MA211(M): Real Analysis

(Assignment 1: Functions of several variables) July - November, 2022

- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) There exists a continuous function $f: \mathbb{R} \to \mathbb{R}^2$ such that $f(\cos n) = (n, \frac{1}{n})$ for all $n \in \mathbb{N}$.
 - (b) There exists a non-constant continuous function $f: \mathbb{R}^2 \to \mathbb{R}$ such that f(x,y) = 5 for all $(x,y) \in \mathbb{R}^2 \text{ with } x^2 + y^2 < 1.$
 - (c) There exists a one-one continuous function from $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ onto \mathbb{R}^2 .
 - (d) There exists a continuous function from $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ onto \mathbb{R}^2 .
 - (e) If $f: \mathbb{R}^2 \to \mathbb{R}$ is continuous such that $f_x(0,0)$ exists, then $f_y(0,0)$ must exist.
 - (f) There exists a function $f: \mathbb{R}^2 \to \mathbb{R}^2$ which is differentiable only at (1,0).
 - (g) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be such that $f_x(0,0) = 0$. Then there exists some $\delta > 0$ such that f(x,0)is continuous on $(-\delta, \delta)$.
 - (h) If $f: \mathbb{R}^2 \to \mathbb{R}$ is continuous such that all the directional derivatives of f at (0,0) exist, then f must be differentiable at (0,0).
 - (i) If $f: \mathbb{R}^2 \to \mathbb{R}^2$ is differentiable with f(0,0) = (1,1) and $[f'(0,0)] = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, then there cannot exist a differentiable function $g: \mathbb{R}^2 \to \mathbb{R}^2$ with g(1,1) = (0,0) and $(f \circ g)(x,y) =$ (y,x) for all $(x,y) \in \mathbb{R}^2$.
 - (j) A continuously differentiable function $f: \mathbb{R}^2 \to \mathbb{R}^2$ cannot be one-one and onto if $\det[f'(x,y)] = 0$ for some $(x,y) \in \mathbb{R}^2$.
 - (k) The equation $\sin(xyz) = z$ defines x implicitly as a differentiable function of y and z locally around the point $(x, y, z) = (\frac{\pi}{2}, 1, 1)$.
 - (l) The equation $\sin(xyz) = z$ defines z implicitly as a differentiable function of x and y locally around the point $(x, y, z) = (\frac{\pi}{2}, 1, 1)$.
- 2. Let $\alpha \in (0,1)$ and let $\mathbf{x}_n = (n^3 \alpha^n, \frac{1}{n} [n\alpha])$ for all $n \in \mathbb{N}$. (For each $x \in \mathbb{R}$, [x] denotes the greatest integer not exceeding x.) Examine whether the sequence (\mathbf{x}_n) converges in \mathbb{R}^2 . Also, find $\lim_{n\to\infty} \mathbf{x}_n$ if it exists.
- 3. Examine whether the following limits exist and find their values if they exist.
- (a) $\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^4+y^2}$ (b) $\lim_{(x,y)\to(0,0)} \frac{x^3-y^3}{x^2+y^2}$ (c) $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2y^2+(x^2-y^2)^2}$ (d) $\lim_{(x,y)\to(0,0)} \frac{|x|}{y^2} e^{-|x|/y^2}$ (e) $\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{(x^2+y^2)^2}$ (f) $\lim_{(x,y)\to(0,0)} \frac{\sqrt{x^2y^2+1}-1}{x^2+y^2}$

- 4. Examine the continuity of $f: \mathbb{R}^2 \to \mathbb{R}$ at (0,0), where for all $(x,y) \in \mathbb{R}^2$, (a) $f(x,y) = \begin{cases} xy & \text{if } xy \geq 0, \\ -xy & \text{if } xy < 0. \end{cases}$

