
MA15010H: Multi-variable Calculus
(Assignment 1 Hint/ model solutions: Limits and continuity)

July - November, 2025

1. Let x, y ∈ Rm. Show that ∥x+ y∥ = ∥x∥+ ∥y∥ if and only if y = 0 or x = αy for some α ≥ 0.

Solution. If y = 0, then ∥x + y∥ = ∥x∥ = ∥x∥ + ∥y∥. Also, if x = αy for some α ≥ 0, then
∥x+y∥ = ∥(α+1)y∥ = (α+1)∥y∥ and ∥x∥+∥y∥ = α∥y∥+∥y∥ = (α+1)∥y∥, so ∥x+y∥ = ∥x∥+∥y∥.

Conversely, let ∥x+ y∥ = ∥x∥+ ∥y∥ and y ̸= 0. Then,

∥x+ y∥2 = (∥x∥+ ∥y∥)2.
This implies,

∥x∥2 + 2x · y + ∥y∥2 = ∥x∥2 + 2∥x∥∥y∥+ ∥y∥2.
Thus x · y = ∥x∥∥y∥, and so |x · y| = ∥x∥∥y∥. By the equality condition in the Cauchy-Schwarz
inequality, x = αy for some α ∈ R. Since we also have x ·y = ∥x∥∥y∥, we obtain αy ·y = ∥αy∥∥y∥,
that is, α∥y∥2 = |α|∥y∥2. Since ∥y∥ ̸= 0, we get α = |α| and hence α ≥ 0. □

2. Let x, y ∈ Rm and r, s > 0. Show that Br[x] ∩Bs[y] ̸= ∅ if and only if ∥x− y∥ ≤ r + s.

Solution. Suppose first that Br[x] ∩Bs[y] ̸= ∅. Then there exists z ∈ Br[x] ∩Bs[y], so

∥z − x∥ ≤ r and ∥z − y∥ ≤ s.

By the triangle inequality,

∥x− y∥ = ∥x− z + z − y∥ ≤ ∥x− z∥+ ∥z − y∥ ≤ r + s.

Conversely, assume that ∥x− y∥ ≤ r + s. Define z := s
r+s

x+ r
r+s

y ∈ Rm. Then

∥z − x∥ =
r

r + s
∥x− y∥ ≤ r and ∥z − y∥ =

s

r + s
∥x− y∥ ≤ s.

Hence z ∈ Br[x] ∩Bs[y]. Therefore, Br[x] ∩Bs[y] ̸= ∅. □

3. Let (xn) be a sequence in Rm. Show that (xn) converges in Rm if and only if for each x ∈ Rm,
the sequence (xn · x) converges in R.

Solution. Assume that (xn) converges in Rm and let x0 ∈ Rm such that xn → x0. If x ∈ Rm,
then for all n ∈ N,

|xn · x− x0 · x| = |(xn − x0) · x| ≤ ∥xn − x0∥∥x∥ (by Cauchy-Schwarz).

Since xn → x0, we have ∥xn − x0∥ → 0, and hence |xn · x− x0 · x| → 0. Thus xn · x→ x0 · x in R.
So the sequence (xn · x) converges in R.
Conversely, if (xn · x) converges for all x ∈ Rm, then in particular for x = ej (1 ≤ j ≤ m), each

coordinate sequence x
(j)
n = xn · ej converges in R. Hence (xn) converges in Rm. □

4. State TRUE or FALSE with justification for each statement.

(i) If (xn) is a sequence in Rm having no convergent subsequence, then it is necessary that
lim
n→∞

∥xn∥ = ∞.

(ii) If (xn, yn) is a bounded sequence in R2 such that every convergent subsequence of (xn, yn)
converges to (0, 1), then (xn, yn) must converge to (0, 1).

Solution.

(i) Let r > 0 and suppose, for contradiction, that S = {n ∈ N : ∥xn∥ ≤ r} is infinite. Then
there exists a strictly increasing sequence (nk) in N such that ∥xnk

∥ ≤ r for all k ∈ N.
This subsequence (xnk

) is bounded in Rm and by the Bolzano–Weierstrass theorem in Rm,
(xnk

) has a convergent subsequence, which is a contradiction. Therefore, S is a finite set.
Let n0 = 1 if S = ∅ and n0 = maxS + 1 if S ̸= ∅. Then ∥xn∥ > r for all n ≥ n0. Thus,
lim
n→∞

∥xn∥ = ∞. Statement is TRUE.



(ii) Suppose (xn, yn) ̸→ (0, 1). Then there exists ε > 0 such that (xn, yn) /∈ Bε((0, 1)) for
infinitely many n, and hence we can find a strictly increasing sequence (nk) such that
(xnk

, ynk
) /∈ Bε((0, 1)) for all k. Since (xn, yn) is bounded, so is this subsequence. By the

Bolzano–Weierstrass theorem in R2, (xnk
, ynk

) has a convergent subsequence (xnkℓ
, ynkℓ

),

which by the given converges to (0, 1). But this contradicts that (xnkℓ
, ynkℓ

) /∈ Bε((0, 1))

for all ℓ. Hence, (xn, yn) → (0, 1). Statement is TRUE.

