
MA224: Real Analysis
(Assignment 2: Metric and Normed Linear Spaces)

January - April, 2026

1. State TRUE or FALSE giving proper justification for each of the following statements.
(a) There exists a metric space having exactly 36 open sets.
(b) It is impossible to define a metric d on R such that only finitely many subsets of R are open

in (R, d).
(c) If A and B are open (closed) subsets of a normed vector space X, then A + B = {a + b :

a ∈ A, b ∈ B} is open (closed) in X.
(d) If A and B are closed subsets of [0,∞) (with the usual metric), then A + B is closed in

[0,∞).
(e) It is possible to define a metric d on R such that the sequence (1, 0, 1, 0, ...) converges in

(R, d).
(f) It is possible to define a metric d on R2 such that (( 1

n
, n
n+1

)) is not a Cauchy sequence in

(R2, d).
(g) It is possible to define a metric d on R2 such that in (R2, d), the sequence (( 1

n
, 0)) converges

but the sequence (( 1
n
, 1
n
)) does not converge.

(h) There exist two non-empty disjoint sets A and B in R such that inf{|x−y| : x ∈ A and y ∈
B} = 0.

(i) If (xn) is a sequence in a complete normed vector space X such that ∥xn+1 − xn∥ → 0 as
n → ∞, then (xn) must converge in X.

(j) If (fn) is a sequence in C[0, 1] such that |fn+1(x) − fn(x)| ≤ 1
n2 for all n ∈ N and for all

x ∈ [0, 1], then there must exist f ∈ C[0, 1] such that
1∫
0

|fn(x)− f(x)| dx → 0 as n → ∞.

(k) If (xn) is a Cauchy sequence in a normed vector space, then lim
n→∞

∥xn∥ must exist.

(l) {f ∈ C[0, 1] : ∥f∥1 ≤ 1} is a bounded subset of the normed vector space (C[0, 1], ∥ · ∥∞).
(m) There exist a set A ⊂ (R, u) such that δ (Ao ∪ {0}) = 0 but δ

(
(Ā)o

)
= 1, where δ stands

for diameter.
(n) For x, y ∈ l∞, d(x, y) = min{1, lim sup |xn − yn|} define a metric on l∞.

(o) The sequence fn(t) = e−n2 sinπt converge uniformly to 0 on (0, 1).

2. Examine whether (X, d) is a metric space, where

(a) X = R and d(x, y) = |x−y|
1+|xy| for all x, y ∈ R.

(b) X = R and d(x, y) = min{
√

|x− y|, |x− y|2} for all x, y ∈ R.
(c) X = R and d(x, y) = |x− y|p for all x, y ∈ R (0 < p < 1).

(d) X = R and for all x, y ∈ R, d(x, y) =
{

1 + |x− y| if exactly one of x and y is positive,
|x− y| otherwise.

(e) X = R2 and d(x, y) = (|x1 − y1|+ |x2 − y2|
1
2 )

1
2 for all x = (x1, x2), y = (y1, y2) ∈ R2.

(f) X = Rn and d(x, y) = [(x1− y1)
2+ 1

2
(x2− y2)

2+ · · ·+ 1
n
(xn− yn)

2]
1
2 for all x = (x1, ..., xn),

y = (y1, ..., yn) ∈ Rn.

(g) X = C and for all z, w ∈ C, d(z, w) =
{

min{|z|+ |w|, |z − 1|+ |w − 1| if z ̸= w,
0 if z = w.

(h) X = C and for all z, w ∈ C, d(z, w) =
{

|z − w| if z
|z| =

w
|w| ,

|z|+ |w| otherwise.

(i) X = C and d(z, w) = 2|z−w|√
1+|z|2

√
1+|w|2

for all z, w ∈ C.

(j) X = The class of all finite subsets of a nonempty set and d(A,B) = The number of elements
of the set A△B (the symmetric difference of A and B).



(k) X = C[0, 1] and d(f, g) = (
1∫
0

|f(t)− g(t)|2 dt) 1
2 for all f, g ∈ C[0, 1].

3. Examine whether ∥ · ∥ is a norm on R2, where for each (x, y) ∈ R2,

(a) ∥(x, y)∥ = (
√

|x|+
√
|y|)2.

(b) ∥(x, y)∥ =
√

x2

9
+ y2

4
.

(c) ∥(x, y)∥ =

{ √
x2 + y2 if xy ≥ 0,

max{|x|, |y|} if xy < 0.

4. Let ∥f∥ = min{∥f∥∞, 2∥f∥1} for all f ∈ C[0, 1]. Prove that ∥ · ∥ is not a norm on C[0, 1].

5. If x ∈ Rn, then show that lim
p→∞

∥x∥p = ∥x∥∞.

6. If 1 ≤ p < q ≤ ∞, then show that ∥x∥q ≤ ∥x∥p for all x ∈ ℓp.

7. Let d be a metric on a real vector space X satisfying the following two conditions:
(i) d(x+ z, y + z) = d(x, y) for all x, y, z ∈ X,
(ii) d(αx, αy) = |α|d(x, y) for all x, y ∈ X and for all α ∈ R.

Show that there exists a norm ∥ · ∥ on X such that d(x, y) = ∥x− y∥ for all x, y ∈ X.

8. Let R∞ be the real vector space of all sequences in R, where addition and scalar multiplication

are defined componentwise. Let d((xn), (yn)) =
∞∑
n=1

1
2n

· |xn−yn|
1+|xn−yn| for all (xn), (yn) ∈ R∞. Show

that d is a metric on R∞ but that no norm on R∞ induces d.

