Assignment 1

1. If f is continuously differentiable on S^{1}, then show that $\hat{f}^{\prime}(n)=\operatorname{in} \hat{f}(n)$ for all $n \in \mathbb{Z}$. Deduce that that there exists $C>0$ such that $|\hat{f}(n)| \leq \frac{C}{|n|}$. Does the above conclusion hold if f is absolutely continuous?
2. If f is a function of bounded variation on $[-\pi, \pi]$, then show that $|\hat{f}(n)| \leq \frac{\operatorname{Var}(f)}{2 \pi|n|}$ for all $n \in \mathbb{Z}$.
3. For $f \in L^{1}\left(S^{1}\right)$, show that $\hat{f}(n)=\frac{1}{4 \pi} \int_{-\pi}^{\pi}\left[f(x)-f\left(x+\frac{\pi}{n}\right)\right] e^{-i n x} d x$. Further, use this identity to prove the Riemann-Lebesgue lemma.
4. Let $f \in L^{1}\left(S^{1}\right)$ be such that $|f(x+h)-f(x)| \leq M|h|^{\alpha}$, for some $0<\alpha<1$ and $M>0$ and for all $x, h \in S^{1}$. Show that $\hat{f}(n)=O\left(\frac{1}{|n|^{\alpha}}\right)$.
5. Show that the Fejer's kernel F_{n} can be expressed as $F_{n}(t)=\sum_{j=-n}^{n}\left(1-\frac{|j|}{n}\right) e^{i j t}$.
6. Let $f \in L^{1}\left(S^{1}\right)$ and $m \in \mathbb{N}$ and define $f_{m}(t)=f(m t)$. Prove that $\hat{f}_{m}(n)=\hat{f}\left(\frac{n}{m}\right)$, if $(m, n) \neq 1$ and $\hat{f}_{m}(n)=0$ otherwise.
7. Let f be a function on S^{1}. For $x, y \in S^{1}$, define $\tau_{x} f(y)=f(x-y)$. Show that $x \rightarrow \tau_{x} f$ is continuous in $L^{p}\left(S^{1}\right)$ for $1 \leq p<\infty$. That is, $\left\|\tau_{x} f-f\right\|_{p} \rightarrow 0$ when $|x| \rightarrow 0$. Does the above conclusion hold if $p=\infty$?
8. If $f \in L^{1}\left(S^{1}\right)$ and $g \in L^{\infty}\left(S^{1}\right)$, then show that $\lim _{n \rightarrow \infty} \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) g(n t) d t=\hat{f}(0) \hat{g}(0)$.
9. For given $f \in L^{1}\left(S^{1}\right)$, define an operator T_{f} on $L^{1}\left(S^{1}\right)$ by $T_{f}(g)=f * g$. Show that T_{f} is a bounded operator on $L^{1}\left(S^{1}\right)$ and $\left\|T_{f}\right\|=\|f\|_{1}$.
10. Let P be a trigonometric polynomial of degree n on S^{1}. Show that $\left\|P^{\prime}\right\|_{\infty} \leq 2 n\|P\|_{\infty}$.
11. Let $1 \leq p \leq \infty$ and $p^{-1}+q^{-1}=1$. For $f \in L^{p}\left(S^{1}\right)$ and $g \in L^{q}\left(S^{1}\right)$, show that $f * g$ is a continuous function on S^{1}.
12. Suppose $f \in L^{\infty}\left(S^{1}\right)$ satisfies $|\hat{f}(n)| \leq \frac{k}{|n|}$ for some $k>0$ and for all $n \in \mathbb{Z} \backslash\{0\}$. Prove that $\left|S_{n}(f)(t)\right| \leq\|f\|_{\infty}+2 k$, where $S_{n}(f)=D_{n} * f$.
13. If f is a bounded monotone function on S^{1}, then show that $\hat{f}(n)=O\left(\frac{1}{|n|}\right)$.
14. If f is Riemann integrable on $[-\pi, \pi]$, then show that $\sum_{n=-\infty}^{\infty}|\hat{f}(n)|^{2}<\infty$ and hence $\hat{f}(n)=o(1)$.
15. Prove that, if the series of complex numbers $\sum_{n=0}^{\infty} a_{n}$ converges to s, then $\sum_{n=0}^{\infty} a_{n}$ is Cesaro as well as Abel summable to s.
16. Prove that, if the series of complex numbers $\sum_{n=0}^{\infty} a_{n}$ is Cesaro summable to σ, then $\sum_{n=0}^{\infty} a_{n}$ is Abel summable to σ. However, converse need not be true.
17. Let $u(r, \theta)=\frac{\partial P_{r}}{\partial \theta}(\theta)$, where $P_{r}(\theta)$ is the Poisson kernel defined on the open unit disc $\mathbb{D}=\left\{r e^{i \theta}\right.$: $0 \leq r<1, \theta \in[-\pi, \pi)\}$. Show that $\Delta u=0$ on \mathbb{D} and $\lim _{r \rightarrow 1} u(r, \theta)=0$ for all $\theta \in[-\pi, \pi)$.