 - (b) $f(x,y) = \begin{cases} 1 & \text{if } x > 0 \text{ and } 0 < y < x^2, \\ 0 & \text{otherwise.} \end{cases}$
 - (c) $f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$
- 5. Determine all the points of \mathbb{R}^2 where $f: \mathbb{R}^2 \to \mathbb{R}$ is continuous, if for all $(x,y) \in \mathbb{R}^2$, (a) $f(x,y) = \begin{cases} \frac{xy}{x-y} & \text{if } x \neq y, \\ 0 & \text{if } x = y. \end{cases}$

(b)
$$f(x,y) = \begin{cases} \frac{xy}{x^2 - y^2} & \text{if } x^2 \neq y^2, \\ 0 & \text{if } x^2 = y^2. \end{cases}$$

(c) $f(x,y) = \begin{cases} xy & \text{if } xy \in \mathbb{Q}, \\ -xy & \text{if } xy \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$

(c)
$$f(x,y) = \begin{cases} xy & \text{if } xy \in \mathbb{Q}, \\ -xy & \text{if } xy \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

- 6. Let Ω be an open subset of \mathbb{R}^n and let $f:\Omega\to\mathbb{R}^m$ and $g:\Omega\to\mathbb{R}^m$ be continuous at $\mathbf{x}_0\in\Omega$. If for each $\varepsilon > 0$, there exist $\mathbf{x}, \mathbf{y} \in B_{\varepsilon}(\mathbf{x}_0)$ such that $f(\mathbf{x}) = g(\mathbf{y})$, then show that $f(\mathbf{x}_0) = g(\mathbf{x}_0)$.
- 7. Let $A(\neq \emptyset) \subset \mathbb{R}^n$ be such that every continuous function $f: A \to \mathbb{R}$ is bounded. Show that A is a closed and bounded subset of \mathbb{R}^n .
- 8. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be continuous at $(x_0, y_0) \in \mathbb{R}^2$ and let $f(x_0, y_0) \neq 0$. Show that there exists $\delta > 0$ such that $f(x, y) \neq 0$ for all $(x, y) \in \mathbb{R}^2$ satisfying $(x x_0)^2 + (y y_0)^2 < \delta$.
- 9. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be linear and let $f(\mathbf{x}) = T(\mathbf{x}) \cdot \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$. Find $f'(\mathbf{x})$, where $\mathbf{x} \in \mathbb{R}^n$.
- 10. Examine the differentiability of f at $\mathbf{0}$, where
 - (a) $f: \mathbb{R}^n \to \mathbb{R}$ satisfies $|f(\mathbf{x})| \le ||\mathbf{x}||_2^2$ for all $\mathbf{x} \in \mathbb{R}^n$.
 - (b) $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(x,y) = \sqrt{|xy|}$ for all $(x,y) \in \mathbb{R}^2$.

(c)
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 is defined by $f(x,y) = ||x| - |y|| - |x| - |y|$ for all $(x,y) \in \mathbb{R}^2$.
(d) $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(x,y) = \begin{cases} \frac{y}{|y|} \sqrt{x^2 + y^2} & \text{if } y \neq 0, \\ 0 & \text{if } y = 0. \end{cases}$

(e)
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 is defined by $f(x,y) = \begin{cases} \frac{x^3}{x^2+y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$

(e)
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 is defined by $f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$
(f) $f: \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(x,y) = \begin{cases} \frac{\sin(x^2y^2)}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$
(g) $f: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by $f(x,y) = \begin{cases} (\sin^2 x + x^2 \sin \frac{1}{x}, y^2) & \text{if } x \neq 0, \\ (0,y^2) & \text{if } x = 0. \end{cases}$

(g)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 is defined by $f(x,y) = \begin{cases} (\sin^2 x + x^2 \sin \frac{1}{x}, y^2) & \text{if } x \neq 0, \\ (0, y^2) & \text{if } x = 0. \end{cases}$

