Assignment 1

- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) $\{x \in \ell^1 : ||x||_2 \le 1\}$ is a bounded set in the Banach space $(\ell^1, ||\cdot||_1)$.
 - (b) $\{x \in \ell^1 : ||x||_1 < 1\}$ is an open set in the normed linear space $(\ell^1, ||\cdot||_2)$.
 - (c) $\{x \in C[0,1] : ||x||_{\infty} < 1\}$ is an open set in the normed linear space $(C[0,1], ||\cdot||_1)$.
 - (d) If (x_n) is a sequence in a Banach space X such that $\sum_{n=1}^{\infty} n^2 ||x_n||^2 < \infty$, then the series $\sum_{n=1}^{\infty} x_n$ must be convergent in X.
- 2. Examine whether $\|\cdot\|$ is a norm on \mathbb{R}^n , where
 - (a) $\|(x_1, ..., x_n)\| = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$ for all $(x_1, ..., x_n) \in \mathbb{R}^n$ $(n \ge 2 \text{ and } 0 .$
 - (b) $\|(x_1,...,x_n)\| = (x_1^2 + \frac{1}{2}x_2^2 + \dots + \frac{1}{n}x_n^2)^{\frac{1}{2}}$ for all $(x_1,...,x_n) \in \mathbb{R}^n$.
- 3. Examine whether $\|\cdot\|$ is a norm on C[0,1], where $\|x\| = \min\{\|x\|_{\infty}, 2\|x\|_1\}$ for all $x \in C[0,1]$.
- 4. Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function which vanishes at most at one point in \mathbb{R}^n and satisfies $f(\alpha x) = |\alpha| f(x)$, for each $(\alpha, x) \in \mathbb{R} \times \mathbb{R}^n$. Show that f is a norm on \mathbb{R}^n .
- 5. Let X be a normed linear space and let $x \in X$. Show that $||x|| = \inf \left\{ \frac{1}{|\alpha|} : \alpha \in \mathbb{K} \setminus \{0\}, ||\alpha x|| \le 1 \right\}.$
- 6. Let M be a proper closed subspace of a normed linear space X. Define a map $f: X \to \mathbb{R}$ by $f(x) = \inf_{m \in M} \|x + m\|$. Show that f is an uniformly continuous function on X.
- 7. Let $x = (x_1, \dots, x_n) \in \mathbb{R}^n$. For $1 \le p < q \le \infty$, prove that

$$||x||_q \le ||x||_p \le n^{\left(\frac{1}{p} - \frac{1}{q}\right)} ||x||_q.$$

8. Let $\mathbb{Q} = \{r_1, r_2, \dots, \}$ be an enumeration set of rational numbers. Define a sequence of functions $f_n : [0, 1] \to \mathbb{R}$ by

$$f_n(x) = \begin{cases} 1, & \text{if } x \in \{r_1, r_2, \dots, r_n\} \cap [0, 1], \\ 0, & \text{otherwise.} \end{cases}$$

Show that (f_n) is a Cauchy sequence in $(\mathcal{R}[0,1], \| . \|_1)$ but it does not converge to a function in $\mathcal{R}[0,1]$. Does (f_n) converge in $L^1[0,1]$?

- 9. Let $C^1[0,1]$ denote the space of all continuously differentiable functions on [0,1]. For $f \in C^1[0,1]$, define $||f|| = ||f||_{\infty} + ||f'||_{\infty}$. Show that space $(C^1[0,1], || . ||)$ is a Banach space.
- 10. Let $X = \{f \in C^1[0,1]: f(0) = 0\}$. For $f \in X$, define $||f||_1 = ||f||_{\infty} + ||f'||_{\infty}$. Prove that $||f||_1 \le 2||f'||_{\infty}$.
- 11. Let $X = \{f \in C^1[0,1] : f(0) = 0\}$. Then $||f|| = \left(\int_0^1 |f'|^2\right)^{\frac{1}{2}}$ defines a norm on $C^1[0,1]$. Whether (X, || . ||) is a Banach space?

