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1. State TRUE or FALSE giving proper justification for each of the following statements.

(a) Every subspace of L2(T,m) of dimension more than one is simply invariant.

(b) Let H2 = span{zn : n ≥ 0}. Whether H2 ⊥ zH2?

(c) If 0 6= f ∈ H2, then Ef = span{zn f : n ≥ 0} is a reducing subspace of H2.

(d) Let µ be a finite measure on T. Then Ef is always a reducing subspace of L2(µ)?

(e) If Θ ∈ H2 is an inner function, does it imply that span{znΘ : n ≥ 0} = ΘH2?

2. Let µ be a finite Borel measure on T. Prove or disprove that L2(µ) = L2(µ).L2(µ).

3. Let µ be a finite Borel measure on C. Prove or disprove that for every f ∈ L2(C, µ) there
exist g, h ∈ L2(C, µ) such that f = gh.

4. Let w ∈ L1
+(T,m) = {g ∈ L1(T,m) : g ≥ 0}. If there exits f ∈ H2 sauch that |f |2 = w

a.e. on T. Then there exists a unique outer function fo such that |fo|2 = w a.e. on T.

5. Let µ be a finite Borel measure on T. Write H2
0 (µ) = zH2(µ). Show that H2

0 (µ) =
H2

0 (µa)⊕ L2(µs), where µ = µa + µs.

6. Let µ be a finite Borel measure on T. Then following are equivalent:

(i) There exists a non-reducing subspace E ⊂ L2(µ) with zE ⊂ E.
(ii) There exists a complex measure ν 6= 0 which is absolutely continuous with respect

to µ and orthogonal to P+, i.e.
∫
T
zndν ∀ n ≥ 1.

7. Let µ be a finite measure on T. Then zE ⊆ E ⊂ L2(µ) implies zE = E if and only if m
is not absolutely continuous with respect to µ.

8. Let µ be a compactly supported finite measure on the complex plane C. Show that every
reducing subspace E of L2(µ) is of the form E = χσL

2(µ) for a Borel set σ of C.

9. Let L∞(T,m) be the space essentially bounded measurable functions on T.
(i) If f ∈ H2 ∩ L∞, then fH2 ⊂ H2.

(ii) If f ∈ H2 ∩ L∞ and ‖f‖∞ < 1, then 1 + f is outer

(iii) If f ∈ H2 ∩ L∞, then ef ∈ H2 is an outer function.

10. For λ ∈ C, z − λ is an outer function if and only if |λ| ≥ 1. Hence polynomial p is an
outer function if and only if p has no zero in the open unit disc D = {z ∈: |z| < 1}.

11. Let µ be a finite measure on T. If H2(µ) is a proper subspace of L2(µ), then show that
dist(1, H2

o (µ)) > 0.

12. If f ∈ H2 be an outer function, then show that span{znf : n ≥ 1} = zH2.
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