MA15010H: Multi-variable Calculus

(Assignment 1 Hint/ model solutions: Limits and continuity) July - November, 2025

1. Let $x, y \in \mathbb{R}^m$. Show that ||x + y|| = ||x|| + ||y|| if and only if y = 0 or $x = \alpha y$ for some $\alpha \ge 0$.

Solution. If y = 0, then ||x + y|| = ||x|| = ||x|| + ||y||. Also, if $x = \alpha y$ for some $\alpha \ge 0$, then $||x + y|| = ||(\alpha + 1)y|| = (\alpha + 1)||y||$ and $||x|| + ||y|| = \alpha ||y|| + ||y|| = (\alpha + 1)||y||$, so ||x + y|| = ||x|| + ||y||. Conversely, let ||x + y|| = ||x|| + ||y|| and $y \ne 0$. Then,

$$||x + y||^2 = (||x|| + ||y||)^2.$$

This implies,

$$||x||^2 + 2x \cdot y + ||y||^2 = ||x||^2 + 2||x|| ||y|| + ||y||^2.$$

Thus $x \cdot y = ||x|| ||y||$, and so $|x \cdot y| = ||x|| ||y||$. By the equality condition in the Cauchy-Schwarz inequality, $x = \alpha y$ for some $\alpha \in \mathbb{R}$. Since we also have $x \cdot y = ||x|| ||y||$, we obtain $\alpha y \cdot y = ||\alpha y|| ||y||$, that is, $\alpha ||y||^2 = |\alpha| ||y||^2$. Since $||y|| \neq 0$, we get $\alpha = |\alpha|$ and hence $\alpha \geq 0$.

2. Let $x, y \in \mathbb{R}^m$ and r, s > 0. Show that $B_r[x] \cap B_s[y] \neq \emptyset$ if and only if $||x - y|| \leq r + s$.

Solution. Suppose first that $B_r[x] \cap B_s[y] \neq \emptyset$. Then there exists $z \in B_r[x] \cap B_s[y]$, so

$$||z - x|| \le r$$
 and $||z - y|| \le s$.

By the triangle inequality,

$$||x - y|| = ||x - z + z - y|| \le ||x - z|| + ||z - y|| \le r + s.$$

Conversely, assume that $||x-y|| \le r+s$. Define $z := \frac{s}{r+s} x + \frac{r}{r+s} y \in \mathbb{R}^m$. Then

$$||z - x|| = \frac{r}{r+s} ||x - y|| \le r$$
 and $||z - y|| = \frac{s}{r+s} ||x - y|| \le s$.

Hence $z \in B_r[x] \cap B_s[y]$. Therefore, $B_r[x] \cap B_s[y] \neq \emptyset$.

3. Let (x_n) be a sequence in \mathbb{R}^m . Show that (x_n) converges in \mathbb{R}^m if and only if for each $x \in \mathbb{R}^m$, the sequence $(x_n \cdot x)$ converges in \mathbb{R} .

Solution. Assume that (x_n) converges in \mathbb{R}^m and let $x_0 \in \mathbb{R}^m$ such that $x_n \to x_0$. If $x \in \mathbb{R}^m$, then for all $n \in \mathbb{N}$,

$$|x_n \cdot x - x_0 \cdot x| = |(x_n - x_0) \cdot x| \le ||x_n - x_0|| ||x||$$
 (by Cauchy-Schwarz).

Since $x_n \to x_0$, we have $||x_n - x_0|| \to 0$, and hence $|x_n \cdot x - x_0 \cdot x| \to 0$. Thus $x_n \cdot x \to x_0 \cdot x$ in \mathbb{R} . So the sequence $(x_n \cdot x)$ converges in \mathbb{R} .

Conversely, if $(x_n \cdot x)$ converges for all $x \in \mathbb{R}^m$, then in particular for $x = e_j$ $(1 \le j \le m)$, each coordinate sequence $x_n^{(j)} = x_n \cdot e_j$ converges in \mathbb{R} . Hence (x_n) converges in \mathbb{R}^m .

- 4. State TRUE or FALSE with justification for each statement.
 - (i) If (x_n) is a sequence in \mathbb{R}^m having no convergent subsequence, then it is necessary that $\lim_{n\to\infty} ||x_n|| = \infty$.
 - (ii) If (x_n, y_n) is a bounded sequence in \mathbb{R}^2 such that every convergent subsequence of (x_n, y_n) converges to (0, 1), then (x_n, y_n) must converge to (0, 1).

