Assignment 0

- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) There exists an unbounded subset A of \mathbb{R} such that $m^*(A) = 5$.

 - (b) There exists an open subset A of \mathbb{R} such that $[\frac{1}{2}, \frac{3}{4}] \subset A$ and $m(A) = \frac{1}{4}$. (c) There exists an open subset A of \mathbb{R} such that $m(A) < \frac{1}{5}$ but $A \cap (a, b) \neq \emptyset$ for all $a, b \in \mathbb{R}$ with a < b.
 - (d) If A and B are open subsets of \mathbb{R} such that $A \subseteq B$, then it is necessary that m(A) < m(B).
 - (e) If $f : \mathbb{R} \to \mathbb{R}$ is continuous a.e. on \mathbb{R} , then there must exist a continuous function $g : \mathbb{R} \to \mathbb{R}$ such that f = q a.e. on \mathbb{R} .
 - (f) If $g: \mathbb{R} \to \mathbb{R}$ is continuous and if $f: \mathbb{R} \to \mathbb{R}$ is such that f = g a.e. on \mathbb{R} , then f must be continuous a.e. on \mathbb{R} .
- 2. Let $f:[0,2) \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x^2 & \text{if } 0 \le x \le 1, \\ 3-x & \text{if } 1 < x < 2. \end{cases}$ Find $m^*(A)$, where $A = f^{-1}((\frac{9}{16}, \frac{5}{4})) = \{x \in [0,2) : f(x) \in (\frac{9}{16}, \frac{5}{4})\}$
- 3. Let $B \subset A \subset \mathbb{R}$ such that $m^*(B) = 0$. Show that $m^*(A \setminus B) = m^*(A)$.
- 4. Let $A \subset \mathbb{R}$ such that $m^*(A) > 0$. Show that there exists $B \subset A$ such that B is bounded and $m^*(B) > 0.$
- 5. If $A \subset \mathbb{R}$, then show that $m^*(A) = \inf\{m(G) : A \subset G, G \text{ is an open set in } \mathbb{R}\}$.
- 6. Let $E = \{x \in [0,1] :$ The decimal representation of x does not contain the digit 5}. Show that m(E) = 0.
- 7. If G is a nonempty open subset of \mathbb{R} , then show that m(G) > 0.
- 8. Show that a subset E of \mathbb{R} is Lebesgue measurable iff $m^*(I) = m^*(I \cap E) + m^*(I \setminus E)$ for every bounded open interval I of \mathbb{R} .
- 9. Let $A, B \subset \mathbb{R}$ such that $m^*(A) = 0$ and $A \cup B$ is Lebesgue measurable. Show that B is Lebesgue measurable.
- 10. Let $A, B \subset \mathbb{R}$ such that A is Lebesgue measurable and $m^*(A \triangle B) = 0$. Show that B is Lebesgue measurable.
- 11. Let $A \subset \mathbb{R}$ such that $A \cap B$ is Lebesgue measurable for every bounded subset B of \mathbb{R} . Show that A is Lebesgue measurable.
- 12. If E is a Lebesgue measurable subset of \mathbb{R} and if $x \in \mathbb{R}$, then show that E + x is Lebesgue measurable.
- 13. Let A be a countable subset of \mathbb{R} and let $B \subset \mathbb{R}$ such that $m^*(B) = 0$. Show that $m^*(A+B) = 0$.
- 14. Let I and J be disjoint open intervals in \mathbb{R} and let $A \subset I, B \subset J$. Show that $m^*(A \cup B) =$ $m^*(A) + m^*(B).$