9. Let (X, ∥ · ∥) be a nonzero normed vector space. Consider the metrics d1, d2 and d3 on X:

d1(x, y) := min{1, ∥x− y∥},

d2(x, y) :=
∥x− y∥

1 + ∥x− y∥
,

d3(x, y) :=

{
1 + ∥x− y∥ if x ̸= y,
0 if x = y,

for all x, y ∈ X. Prove that none of d1, d2 and d3 is induced by any norm on X.

10. Let X be a normed vector space containing more than one point, let x, y ∈ X and let ε, δ > 0.
If Bε[x] = Bδ[y], show that x = y and ε = δ. Does the result remain true if X is assumed to
be a metric space? Justify.

11. Examine whether the following sets are open/closed in R2 (with the usual metric).
(a) {(x, y) ∈ R2 : xy > 0}
(b) {(x, x) : x ∈ R}
(c) (0, 1)× {0}
(d) {(x, y) ∈ R2 : 0 < x < y}
(e) {(x, y) ∈ R2 : x+ y < 1}
(f) {(x, y) ∈ R2 : y ∈ Z}

12. Let A = {(x, y, z) ∈ R3 : x2 + y2 < 1} and B = {(x, y, z) ∈ R3 : z = 0}. Examine whether
A ∩B is a closed/an open subset of R3 with respect to the usual metric on R3.



13. Examine whether a finite subset of a metric space is open/closed.

14. For all x, y ∈ R, let d1(x, y) = |x− y|, d2(x, y) = min{1, |x− y|} and d3(x, y) =
|x−y|

1+|x−y| . If G is

an open set in any one of the three metric spaces (R, di) (i = 1, 2, 3), then show that G is also
open in the other two metric spaces.

15. Let X be a nonzero normed vector space. Show that {x ∈ X : ∥x∥ < 1} is not closed in X and
{x ∈ X : ∥x∥ ≤ 1} is not open in X.

16. Show that A = {f ∈ C[0, 1] : ∥f∥1 < 1} is an unbounded subset of the normed linear space
(C[0, 1], ∥ · ∥∞) .

17. Let X be a normed vector space and let Y (̸= X) be a subspace of X. Show that Y is not open
in X.

18. Let Fn be a sequence of closed sets in R such that Fn ⊂ (n, n+ 1] and Fn ∩ Fm = ∅, whenever
m ̸= n. Show that F =

∞⋃
n=1

Fn is a closed set in R.

19. Let f : (X, d) → R be a continuous function. Show that {x ∈ X : f(x) ̸= 0} is an open set in
the metric space (X, d).

20. Let (xn) and (yn) be Cauchy sequences in a metric space (X, d). Show that the sequence
(d(xn, yn)) is convergent.

21. Let (xn) be a sequence in a complete metric space (X, d) such that
∞∑
n=1

d(xn, xn+1) < ∞. Show

that (xn) converges in (X, d).

22. Let (xn) be a sequence in a metric space X such that each of the subsequences (x2n), (x2n−1)
and (x3n) converges in X. Show that (xn) converges in X.

23. Show that the following are incomplete metric spaces.
(a) (N, d), where d(m,n) = | 1

m
− 1

n
| for all m,n ∈ N

(b) ((0,∞), d), where d(x, y) = | 1
x
− 1

y
| for all x, y ∈ (0,∞)

(c) (R, d), where d(x, y) = | x
1+|x| −

y
1+|y| | for all x, y ∈ R

(d) (R, d), where d(x, y) = |ex − ey| for all x, y ∈ R

24. Examine whether the following metric spaces are complete.
(a) ([0, 1), d), where d(x, y) = | x

1−x
− y

1−y
| for all x, y ∈ [0, 1)

(b) ((−1, 1), d), where d(x, y) = | tan πx
2
− tan πy

2
| for all x, y ∈ (−1, 1)

25. For X(̸= ∅) ⊂ R, let d(x, y) = |x−y|
1+|x−y| for all x, y ∈ X. Examine the completeness of the metric

space (X, d), where X is
(a) [0, 1] ∩Q.
(b) [−1, 0] ∪ [1,∞).
(c) {n2 : n ∈ N}.

26. For f ∈ C1[0, 1], define ∥f∥ = ∥f∥1 + ∥f∥∞. Determine whether (C1[0, 1], ∥ · ∥) is a complete
normed linear space.



27. Examine whether the sequence (fn) is convergent in (C[0, 1], d∞), where for all n ∈ N and for
all t ∈ [0, 1],

(a) fn(t) =
nt2

1+nt
.

(b) fn(t) = 1 + t+ t2

2!
+ · · ·+ tn

n!
.

(c) fn(t) =

{
nt if 0 ≤ t ≤ 1

n
,

1
nt

if 1
n
< t ≤ 1.

(d) fn(t) =

{
nt if 0 ≤ t ≤ 1

n
,

n
n−1

(1− t) if 1
n
< t ≤ 1.

28. Let f : Rn → Rn be continuous and let there exist α > 0 such that ∥f(x)− f(y)∥ ≥ α∥x− y∥
for all x,y ∈ Rn. Show that f(Rn) is complete.

29. Let f : Rn → Rn be a contraction and let g(x) = x − f(x) for all x ∈ Rn. Show that
g : Rn → Rn is one-one and onto. Also, show that both g and g−1 : Rn → Rn are continuous.

30. Let a1 = 1 and an+1 = 3
√

1 + a2n. Using fixed point theory, prove that the sequence {an} is
convergent, and that its limit satisfies the equation x3 − x2 − 1 = 0.

31. Using fixed point theory, determine all functions f ∈ C[0, 1] such that f(x) =
∫ x

0
(x− y)f(y)dy.

32. For any f ∈ C[0, 1], prove that
lim
p→∞

∥f∥p = ∥f∥∞.