- 12. Show that $L^p[0,1]$ is proper dense subspace of $L^1[0,1]$, whenever 1 .
- 13. Let C_o be the class of all continuous functions $f: \mathbb{R} \to \mathbb{R}$ such that for each $\epsilon > 0$, there exists a compact set $K \subset \mathbb{R}$ such that $|f(x)| < \epsilon$, for all $x \in \mathbb{R} \setminus K$. Show that $(C_o, \| . \|_{\infty})$ is a Banach space.
- 14. Let $C_c(\mathbb{R}^n)$ denotes the class of all compactly supported continuous functions on \mathbb{R}^n .
 - (i): Prove that $C_c(\mathbb{R})$ is a proper dense subspace of $L^p(\mathbb{R})$, whenever $1 \leq p < \infty$.
 - (ii): Whether $C_c(\mathbb{R})$ is a dense subspace of $L^{\infty}(\mathbb{R})$?
 - (iii): Prove that $C_c(\mathbb{R})$ is a dense subspace of $(C_o, \| . \|_{\infty})$.
 - (iii): Prove that $L^1 \cap L^p(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$, whenever 1 .
- 15. Let $1 \le p < q < \infty$. Prove that $L^q[0,1]$ is a dense proper subspace of $L^p[0,1]$.
- 16. Let $S(\mathbb{R})$ be the space of simple functions on \mathbb{R} . Prove that $S(\mathbb{R})$ is dense in $L^p(\mathbb{R})$, for $1 \leq p < \infty$. Why $S(\mathbb{R})$ is not dense in $L^{\infty}(\mathbb{R})$?
- 17. Let (x_n) be a sequence in a normed linear space X which converges to a non-zero vector $x \in X$. Show that

$$\frac{x_1 + \dots + x_n}{n^{\alpha}} \to x$$

if and only if $\alpha = 1$. If the sequence $x_n \to 0$, prove that

$$\frac{x_1 + \dots + x_n}{n^{\alpha}} \to 0$$
, for all $\alpha \ge 1$.

- 18. Let M be a subspace of a normed linear space X. Then show that M is closed if and only if $\{y \in M : ||y|| \le 1\}$ is closed in X.
- 19. Let $D = \{z \in \mathbb{C} : |z| < 1\}$. Let X be the class of all functions f which are analytic on D and continuous on \bar{D} . Define $||f||_{\infty} = \sup\{|f(e^{it})| : 0 \le t \le 2\pi\}$. Prove that $(X, || . ||_{\infty})$ is a Banach space.
- 20. Let M be a closed subspace of a normed linear space X. Prove that projection $\pi: X \to X/M$ defined by $\pi(x) = \tilde{x}$ is a continuous map.
- 21. Prove that $L^p(\mathbb{R})$ is separable for $1 \leq p < \infty$ but $L^{\infty}(\mathbb{R})$ is not separable.
- 22. Let M be a closed subspace of a normed linear space X. Then show that X is separable if and only if M and X/M both are separable.
- 23. For each $n \in \mathbb{N}$, let $x_n = 1 + \frac{(-1)^n}{n}$. Determine all p with $1 \le p \le \infty$ for which $(x_n) \in \ell^p$.
- 24. Let $1 \le p < q \le \infty$. Show that
 - (a) $\ell^p \subsetneq c_0$
 - (b) $\ell^p \subsetneq \ell^q$
 - (c) $||x||_q \le ||x||_p$ for all $x \in \ell^p$

- 25. Can you find an element in c_0 which does not belong to ℓ^p for any $1 \le p < \infty$?
- 26. Prove the following:

