σ , then $\sum_{n=0}^{\infty} a_n$ is Abel summable to σ . However, converse need not be true.

- 17. Let $u(r,\theta) = \frac{\partial P_r}{\partial \theta}(\theta)$, where $P_r(\theta)$ is the Poisson kernel defined on the open unit disc $\mathbb{D} = \{re^{i\theta} : 0 \le r < 1, \theta \in [-\pi, \pi)\}$. Show that $\Delta u = 0$ on \mathbb{D} and $\lim_{r \to 1} u(r, \theta) = 0$ for all $\theta \in [-\pi, \pi)$.
- 18. Let f be Riemann integrable on $[-\pi, \pi]$, and $A_r(f)(\theta) = f * P_r(\theta)$ for $0 \le r < 1$, denotes the Abel mean of f. If f has jump discontinuity at θ , then show that $\lim_{r \to 1} A_r(f)(\theta) = \frac{f(\theta^+) + f(\theta^-)}{2}$. Justify that $\lim_{r \to 1} A_r(f)(\theta) \ne \frac{f(\theta)}{2}$, when f is continuous at θ .
- 19. Let f be Riemann integrable on $[-\pi, \pi]$, and $\sigma_n(f)(\theta) = f * F_n(\theta)$, where F_n is Fejer's kernel. If f has jump discontinuity at θ , then show that $\lim_{n \to \infty} \sigma_n(f)(\theta) = \frac{f(\theta^+) + f(\theta^-)}{2}$.
- 20. Let f be Riemann integrable on $[-\pi, \pi]$ such that $\hat{f}(n) = O\left(\frac{1}{|n|}\right)$ for all $n \in \mathbb{Z}$. (a) Show that $S_N(f)(\theta) = D_N * f(\theta) \to f(\theta)$ if f is continuous at θ .
 - (b) If f has jump discontinuity at θ , then show that $S_N(f)(\theta) \to \frac{f(\theta^+) + f(\theta^-)}{2}$.
 - (c) If f is continuous on $[-\pi,\pi]$, then $S_N(f) \to f$ uniformly.
- 21. For $f \in L^2(S^1)$, show that $\frac{1}{n} \sum_{k=0}^{n-1} f(x + \frac{k}{n}) \to \hat{f}(0)$ as $n \uparrow \infty$ in the metric of $L^2(S^1)$.

22. Does there exist a function $f \in L^1(S^1)$ such that $\sum_{n=-\infty}^{\infty} |\hat{f}(n)|^2 = \infty$?

- 23. If $f \in L^1(S^1)$ vanishes near x = 0, then show that $S_N(f) \to 0$ uniformly near x = 0.
- 24. Let f be a function on $[-\pi, \pi]$ such that $|f(\theta) f(\varphi)| \le M |\theta \varphi|$, for some M > 0 and for all $\theta, \varphi \in [-\pi, \pi]$.
 - (a) For $u(r, \theta) = P_r * f(\theta)$, show that $\frac{\partial u}{\partial \theta}$ exists for all $0 \le r < 1$ and $\left|\frac{\partial u}{\partial \theta}\right| \le M$ for some M > 0. (b) Show that $\sum_{n=-\infty}^{\infty} |\hat{f}(n)| \le |\hat{f}(0)| + 2M \sqrt{\sum_{n=1}^{\infty} \frac{1}{n^2}}$.

25. If f is continuously differentiable on S^1 , then show that $\sum_{n=-\infty}^{\infty} (1+|n|^2)|\hat{f}(n)|^2 < \infty$.

- 26. If $\{G_n\}_{n=1}^{\infty}$ is a family of good kernels on S^1 , then show that $\lim_{n \to \infty} \hat{G}_n(k) = 1$.
- 27. Let f and g be Riemann integrable on $[-\pi, \pi]$. Define $\tilde{g}(x) = \overline{g(-x)}$. (a) Show that $\frac{1}{2\pi} \int_{0}^{\pi} |g(t)|^2 dt = g * \tilde{g}(0)$.

(b)
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f * g(x)|^2 dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f * \tilde{g}(x)|^2 dx.$$

28. Let $f \in L^1(S^1)$ be such that $\hat{f}(|n|) = -\hat{f}(-|n|) \ge 0$ for all $n \in \mathbb{Z}$. Show that $\sum_{n>0} \frac{\hat{f}(n)}{n} < \infty$.

- 29. If $\{K_n\}_{n=1}^{\infty}$ and $\{J_n\}_{n=1}^{\infty}$ are families of good kernels on S^1 , then show that $\{K_n * J_n\}_{n=1}^{\infty}$ is a family of good kernels.
- 30. Suppose f is an absolutely continuous function on S^1 such that $f' \in L^2(S^1)$. Prove that $\sum_{n=-\infty}^{\infty} |\hat{f}(n)| \le \|f\|_1 + 2\sqrt{\sum_{n=1}^{\infty} \frac{1}{n^2}} \|f'\|_2$.