- 15. Let $A \subset [0,1]$ be Lebesgue measurable with m(A) = 1. If $B \subset [0,1]$, then show that $m^*(A \cap B) = m^*(B)$.
- 16. Let $E_i \subset (0,1)$ (i = 1, ..., n) be Lebesgue measurable sets such that $\sum_{i=1}^n m(E_i) > n-1$. Show that $m(\bigcap_{i=1}^n E_i) > 0$.
- 17. If $A \subset \mathbb{R}$, then show that there exists a Lebesgue measurable subset E of \mathbb{R} such that $m^*(A) = m(E)$.
- 18. Let $A \subset \mathbb{R}$ such that $m^*(A) > 0$. Show that there exist $x, y \in A$ such that $x y \in \mathbb{R} \setminus \mathbb{Q}$.
- 19. Show that the Borel σ -algebra on \mathbb{R} is generated by the class $\{(-\infty, x] : x \in \mathbb{Q}\}$.
- 20. Let $E \subset \mathbb{R}$ and let $\alpha \in \mathbb{R}$. If $\alpha E = \{\alpha x : x \in E\}$, then show that $m^*(\alpha E) = |\alpha|m^*(E)$. Also, show that if E is Lebesgue measurable, then αE is Lebesgue measurable.
- 21. Let $A \subset \mathbb{R}$ such that $m^*(A) = 0$. Show that $m^*(\{x^2 : x \in A\}) = 0$.
- 22. Let $A, B \subset \mathbb{R}$ such that $A \cup B$ is Lebesgue measurable and $m(A \cup B) = m^*(A) + m^*(B) < \infty$. Show that both A and B are Lebesgue measurable.
- 23. If $A \subset \mathbb{R}$, then show that χ_A is a Lebesgue measurable function iff A is a Lebesgue measurable set.
- 24. Let *E* be a Lebesgue measurable subset of \mathbb{R} . Show that $f : E \to \mathbb{R}$ is Lebesgue measurable iff $\{x \in E : f(x) > r\}$ is Lebesgue measurable for each $r \in \mathbb{Q}$.
- 25. Let *E* be a Lebesgue measurable subset of \mathbb{R} and let $f : E \to \mathbb{R}$ be a Lebesgue measurable function. For each $x \in E$, let $g(x) = \begin{cases} f(x) & \text{if } |f(x)| \leq 5, \\ 0 & \text{if } |f(x)| > 5. \end{cases}$ Show that $g : E \to \mathbb{R}$ is Lebesgue measurable.
- 26. Let *E* be a Lebesgue measurable subset of \mathbb{R} and let $f : E \to \mathbb{R}$ be a Lebesgue measurable function. For each $x \in E$, let $g(x) = \begin{cases} 0 & \text{if } f(x) \in \mathbb{Q}, \\ 1 & \text{if } f(x) \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$ Show that $g : E \to \mathbb{R}$ is Lebesgue measurable.
- 27. Let E be a Lebesgue measurable subset of \mathbb{R} and let $f : E \to \mathbb{R}$ be a Lebesgue measurable function. If $g : \mathbb{R} \to \mathbb{R}$ is continuous, then show that $g \circ f$ is Lebesgue measurable.
- 28. Does there exist a continuous function $f : \mathbb{R} \to \mathbb{R}$ such that $f = \chi_{[0,1]}$ a.e. on \mathbb{R} ? Justify.
- 29. Let $f:[a,b] \to \mathbb{R}$ be a differentiable function. Show that $f':[a,b] \to \mathbb{R}$ is Lebesgue measurable.
- 30. If E is a Lebesgue measurable subset of \mathbb{R} with $m(E) < +\infty$ and if $f(x) = m(E \cap (-\infty, x])$ for all $x \in \mathbb{R}$, then show that $f : \mathbb{R} \to \mathbb{R}$ is continuous.

31. Let *E* be a Lebesgue measurable subset of \mathbb{R} with $m(E) < \infty$. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = m\{E \cap (-\infty, x^2)\}$. Show that *f* is differentiable at 0 and f'(0) = 0.

32. For each
$$x \in [0, 1]$$
, let $f(x) = \begin{cases} \frac{1}{n} & \text{if } x = \frac{m}{n} \text{ for some } m, n \in \mathbb{N} \text{ with g.c.d.}(m, n) = 1, \\ 0 & \text{otherwise.} \end{cases}$
Evaluate the Lebesgue integral $\int f.$
33. For each $x \in [0, 1]$, let $f(x) = \begin{cases} x^2 & \text{if } x = \frac{1}{2n} \text{ for some } n \in \mathbb{N}, \\ x^3 & \text{if } x = \frac{1}{2n} \text{ for some } n \in \mathbb{N}, \\ x^4 & \text{otherwise.} \end{cases}$
Evaluate the Lebesgue integral $\int f.$
34. Let $f(x) = \begin{cases} \sin(\pi x) & \text{if } x \in [0, \frac{1}{2}] \setminus C, \\ \cos(\pi x) & \text{if } x \in [\frac{1}{2}, \frac{1}{2}] \setminus C, \\ x^2 & \text{if } x \in C. \end{cases}$
(C denotes the Cantor set.) Evaluate the Lebesgue integral $\int f.$
35. Evaluate the Lebesgue integral $\int g. e^{-[x]} dx.$
36. Let $f(x) = \begin{cases} e^{[x]} & \text{if } x \in \mathbb{Q}, \\ e^{-[x]} & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \\ e^{-[x]} & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$
Evaluate the Lebesgue integral $\int g. g. (x)$
Evaluate the Lebesgue integral $\int f.$
37. Let $f(x) = \begin{cases} e^{[x]} & \text{if } x \in \mathbb{Q}, \\ e^{-[x]} & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \\ e^{-[x]} & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$
Evaluate the Lebesgue integral $\int g. f.$
38. Evaluate the Lebesgue integral $\int g. f.$
39. Let $f(x) = \begin{cases} \frac{1}{\sqrt{x}} & \text{if } 0 < x \le 1, \\ \frac{1}{\sqrt{x}} & \text{if } x > 1. \end{cases}$
Evaluate the Lebesgue integral $\int f. (0,\infty) f.$
40. Evaluate the following:
(a) $\lim_{m \to \infty} \int \frac{2}{1+x^{2m}} dx$
(b) $\lim_{m \to \infty} \int \frac{1+\pi x}{1+x^{2m}} dx$
(c) $\int_0^1 (\sum_{n=\frac{1}{2}, \frac{n}{2}) dx$

(d)
$$\lim_{n \to \infty} \int_{1}^{\infty} \frac{1}{1+x^{2n}} dx$$

(e) $\sum_{n=0}^{\infty} \int_{0}^{1} \frac{x^{2}}{(1+x^{2})^{n}} dx$