MA15010H: Multi-variable Calculus

(Assignment 1: Limits and continuity) July - November, 2025

- 1. Let $x, y \in \mathbb{R}^m$. Show that ||x + y|| = ||x|| + ||y|| iff y = 0 or $x = \alpha y$ for some $\alpha \ge 0$.
- 2. Let $x, y \in \mathbb{R}^m$ and r, s > 0. Show that $B_r[x] \cap B_s[y] \neq \emptyset$ iff $||x y|| \le r + s$.
- 3. Let (x_n) be a sequence in \mathbb{R}^m . Show that (x_n) converges in \mathbb{R}^m iff for each $x \in \mathbb{R}^m$, the sequence $(x_n \cdot x)$ converges in \mathbb{R} .
- 4. State TRUE or FALSE with justification for each statement:
 - (a) If (x_n) in \mathbb{R}^m has no convergent subsequence, then it is necessary that $\lim_{n\to\infty} ||x_n|| = \infty$.
 - (b) If (x_n, y_n) is a bounded sequence in \mathbb{R}^2 and every convergent subsequence of (x_n, y_n) converges to (0, 1), then (x_n, y_n) must converge to (0, 1).
- 5. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \begin{cases} \frac{xy}{x^2 y^2} & \text{if } x^2 \neq y^2, \\ 0 & \text{if } x^2 = y^2. \end{cases}$ Determine all points in \mathbb{R}^2 where f is continuous.
- 6. Let $\alpha, \beta > 0$ and define $f : \mathbb{R}^2 \to \mathbb{R}$ by $f(x,y) = \begin{cases} \frac{|x|^{\alpha}|y|^{\beta}}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$ Show that f is continuous iff $\alpha + \beta > 1$.
- 7. Let $f: S \subseteq \mathbb{R}^2 \to \mathbb{R}$, and $(x_0, y_0) \in S$. Let $A = \{x \in \mathbb{R} : (x, y_0) \in S\}$, and $B = \{y \in \mathbb{R} : (x_0, y) \in S\}$. Define $\varphi(x) = f(x, y_0)$ for $x \in A$, and $\psi(y) = f(x_0, y)$ for $y \in B$. If f is continuous at (x_0, y_0) , show $\varphi: A \to \mathbb{R}$ is continuous at x_0 , and $\psi: B \to \mathbb{R}$ is continuous at y_0 . Is the converse true? Justify.
- 8. If $S = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 3\}$, determine (with justification) S^0 .