Advanced Course on Hardy spaces

(MA650: Assignment 1)

January- April, 2022

- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) Every subspace of $L^2(\mathbb{T}, m)$ of dimension more than one is simply invariant.
 - (b) Let $H^2 = \overline{\operatorname{span}}\{z^n : n \ge 0\}$. Whether $H^2 \perp z H^2$?
 - (c) If $0 \neq f \in H^2$, then $E_f = \overline{\text{span}}\{z^n f : n \ge 0\}$ is a reducing subspace of H^2 .
 - (d) Let μ be a finite measure on \mathbb{T} . Then E_f is always a reducing subspace of $L^2(\mu)$?
 - (e) If $\Theta \in H^2$ is an inner function, does it imply that $\overline{\text{span}}\{z^n \Theta : n \ge 0\} = \Theta H^2$?
- 2. Let μ be a finite Borel measure on \mathbb{T} . Prove or disprove that $L^2(\mu) = L^2(\mu) L^2(\mu)$.
- 3. Let μ be a finite Borel measure on \mathbb{C} . Prove or disprove that for every $f \in L^2(\mathbb{C}, \mu)$ there exist $g, h \in L^2(\mathbb{C}, \mu)$ such that f = gh.
- 4. Let $w \in L^1_+(\mathbb{T}, m) = \{g \in L^1(\mathbb{T}, m) : g \ge 0\}$. If there exits $f \in H^2$ sauch that $|f|^2 = w$ a.e. on \mathbb{T} . Then there exists a unique outer function f_o such that $|f_o|^2 = w$ a.e. on \mathbb{T} .
- 5. Let μ be a finite Borel measure on \mathbb{T} . Write $H_0^2(\mu) = zH^2(\mu)$. Show that $H_0^2(\mu) = H_0^2(\mu_a) \oplus L^2(\mu_s)$, where $\mu = \mu_a + \mu_s$.
- 6. Let μ be a finite Borel measure on \mathbb{T} . Then following are equivalent:
 - (i) There exists a non-reducing subspace $E \subset L^2(\mu)$ with $zE \subset E$.
 - (ii) There exists a complex measure $\nu \neq 0$ which is absolutely continuous with respect to μ and orthogonal to \mathbb{P}_+ , i.e. $\int_{\mathbb{T}} z^n d\nu \,\forall n \geq 1$.
- 7. Let μ be a finite measure on \mathbb{T} . Then $zE \subseteq E \subset L^2(\mu)$ implies zE = E if and only if m is not absolutely continuous with respect to μ .
- 8. Let μ be a compactly supported finite measure on the complex plane \mathbb{C} . Show that every reducing subspace E of $L^2(\mu)$ is of the form $E = \chi_{\sigma} L^2(\mu)$ for a Borel set σ of \mathbb{C} .
- 9. Let L[∞](T, m) be the space essentially bounded measurable functions on T.
 (i) If f ∈ H² ∩ L[∞], then fH² ⊂ H².
 - (ii) If $f \in H^2 \cap L^\infty$ and $||f||_\infty < 1$, then 1 + f is outer
 - (iii) If $f \in H^2 \cap L^\infty$, then $e^f \in H^2$ is an outer function.
- 10. For $\lambda \in \mathbb{C}$, $z \lambda$ is an outer function if and only if $|\lambda| \ge 1$. Hence polynomial p is an outer function if and only if p has no zero in the open unit disc $\mathbb{D} = \{z \in |z| < 1\}$.
- 11. Let μ be a finite measure on \mathbb{T} . If $H^2(\mu)$ is a proper subspace of $L^2(\mu)$, then show that $\operatorname{dist}(1, H_o^2(\mu)) > 0$.
- 12. If $f \in H^2$ be an outer function, then show that $\overline{\text{span}}\{z^n f : n \ge 1\} = zH^2$.