Solution.

(i) Let r > 0 and suppose, for contradiction, that $S = \{n \in \mathbb{N} : ||x_n|| \le r\}$ is infinite. Then there exists a strictly increasing sequence (n_k) in \mathbb{N} such that $||x_{n_k}|| \le r$ for all $k \in \mathbb{N}$. This subsequence (x_{n_k}) is bounded in \mathbb{R}^m and by the Bolzano-Weierstrass theorem in \mathbb{R}^m , (x_{n_k}) has a convergent subsequence, which is a contradiction. Therefore, S is a finite set. Let $n_0 = 1$ if $S = \emptyset$ and $n_0 = \max S + 1$ if $S \neq \emptyset$. Then $||x_n|| > r$ for all $n \ge n_0$. Thus, $\lim_{n \to \infty} ||x_n|| = \infty$. Statement is **TRUE**.

(ii) Suppose $(x_n, y_n) \not\to (0, 1)$. Then there exists $\varepsilon > 0$ such that $(x_n, y_n) \notin B_{\varepsilon}((0, 1))$ for infinitely many n, and hence we can find a strictly increasing sequence (n_k) such that $(x_{n_k},y_{n_k}) \notin B_{\varepsilon}((0,1))$ for all k. Since (x_n,y_n) is bounded, so is this subsequence. By the Bolzano-Weierstrass theorem in \mathbb{R}^2 , (x_{n_k}, y_{n_k}) has a convergent subsequence $(x_{n_{k_\ell}}, y_{n_{k_\ell}})$, which by the given converges to (0,1). But this contradicts that $(x_{n_{k_{\ell}}},y_{n_{k_{\ell}}}) \notin B_{\varepsilon}((0,1))$ for all ℓ . Hence, $(x_n, y_n) \to (0, 1)$. Statement is **TRUE**.

5. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{xy}{x^2 - y^2} & \text{if } x^2 \neq y^2, \\ 0 & \text{if } x^2 = y^2. \end{cases}$$

Determine all points of \mathbb{R}^2 where f is continuous.

Solution. Let $\varphi(x,y)=xy$ and $\psi(x,y)=x^2-y^2$. As polynomial functions, $\varphi,\psi:\mathbb{R}^2\to\mathbb{R}$ are continuous and $\psi(x,y) \neq 0$ for all $(x,y) \in \mathbb{R}^2$ with $x^2 \neq y^2$. Thus, f is continuous at each $(x,y) \in \mathbb{R}^2 \text{ with } x^2 \neq y^2.$

If $(x,y) \in \mathbb{R}^2$ with $x^2 = y^2 \neq 0$, then for the sequence $(x + \frac{1}{n}, y) \to (x,y)$ but

$$\left| f\left(x + \frac{1}{n}, y\right) \right| = \left| \frac{(nx+1)y}{2x + \frac{1}{n}} \right| \to \infty.$$

Hence f is not continuous at (x,y). Similarly, $(\frac{2}{n}, \frac{1}{n}) \to (0,0)$ but $f(\frac{2}{n}, \frac{1}{n}) = \frac{2}{3}$ for all n, hence $f(\frac{2}{n}, \frac{1}{n}) \not\to 0 = f(0,0)$. Therefore, the points of continuity of f are exactly $\{(x,y) \in \mathbb{R}^2 : x^2 \neq y^2\}$.

6. Let $\alpha, \beta > 0$, and define $f : \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} \frac{|x|^{\alpha}|y|^{\beta}}{\sqrt{x^2 + y^2}} & if(x,y) \neq (0,0), \\ 0 & if(x,y) = (0,0). \end{cases}$$

Show that f is continuous if and only if $\alpha + \beta > 1$.

