Assignment 1

- 1. Let X = C[0,1] be the space all the continuous functions on interval [0,1]. Prove that norms $\|\cdot\|_{\infty}$ and $\|\cdot\|_{1}$ on X are not equivalent.
- 2. Let $C^1[0,1]$ denote the space of all continuously differentiable functions on [0,1]. For $f \in C^1[0,1]$, define $||f|| = ||f||_{\infty} + ||f'||_{\infty}$. Show that space $(C^1[0,1], || . ||)$ is a Banach space.
- 3. Does space $(C^1[0,1], \| . \|)$, where $\|f\| = \left(\int_0^1 |f|^2 + \int_0^1 |f'|^2\right)^{\frac{1}{2}}$ a Banach space?
- 4. Let $f \in C^1[0,1]$. Write $||f|| = ||f'||_2 + ||f||_{\infty}$. Whether $(C^1[0,1], ||.||)$ is a Banach space?
- 5. Let $f \in C^1[0,1]$. Does $||f|| = \min(||f'||_2, ||f||_{\infty})$ defines a norm on $C^1[0,1]$?
- 6. Let $X = \{ f \in C^1[0,1] : f(0) = 0 \}$. Then ||f|| = ||f'|| is a norm on $C^1[0,1]$. Whether (X, ||.||) is a Banach space ?
- 7. Let $(V, \| . \|)$ be a normed linear space and X is the space of all the continuous functions from [0,1] to V with $\|f\|_{\infty} = \sup_{t \in [0,1]} \|f(t)\|$. Prove that $(X, \| . \|_{\infty})$ is a Banach space.
- 8. Let X be the class of all continuous functions $f: \mathbb{R} \to \mathbb{C}$ such that for each $\epsilon > 0$, there exists a compact set $K \subset \mathbb{R}$ such that $|f(x)| < \epsilon$, for all $x \in \mathbb{R} \setminus K$. Show that $(X, \|.\|_{\infty})$ is a Banach space.
- 9. Let $1 \leq p < \infty$. Let X_p be a class of all the Riemann integrable functions on [0,1]. Prove that $||f||_p = \left(\int_0^1 |f|^p\right)^{\frac{1}{p}} < \infty$. Prove that $(X_p, || . ||_p)$ is a normed linear space but not complete.
- 10. Let $1 \leq p < \infty$. Let $L^p[0,1] = \{f: [0,1] \to \mathbb{C}, f \text{ is Lebesgue measurable }\}$ with $\|f\|_p = \left(\int_0^1 |f|^p\right)^{\frac{1}{p}} < \infty$. show that $L^p[0,1]$ is proper dense subspace of $L^1[0,1]$, whenever 1 .
- 11. Let $1 \leq p < \infty$. Let $L^p(\mathbb{C}) = \{f : \mathbb{C} \to \mathbb{C}, f \text{ is Lebesgue measurable } \}$ with $||f||_p = (\int_{\mathbb{C}} |f|^p)^{\frac{1}{p}} < \infty$. Let $C_c(\mathbb{C})$ be the class of all compactly supported functions on \mathbb{C} . Prove that $C_c(\mathbb{C})$ is proper dense subspace of $L^p(\mathbb{C})$, whenever $1 \leq p < \infty$. Whether $C_c(\mathbb{C})$ is a dense subspace of $L^\infty(\mathbb{C})$?

12. Let (x_n) be a sequence in a normed linear space X which converges to a non-zero vector $x \in X$. Show that

$$\frac{x_1 + \dots + x_n}{n^{\alpha}} \to x$$

if and only if $\alpha = 1$. If the sequence $x_n \to 0$, prove that

$$\frac{x_1 + \dots + x_n}{n^{\alpha}} \to 0$$
, for all $\alpha \ge 1$.

- 13. Prove that $l^{\infty}(\mathbb{N}) = \{x = (x_1, x_2, \ldots) : \|x\|_{\infty} = \sup_{j} |x_j| \}$ is a Banach space but not separable.
- 14. Let M be a subspace of a normed linear space X. Then show that M is closed if and only if $\{y \in M : ||y|| \le 1\}$ is closed in X.
- 15. Let $D = \{z \in \mathbb{C} : |z| < 1\}$. Let X be the class of all functions f which are analytic on D and continuous on \bar{D} . Define $||f||_{\infty} = \sup\{|f(e^{it})| : 0 \le t \le 2\pi\}$. Prove that $(X, ||.||_{\infty})$ is a Banach space.
- 16. A normed linear space X is finite dimensional if and only if any ball $B_r(x)$ in X is compact.
- 17. Show that unit ball $\{x \in l^1(\mathbb{N}) : ||x||_1 \leq 1\}$ is not compact in $l^1(\mathbb{N})$, without using the statement of Q16.
- 18. Show that unit ball $\{x \in l^{\infty}(\mathbb{N}) : ||x||_{\infty} \leq 1\}$ is not compact $l^{\infty}(\mathbb{N})$, without using the statement of Q16.
- 19. Let M be a closed subspace of a normed linear space X. Prove that projection $\pi: X \to X/M$ defined by $\pi(x) = \tilde{x}$ is a continuous map.
- 20. Let X be a normed linear space. Prove that norm of any $x \in X$, can be expressed as $||x|| = \inf\{|\alpha| : \alpha \in \mathbb{C} \setminus \{0\} \text{ with } ||x|| \le |\alpha|\}$.
- 21. Let M be a closed subspace of a normed linear space X. Then show that X is separable if and only if M and X/M both are separable.
- 22. Does there exist a separable Banach space which has no Schauder basis?
- 23. Let X be a separable Banach space. Prove that there exists a closed subspace M of $l^1(\mathbb{N})$ such that X is isomorphic to $l^1(\mathbb{N})/M$.