- (h) $f: \mathbb{R}^n \to \mathbb{R}$ is defined by $f(\mathbf{x}) = ||\mathbf{x}||_2$ for all $\mathbf{x} \in \mathbb{R}^n$.
- (i) $f: \mathbb{R}^n \to \mathbb{R}^n$ is defined by $f(\mathbf{x}) = \|\mathbf{x}\|_2 \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$.
- 11. Let $f(x,y)=(x^2+y^3,x^3+y^2,2x^2y^2)$ for all $(x,y)\in\mathbb{R}^2$. Examine whether $f:\mathbb{R}^2\to\mathbb{R}^3$ is differentiable at (1,2) and find f'(1,2) if f is differentiable at (1,2).
- 12. Determine all the points of \mathbb{R}^2 where $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable, if for all $(x,y) \in \mathbb{R}^2$, (a) $f(x,y) = \begin{cases} x^2 + y^2 & \text{if both } x,y \in \mathbb{Q}, \\ 0 & \text{otherwise.} \end{cases}$ (b) $f(x,y) = \begin{cases} x^{4/3} \sin(\frac{y}{x}) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$

(a)
$$f(x,y) = \begin{cases} x^2 + y^2 & \text{if both } x, y \in \mathbb{Q} \\ 0 & \text{otherwise.} \end{cases}$$

(b)
$$f(x,y) = \begin{cases} x^{4/3} \sin(\frac{y}{x}) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

13. Let
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 be defined by $f(x,y) = \begin{cases} (x^2 + y^2) \sin(\frac{1}{\sqrt{x^2 + y^2}}) & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$
Show that f is differentiable at $(0,0)$ although neither f_x nor f_y is continuous at $(0,0)$.

- 14. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \begin{cases} \frac{x^2 y(x-y)}{x^2+y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ Examine whether $f_{xy}(0,0) = f_{yx}(0,0)$.
- 15. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \begin{cases} \frac{xy(x^2 y^2)}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ Determine all the points of \mathbb{R}^2 where f_{xy} and f_{yx} are continuous
- 16. Let Ω be a nonempty open subset of \mathbb{R}^n . Let $f:\Omega\to\mathbb{R}$ be differentiable at $\mathbf{x}_0\in\Omega$, let $f(\mathbf{x}_0) = 0$ and let $g: \Omega \to \mathbb{R}$ be continuous at \mathbf{x}_0 . Prove that $fg: \Omega \to \mathbb{R}$, defined by $(fq)(\mathbf{x}) = f(\mathbf{x})q(\mathbf{x})$ for all $\mathbf{x} \in \Omega$, is differentiable at \mathbf{x}_0 .
- 17. Let Ω be a nonempty open subset of \mathbb{R}^n and let $g:\Omega\to\mathbb{R}^n$ be continuous at $\mathbf{x}_0\in\Omega$. If $f:\Omega\to\mathbb{R}$ is such that $f(\mathbf{x})-f(\mathbf{x}_0)=g(\mathbf{x})\cdot(\mathbf{x}-\mathbf{x}_0)$ for all $\mathbf{x}\in\Omega$, then show that f is differentiable at \mathbf{x}_0 .
- 18. The directional derivatives of a differentiable function $f: \mathbb{R}^2 \to \mathbb{R}$ at (0,0) in the directions of (1,2) and (2,1) are 1 and 2 respectively. Find $f_x(0,0)$ and $f_y(0,0)$.
- 19. Let $A \in GL(\mathbb{R}^n)$ and $\alpha \geq 2$. If $f: \mathbb{R}^n \to \mathbb{R}^n$ satisfies $||f(x)|| \leq k||x||^{\alpha}$, for some k > 0. Prove/disprove that the map g = f + A is continuously differentiable at **0** and g is invertible in the neighborhood of **0**.
- 20. Find all $\mathbf{v} \in \mathbb{R}^2$ for which the directional derivative $f'_{\mathbf{v}}(0,0)$ exists, where for all $(x,y) \in \mathbb{R}^2$,

 - (a) $f(x,y) = \sqrt{|x^2 y^2|}$. (b) $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ (c) $f(x,y) = \begin{cases} \frac{x}{y} & \text{if } y \neq 0, \\ 0 & \text{if } y = 0. \end{cases}$