18. Let f be Riemann integrable on $[-\pi, \pi]$, and $A_{r}(f)(\theta)=f * P_{r}(\theta)$ for $0 \leq r<1$, denotes the Abel mean of f. If f has jump discontinuity at θ, then show that $\lim _{r \rightarrow 1} A_{r}(f)(\theta)=\frac{\left.f\left(\theta^{+}\right)+f^{(} \theta^{-}\right)}{2}$. Justify that $\lim _{r \rightarrow 1} A_{r}(f)(\theta) \neq \frac{f(\theta)}{2}$, when f is continuous at θ.
19. Let f be Riemann integrable on $[-\pi, \pi]$, and $\sigma_{n}(f)(\theta)=f * F_{n}(\theta)$, where F_{n} is Fejer's kernel. If f has jump discontinuity at θ, then show that $\lim _{n \rightarrow \infty} \sigma_{n}(f)(\theta)=\frac{\left.f\left(\theta^{+}\right)+f^{(} \theta^{-}\right)}{2}$.
20. Let f be Riemann integrable on $[-\pi, \pi]$ such that $\hat{f}(n)=O\left(\frac{1}{|n|}\right)$ for all $n \in \mathbb{Z}$.
(a) Show that $S_{N}(f)(\theta)=D_{N} * f(\theta) \rightarrow f(\theta)$ if f is continuous at θ.
(b) If f has jump discontinuity at θ, then show that $S_{N}(f)(\theta) \rightarrow \frac{\left.f\left(\theta^{+}\right)+f^{(} \theta^{-}\right)}{2}$.
(c) If f is continuous on $[-\pi, \pi]$, then $S_{N}(f) \rightarrow f$ uniformly.
21. For $f \in L^{2}\left(S^{1}\right)$, show that $\frac{1}{n} \sum_{k=0}^{n-1} f\left(x+\frac{k}{n}\right) \rightarrow \hat{f}(0)$ as $n \uparrow \infty$ in the metric of $L^{2}\left(S^{1}\right)$.
22. Does there exist a function $f \in L^{1}\left(S^{1}\right)$ such that $\sum_{n=-\infty}^{\infty}|\hat{f}(n)|^{2}=\infty$?
23. If $f \in L^{1}\left(S^{1}\right)$ vanishes near $x=0$, then show that $S_{N}(f) \rightarrow 0$ uniformly near $x=0$.
24. Let f be a function on $[-\pi, \pi]$ such that $|f(\theta)-f(\varphi)| \leq M|\theta-\varphi|$, for some $M>0$ and for all $\theta, \varphi \in[-\pi, \pi]$.
(a) For $u(r, \theta)=P_{r} * f(\theta)$, show that $\frac{\partial u}{\partial \theta}$ exists for all $0 \leq r<1$ and $\left|\frac{\partial u}{\partial \theta}\right| \leq M$ for some $M>0$.
(b) Show that $\sum_{n=-\infty}^{\infty}|\hat{f}(n)| \leq|\hat{f}(0)|+2 M \sqrt{\sum_{n=1}^{\infty} \frac{1}{n^{2}}}$.
25. If f is continuously differentiable on S^{1}, then show that $\sum_{n=-\infty}^{\infty}\left(1+|n|^{2}\right)|\hat{f}(n)|^{2}<\infty$.
26. If $\left\{G_{n}\right\}_{n=1}^{\infty}$ is a family of good kernels on S^{1}, then show that $\lim _{n \rightarrow \infty} \hat{G}_{n}(k)=1$.
27. Let f and g be Riemann integrable on $[-\pi, \pi]$. Define $\tilde{g}(x)=\overline{g(-x)}$.
(a) Show that $\frac{1}{2 \pi} \int_{-\pi}^{\pi}|g(t)|^{2} d t=g * \tilde{g}(0)$.
(b) $\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f * g(x)|^{2} d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f * \tilde{g}(x)|^{2} d x$.
28. Let $f \in L^{1}\left(S^{1}\right)$ be such that $\hat{f}(|n|)=-\hat{f}(-|n|) \geq 0$ for all $n \in \mathbb{Z}$. Show that $\sum_{n>0} \frac{\hat{f}(n)}{n}<\infty$.
29. If $\left\{K_{n}\right\}_{n=1}^{\infty}$ and $\left\{J_{n}\right\}_{n=1}^{\infty}$ are families of good kernels on S^{1}, then show that $\left\{K_{n} * J_{n}\right\}_{n=1}^{\infty}$ is a family of good kernels.
30. Suppose f is an absolutely continuous function on S^{1} such that $f^{\prime} \in L^{2}\left(S^{1}\right)$. Prove that $\sum_{n=-\infty}^{\infty}|\hat{f}(n)| \leq\|f\|_{1}+2 \sqrt{\sum_{n=1}^{\infty} \frac{1}{n^{2}}}\left\|f^{\prime}\right\|_{2}$.