Solution. Suppose $\alpha + \beta > 1$, and let $(x_n, y_n) \to (0, 0)$. Then $x_n \to 0$, $y_n \to 0$. For all n with $(x_n, y_n) \neq (0, 0),$

$$0 \le f(x_n, y_n) \le \frac{|x_n|^{\alpha} |y_n|^{\beta}}{\sqrt{x_n^2 + y_n^2}} \le (x_n^2 + y_n^2)^{\alpha/2} (x_n^2 + y_n^2)^{\beta/2} (x_n^2 + y_n^2)^{-1/2}$$
$$= (x_n^2 + y_n^2)^{\frac{1}{2}(\alpha + \beta - 1)}$$

Since $\alpha + \beta > 1$, $(x_n^2 + y_n^2)^{\frac{1}{2}(\alpha + \beta - 1)} \to 0$, so $f(x_n, y_n) \to 0 = f(0, 0)$. Thus, f is continuous at (0, 0)and is clearly continuous elsewhere.

Conversely, suppose f is continuous and $\alpha + \beta \leq 1$. Then $(\frac{1}{n}, \frac{1}{n}) \to (0,0)$ but

$$f\left(\frac{1}{n}, \frac{1}{n}\right) = \frac{1}{\sqrt{2}}n^{1-(\alpha+\beta)}.$$

If $\alpha + \beta = 1$, $f(\frac{1}{n}, \frac{1}{n}) \to \frac{1}{\sqrt{2}} \neq 0$; if $\alpha + \beta < 1$, the sequence is unbounded. This is a contradiction; thus $\alpha + \beta > 1$.

7. Let $f: S \subseteq \mathbb{R}^2 \to \mathbb{R}$ and let $(x_0, y_0) \in S$. Let $A = \{x \in \mathbb{R} : (x, y_0) \in S\}$ and $B = \{y \in \mathbb{R} : (x, y_0) \in S\}$ $(x_0,y) \in S$. Define $\varphi(x) = f(x,y_0)$ for all $x \in A$ and $\psi(y) = f(x_0,y)$ for all $y \in B$. If f is continuous at (x_0, y_0) , show $\varphi : A \to \mathbb{R}$ is continuous at x_0 and $\psi : B \to \mathbb{R}$ is continuous at y_0 . Is the converse true? Justify.

Solution. Let (x_n) be a sequence in A such that $x_n \to x_0$, and let (y_n) be a sequence in B such that $y_n \to y_0$. Then $(x_n, y_0), (x_0, y_n) \in S$ for all $n \in \mathbb{N}$ and

$$(x_n, y_0) \to (x_0, y_0), (x_0, y_n) \to (x_0, y_0).$$

Since f is continuous at (x_0, y_0) , $\varphi(x_n) = f(x_n, y_0) \to f(x_0, y_0) = \varphi(x_0)$, and $\psi(y_n) = f(x_0, y_n) \to f(x_0, y_0) = \psi(y_0)$. Therefore, φ is continuous at x_0 and ψ is continuous at y_0 .

The converse is not true in general. For example, define $f: \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0). \end{cases}$$

Then f is not continuous at (0,0), because $(\frac{1}{n},\frac{1}{n}) \to (0,0)$ but $f(\frac{1}{n},\frac{1}{n}) = \frac{1}{2} \to \frac{1}{2} \neq 0$. However, $\varphi(x) = f(x,0) = 0$ for all x, and $\psi(y) = f(0,y) = 0$ for all y. Thus, both φ and ψ are continuous at 0, but f is not continuous at 0.

8. If $S = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 3\}$, determine (with justification) the interior S° .

Solution. Let $(x_0, y_0) \in S$ and $0 < x_0 < 3$. Set $r = \min\{x_0, 3 - x_0\} > 0$. If $(x, y) \in B_r((x_0, y_0))$, then $|x - x_0| < r$, so $x_0 - r < x < x_0 + r$. Since $x_0 - r \ge 0$ and $x_0 + r \le 3$, $x \in (0, 3)$. So $B_r((x_0, y_0)) \subset S$.

Suppose $(0, y) \in S^{\circ}$. Then there exists r > 0 such that $B_r((0, y)) \subset S$. But $(-\frac{r}{2}, y) \in B_r((0, y))$ and $-\frac{r}{2} < 0$, so $(-\frac{r}{2}, y) \notin S$. Contradiction. Similarly, for $(3, y) \in S^{\circ}$, $(3 + \frac{r}{2}, y) \notin S$. Thus,

$$S^{\circ} = \{ (x, y) \in \mathbb{R}^2 : 0 < x < 3 \}.$$