 - (d) f(x,y) = ||x| |y|| |x| |y|.
- 21. Let $f(x, y, z) = (x^3y + y^2z, xyz)$ and $g(x, y) = (x^2y, xy, x 2y, x^2 + 3y)$ for all $x, y, z \in \mathbb{R}$. Use chain rule to find $(g \circ f)'(\mathbf{a})$, where $\mathbf{a} = (1, 2, -3)$.
- 22. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be differentiable such that f(1,1)=1, $f_x(1,1)=2$ and $f_y(1,1)=5$. If g(x) = f(x, f(x, x)) for all $x \in \mathbb{R}$, determine g'(1).
- 23. Let $\varphi: \mathbb{R} \to \mathbb{R}$ and $\psi: \mathbb{R} \to \mathbb{R}$ be differentiable. Show that $f: \mathbb{R}^2 \to \mathbb{R}$, defined by $f(x,y) = \varphi(x) + \psi(y)$ for all $(x,y) \in \mathbb{R}^2$, is differentiable.
- 24. Prove that a differentiable function $f: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^m$ is homogeneous of degree $\alpha \in \mathbb{R}$ (i.e. $f(t\mathbf{x}) = t^{\alpha} f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ and for all t > 0 iff $f'(\mathbf{x})(\mathbf{x}) = \alpha f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$.
- 25. Suppose $f: \mathbb{R}^n \to \mathbb{R}^n$ is satisfying $f(rx) = r^{\frac{3}{2}}f(x)$ for all $(x,r) \in \mathbb{R}^n \times (0,\infty)$. Whether f is differentiable at **0**?

- 26. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be continuously differentiable such that $f_x(a,b) = f_y(a,b)$ for all $(a,b) \in \mathbb{R}^2$ and f(a,0) > 0 for all $a \in \mathbb{R}$. Show that f(a,b) > 0 for all $(a,b) \in \mathbb{R}^2$.
- 27. Let Ω be an open subset of \mathbb{R}^n such that $\mathbf{a}, \mathbf{b} \in \Omega$ and $S = \{(1-t)\mathbf{a} + t\mathbf{b} : t \in [0,1]\} \subset \Omega$. If $f: \Omega \to \mathbb{R}^m$ is differentiable at each point of S, then show that there exists a linear map $L: \mathbb{R}^n \to \mathbb{R}^m$ such that $f(\mathbf{b}) f(\mathbf{a}) = L(\mathbf{b} \mathbf{a})$.
- 28. Let $f(x,y) = (2ye^{2x}, xe^y)$ for all $(x,y) \in \mathbb{R}^2$. Show that there exist open sets U and V in \mathbb{R}^2 containing (0,1) and (2,0) respectively such that $f:U \to V$ is one-one and onto.
- 29. Determine all the points of \mathbb{R}^2 where $f: \mathbb{R}^2 \to \mathbb{R}^2$ is locally invertible, if for all $(x,y) \in \mathbb{R}^2$,
 - (a) $f(x,y) = (x^2 + y^2, xy)$.
 - (b) $f(x,y) = (x^2 + xy + y^2, xy)$.
 - (c) $f(x,y) = (\cos x + \cos y, \sin x + \sin y)$.
- 30. Determine all the points of \mathbb{R}^3 where $f: \mathbb{R}^3 \to \mathbb{R}^3$ is locally invertible, if for all $(x, y, z) \in \mathbb{R}^3$,
 - (a) f(x, y, z) = (x + y, xy + z, y + z).
 - (b) f(x, y, z) = (x xy, xy xyz, xyz).
 - (c) $f(x, y, z) = (x^2 + y^2, y^2 + z^2, z^2 + x^2)$.
- 31. Let $f(x,y) = (3x y^2, 2x + y, xy + y^3)$ and $g(x,y) = (2ye^{2x}, xe^y)$ for all $(x,y) \in \mathbb{R}^2$. Examine whether $(f \circ g^{-1})'(2,0)$ exists (with a meaningful interpretation of g^{-1}) and find $(f \circ g^{-1})'(2,0)$ if it exists.
- 32. For $n \geq 2$, let $B = \{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\|_2 < 1\}$ and let $f(\mathbf{x}) = \|\mathbf{x}\|_2^2 \mathbf{x}$ for all $\mathbf{x} \in B$. Show that $f: B \to B$ is differentiable and invertible but that $f^{-1}: B \to B$ is not differentiable at $\mathbf{0}$.
- 33. Using implicit function theorem, show that the system of equations