 - (a) If $x \in \mathbb{R}^n$, then $\lim_{p \to \infty} \|x\|_p = \|x\|_{\infty}$. (b) If $x \in \ell^q$ for some $1 \le q < \infty$, then $\lim_{p \to \infty} \|x\|_p = \|x\|_{\infty}$. (c) If $x \in C[a, b]$, then $\lim_{p \to \infty} \|x\|_p = \|x\|_{\infty}$.
- 27. Prove that c_{00} is dense in $(c_0, \|\cdot\|_{\infty})$ and also in $(\ell^p, \|\cdot\|_p)$ for $1 \leq p < \infty$.
- 28. Show that $\{(x_n) \in c_{00} : \sum_{n=1}^{\infty} x_n = 0\}$ is dense in $(c_0, \|\cdot\|_{\infty})$.
- 29. Show that $\{(x_n) \in \ell^2 : |x_n| \leq \frac{1}{n} \text{ for all } n \in \mathbb{N}\}$ is a compact convex subset of ℓ^2 with empty interior.
- 30. Let X be a metric space. Prove that the normed linear space $(C_b(X), \|\cdot\|_{\infty})$ is finite dimensional iff X is finite.
- 31. Let X be a nonzero normed linear space, let $x, y \in X$ and let $\varepsilon, \delta > 0$. If $B_{\varepsilon}[x] = B_{\delta}[y]$, then show that x = y and $\varepsilon = \delta$. Does the result remain true if X is assumed to be only a metric space?
- 32. Let Y be a subspace of a normed linear space X. Show that
 - (a) $Y^0 \neq \emptyset$ iff Y = X.
 - (b) Y is nowhere dense in X iff Y is not dense in X.
- 33. Let X be a nonzero normed linear space. Show that $\{x \in X : 1 < ||x|| \le 2\}$ is neither an open set nor a closed set in X.
- 34. Let A be a subset of a normed linear space. Show that $\overline{A} = \bigcap_{r>0} (A + B_r(0))$.
- 35. Let A be a nonempty subset of a nonzero normed linear space X. Show that $\overline{A+B_X} = \{x \in X : d(x,A) \le 1\}.$
- 36. Show that $\|(\alpha_n) + c_0\| = \limsup_{n \to \infty} |\alpha_n|$ for each $(\alpha_n) \in \ell^{\infty}$.
- 37. If K is a compact set in the Banach space $(\ell^{\infty}, \|\cdot\|_{\infty})$, then show that $\{x + c_0 : x \in K\}$ is a compact set in the Banach space ℓ^{∞}/c_0 with the quotient norm.
- 38. Show that a normed linear space X is separable iff S_X is separable.
- 39. Let $(X, \|\cdot\|)$ be an infinite dimensional separable Banach space. Show that there is a norm $\|\cdot\|_0$ on X such that $(X,\|\cdot\|_0)$ is nonseparable.
- 40. Let (x_n) be a sequence in a Banach space X. Which of the following conditions ensure(s) that (x_n) is convergent in X?
 - (a) $||x_n x_{n+1}|| \to 0$.

(b)
$$\sum_{n=1}^{\infty} ||x_n - x_{n+1}|| < \infty$$
.

- 41. Let Y be a subspace of a normed linear space X. If for every sequence (y_n) in Y and for every $x \in X$ satisfying $\sum_{n=1}^{\infty} y_n = x$, we have $x \in Y$, then show that Y is closed in X.
- 42. If a normed linear space X has a complete subspace Y such that X/Y is complete, then show that X is a Banach space.
- 43. If $1 \leq p < q \leq \infty$, then examine whether $(\ell^p, \|\cdot\|_q)$ is a Banach space.
- 44. Show that $(c_0, \|\cdot\|)$ is not a Banach space, where $\|(x_n)\| = \sum_{n=1}^{\infty} \frac{1}{2^n} |x_n|$ for all $(x_n) \in c_0$.
- 45. Consider the normed linear space $(\ell^{\infty}, \|\cdot\|)$, where $\|(x_n)\| = \sum_{n=1}^{\infty} \frac{1}{2^n} |x_n|$ for all $(x_n) \in \ell^{\infty}$. Examine whether $(\ell^{\infty}, \|\cdot\|)$ is a Banach space.
- 46. If $||(x_n)|| = \sup_{n \in \mathbb{N}} \left| \sum_{i=1}^n x_i \right|$ for all $(x_n) \in \ell^1$, then show that $||\cdot||$ is a norm on ℓ^1 . Also, examine whether the normed linear space $(\ell^1, ||\cdot||)$ is a Banach space.
- 47. Let $X = \left\{x \in C[0,1] : \int_0^1 x(t) dt = 0\right\}$. Prove that $(X, \|\cdot\|_{\infty})$ is an infinite dimensional Banach space.
- 48. Consider the normed linear space $(C[0,1], \|\cdot\|)$, where $\|x\| = \sup\{t|x(t)| : t \in [0,1]\}$. Show that $(C[0,1], \|\cdot\|)$ is not a Banach space.
- 49. If a normed linear space X has a complete subspace Y such that X/Y is complete, then show that X is a Banach space.
- 50. Let $(X, \|\cdot\|)$ be a normed linear space and let p be a seminorm on X. Show that $p:(X, \|\cdot\|) \to \mathbb{R}$ is continuous iff there exists $\alpha > 0$ such that $p(x) \le \alpha \|x\|$ for all $x \in X$.
- 51. Let $(X, \|\cdot\|)$ be a normed linear space and let p be a seminorm on X. Show that $p:(X, \|\cdot\|) \to \mathbb{R}$ is continuous iff $\{x \in X : p(x) = 1\}$ is closed in $(X, \|\cdot\|)$.