□

5. Let f : R2 → R be defined by

f(x, y) =

{
xy

x2−y2
if x2 ̸= y2,

0 if x2 = y2.

Determine all points of R2 where f is continuous.

Solution. Let φ(x, y) = xy and ψ(x, y) = x2 − y2. As polynomial functions, φ, ψ : R2 → R
are continuous and ψ(x, y) ̸= 0 for all (x, y) ∈ R2 with x2 ̸= y2. Thus, f is continuous at each
(x, y) ∈ R2 with x2 ̸= y2.
If (x, y) ∈ R2 with x2 = y2 ̸= 0, then for the sequence (x+ 1

n
, y) → (x, y) but∣∣∣∣f (x+ 1

n
, y

)∣∣∣∣ = ∣∣∣∣(nx+ 1)y

2x+ 1
n

∣∣∣∣ → ∞.

Hence f is not continuous at (x, y).
Similarly, ( 2

n
, 1
n
) → (0, 0) but f( 2

n
, 1
n
) = 2

3
for all n, hence f( 2

n
, 1
n
) ̸→ 0 = f(0, 0). Therefore, the

points of continuity of f are exactly {(x, y) ∈ R2 : x2 ̸= y2}. □

6. Let α, β > 0, and define f : R2 → R by

f(x, y) =

{ |x|α|y|β√
x2+y2

if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

Show that f is continuous if and only if α+ β > 1.

Solution. Suppose α + β > 1, and let (xn, yn) → (0, 0). Then xn → 0, yn → 0. For all n with
(xn, yn) ̸= (0, 0),

0 ≤ f(xn, yn) ≤
|xn|α|yn|β√
x2n + y2n

≤ (x2n + y2n)
α/2(x2n + y2n)

β/2(x2n + y2n)
−1/2

= (x2n + y2n)
1
2
(α+β−1)

Since α+β > 1, (x2n+y
2
n)

1
2
(α+β−1) → 0, so f(xn, yn) → 0 = f(0, 0). Thus, f is continuous at (0, 0)

and is clearly continuous elsewhere.
Conversely, suppose f is continuous and α + β ≤ 1. Then ( 1

n
, 1
n
) → (0, 0) but

f

(
1

n
,
1

n

)
=

1√
2
n1−(α+β).

If α+ β = 1, f( 1
n
, 1
n
) → 1√

2
̸= 0; if α+ β < 1, the sequence is unbounded. This is a contradiction;

thus α + β > 1. □

7. Let f : S ⊆ R2 → R and let (x0, y0) ∈ S. Let A = {x ∈ R : (x, y0) ∈ S} and B = {y ∈ R :
(x0, y) ∈ S}. Define φ(x) = f(x, y0) for all x ∈ A and ψ(y) = f(x0, y) for all y ∈ B. If f is
continuous at (x0, y0), show φ : A→ R is continuous at x0 and ψ : B → R is continuous at y0. Is
the converse true? Justify.



Solution. Let (xn) be a sequence in A such that xn → x0, and let (yn) be a sequence in B such
that yn → y0. Then (xn, y0), (x0, yn) ∈ S for all n ∈ N and

(xn, y0) → (x0, y0), (x0, yn) → (x0, y0).

Since f is continuous at (x0, y0), φ(xn) = f(xn, y0) → f(x0, y0) = φ(x0), and ψ(yn) = f(x0, yn) →
f(x0, y0) = ψ(y0). Therefore, φ is continuous at x0 and ψ is continuous at y0.

The converse is not true in general. For example, define f : R2 → R by

f(x, y) =

{
xy

x2+y2
(x, y) ̸= (0, 0),

0 (x, y) = (0, 0).

Then f is not continuous at (0, 0), because ( 1
n
, 1
n
) → (0, 0) but f( 1

n
, 1
n
) = 1

2
→ 1

2
̸= 0. However,

φ(x) = f(x, 0) = 0 for all x, and ψ(y) = f(0, y) = 0 for all y. Thus, both φ and ψ are continuous
at 0, but f is not continuous at (0, 0). □

8. If S = {(x, y) ∈ R2 : 0 ≤ x ≤ 3}, determine (with justification) the interior S◦.

Solution. Let (x0, y0) ∈ S and 0 < x0 < 3. Set r = min{x0, 3− x0} > 0. If (x, y) ∈ Br((x0, y0)),
then |x − x0| < r, so x0 − r < x < x0 + r. Since x0 − r ≥ 0 and x0 + r ≤ 3, x ∈ (0, 3). So
Br((x0, y0)) ⊂ S.

Suppose (0, y) ∈ S◦. Then there exists r > 0 such that Br((0, y)) ⊂ S. But (− r
2
, y) ∈ Br((0, y))

and − r
2
< 0, so (− r

2
, y) /∈ S. Contradiction. Similarly, for (3, y) ∈ S◦, (3 + r

2
, y) /∈ S. Thus,

S◦ = {(x, y) ∈ R2 : 0 < x < 3}.
□