$$x^{3}(y^{3} + z^{3}) = 0,$$

$$(x - y)^{3} - z^{2} = 7,$$

can be solved locally near the point (1, -1, 1) for y and z as a differentiable function of x.

34. Show that the system of equations

$$x^{2} - y\cos(uv) + z^{2} = 0,$$

$$x^{2} + y^{2} - \sin(uv) + 2z^{2} = 2,$$

$$xy - \sin u \cos v + z = 0,$$

implicitly defines (x, y, z) as a differentiable function of (u, v) near x = 1, y = 1, z = 0, $u = \frac{\pi}{2}$ and v = 0.

35. Using implicit function theorem, show that in a neighbourhood of any point $(x_0, y_0, u_0, v_0) \in \mathbb{R}^4$ which satisfies the equations

$$x - e^u \cos v = 0,$$

$$v - e^y \sin x = 0,$$

there exists a unique solution $(u, v) = \varphi(x, y)$ satisfying $\det[\varphi'(x, y)] = v/x$.

36. Show that in a neighbourhood of any point $(x_0, y_0, z_0) \in \mathbb{R}^3$ which satisfies the equations

$$x^{4} + (x+z)y^{3} - 3 = 0,$$

$$x^{4} + (2x+3z)y^{3} - 6 = 0,$$

there is a unique continuous solution $y = \varphi_1(x), z = \varphi_2(x)$ of these equations.

- 37. Show that around the point (0,1,1), the equation $xy z \log y + e^{xz} = 1$ can be solved locally as y = f(x,z) but cannot be solved locally as z = g(x,y).
- 38. Show that the system of equations

$$3x + y - z + u^{2} = 0,$$

$$x - y + 2z + u = 0,$$

$$2x + 2y - 3z + 2u = 0,$$

can be solved locally for x, y, u in terms of z; for x, z, u in terms of y; for y, z, u in terms of x, but not for x, y, z in terms of u.

39. Show that the system of equations

$$x^{2} + y^{2} - u^{2} - v = 0,$$

$$x^{2} + 2y^{2} + 3u^{2} + 4v^{2} = 1,$$

defines (u, v) implicitly as a differentiable function of (x, y) locally around the point $(x, y, u, v) = (\frac{1}{2}, 0, \frac{1}{2}, 0)$ but does not define (x, y) implicitly as a differentiable function of (u, v) locally around the same point.

40. Show that there are points $(x, y, z, u, v, w) \in \mathbb{R}^6$ which satisfy the equations

$$x^{2} + u + e^{v} = 0,$$

$$y^{2} + v + e^{w} = 0,$$

$$z^{2} + w + e^{u} = 0.$$

Prove that in a neighbourhood of such a point there exist unique differentiable solutions $u = \varphi_1(x, y, z), v = \varphi_2(x, y, z), w = \varphi_3(x, y, z)$. If $\varphi = (\varphi_1, \varphi_2, \varphi_3)$, find $\varphi'(x, y, z)$.

- 41. Find the 3rd order Taylor polynomial of $f(x, y, z) = x^2y + z$ about the point (1, 2, 1).
- 42. Find the 4th order Taylor polynomial of $g(x,y) = e^{x-2y}/(1+x^2-y)$ about the point (0,0).
- 43. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be continuously differentiable. Show that f is not one-one.