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PRELIMINARY

Let us denote the unit circle in the complex plane by T = {z ∈ C : |z| = 1}. Write

z = eiθ; 0 ≤ θ < 2π. Then T = {eiθ : 0 ≤ θ < 2π}. Consider ϕ : R → T defined by

ϕ(x) = eix. Then ϕ is a group homomorphism with ker(ϕ) = 2πZ. Hence T ∼= R/2πZ. If

f : T→ C, then f can be identified on R by f̃ : R→ C via the relations

f̃(x) = f̃(x̃+ 2πk) = f(x̃),

where k ∈ Z and x̃ ∈ [0, 2π). That is, the function on T can be identified with 2π

periodic functions on R, which allow understanding the notions of continuity, Lebesgue

integrability, etc. on the unit circle T. Further, the arch length measure on T can be

identified with the restriction of Lebesgue measure on [0, 2π) in the following way.

Denote dm = dθ
2π
, where m can be realized by m{eiθ : θ1 ≤ θ ≤ θ2} = θ2−θ1

2π
with

0 ≤ θ2 − θ1 < 2π. Here m is known as the normalized Lebesgue measure on T ∼= [0, 2π).

Hence if f is continuous on T, then

(0.1)

∫
T
f(z)dz =

∫ 2π

0

f̃(t)dm(t).

Now onwards, we shall identify function f̃ on R by f itself and dm(t) = dt. Moreover, m

is translation invariant on [0, 2π) and∫ 2π

0

f(t− to)dt =

∫ 2π

0

f(t)dt,

where to ∈ [0, 2π).

0.1. Complex Borel measure. The Borel σ-algebra B(T) is the smallest σ-algebra

generated by all open subsets (open arches) in T, where every member of B(T) is known

as a Borel set. For simplicity, we write B for B(T).
1



2 MA650: LECTURE NOTES, JAN-MAY, 2022

A function f : T→ Ĉ = C∪{∞} is called Borel measurable if f−1(U) ∈ B(T) for every

open set U of one point compactification space Ĉ. Typically, U is either an open subset

of C in its usual topology or U = Ĉ rK, where K is a compact subset of C.

A complex Borel measure on T is a set function µ : B(T)→ C satisfying µ(∅) = 0 and

(0.2) µ(E) =
∞∑
j=1

µ(Bj)

for every countable partition {Bj}∞n=1 of E ∈ B(T). It follows that the series in the right-

side of (0.2) must be absolutely convergence unless µ is a non-negative measure. Thus,

|µ(T)| < ∞ necessarily satisfied if µ is not a non-negative measure. Consequently, µ

satisfies

µ(
∞⋃
j=1

Bj

)
=
∞∑
j=1

µ(Bj)

for every disjoint sequence {Bj}∞n=1 in B(T). We denote the space of all finite complex

Borel measures by M(B). For µ ∈M(B), define

‖µ‖ = sup
{ ∞∑

j=1

|µ(Bj)| :
∞⋃
j=1

Bj = T
}
.

The space (M(B), ‖ ·‖) is a Banach space. Here ‖ ·‖ is known as the total variation norm,

and ‖µ‖ = |µ|(T).

Exercise 0.1. Show that

|µ|(T) = sup
{ ∞∑

i=1

|µ(Bi)| :
∞⋃
i=1

Bi = T
}

= sup
{ k∑

i=1

|µ(Bi)| :
k⋃
i=1

Bi = T
}
.

(Hint: If {Bi}∞i=1 is a countable cover of T, then
∞∑
i=1

|µ(Bi)| <∞.)

For µ ∈ M(B), define a linear functional Tµ on C(T) by Tµ(f) =
∫
T
fdµ. Then

‖Tµ‖ = sup{|Tµ(f)| : ‖f‖∞ ≤ 1} = ‖µ‖. Thus, every µ ∈ M(B) defines a bounded

linear functional on C(T) and vice-versa due to the following result.

Theorem 0.2. (Reisz representation theorem) Let T be a bounded linear functional on

C(T), then there exists unique µ ∈M(B) such that T = Tµ.



ADVANCED COURSE ON HARDY SPACES 3

1. Invariant subspaces of L2(µ)

In this section, consider shift-invariant subspaces of square integrable functions on T.

Let

L2(T, µ) = {f : T→ C is measurable and‖f‖2
2 =

∫
T
|f |2dµ <∞},

where µ is a finite complex Borel measure on T.

For f ∈ L1(T,m), we define the Fourier coefficients of f by f̂(n) =
2π∫
0

e−intf(t)dt, where

n ∈ Z, and the corresponding Fourier series is f ∼
∞∑

n=−∞
eintf̂(n). Consider an operator

S on L2(T,m) defined by

(1.1) S(f)(z) = zf(z),

where z ∈ T. Then (̂Sf)(n) = f̂(n− 1). That is, the Fourier coefficients got a right-shift

due to the action of S. The operator S is known as the shift operator. The following

question can be raised.

Question 1.1. What are the shift-invariant subspaces E of L2(T, µ)?

That is, when zE ⊆ E? We shall use the notation closE for the closure of E, and Ē,

the complex conjugate of E. We always consider E to be a closed subspace unless it is

specified.

Example 1.2. When f ∈ L2(µ), the space Ef = span{znf : n ≥ 0} is shift-invariant.

Further, what are f ∈ L2(µ) such that Ef = L2(µ)? If so, we say f is a cyclic vector.

More generally, we consider identifying f ∈ L2(µ) such that zEf = Ef .

Let E be a closed subspace of L2. Typically, we discuss the characterization of the

following two distinct cases.

We say E is simply invariant (or 1-invariant) if zE ⊂ E and zE 6= E. On the other

hand, when zE = E, we say E is doubly invariant (or 2-invariant). Note that zE = E

if and only if z̄E = E (since zz̄ = |z|2 = 1). This means zE ⊆ E and z̄E ⊆ E, and hence

E is known as reducing space as well.
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For a measurable set σ ⊂ T, the space Eσ = χσL
2(µ) = {χσf : f ∈ L2(µ)} = {f ∈

L2(µ) : f = 0 a.e.µ onT r σ} satisfies zEσ = Eσ.

Question 1.3. Does every reducing subspace look like Eσ?

Theorem 1.4. (Norbert Wiener) Let E ⊂ L2(T, µ). Then zE = E if and only if there

exists a unique (up to set of measure zero) measurable set σ ⊂ T such that E = χσL
2(µ).

Proof. Suppose zE = E. Let PE be the orthogonal projection of L2(µ) onto E. Set

χ = PE1 (the evaluation of PE at the constant function 1). Then χ ∈ E and 1 − χ =

(I − PE)1 ∈ E⊥. But znE ⊆ E, implies znχ ∈ E and hence znχ ⊥ 1 − χ, ∀n ∈ Z. That

is,

(1.2)

∫
T
znχ(1− χ̄)dµ = 0, ∀n ∈ Z.

Let g = χ(1− χ̄), then dν = gdµ is a finite complex Borel measure because of χ ∈ L1(µ).

Thus, by (1.2), Tν : L2(µ) → C defined by Tν(f) =
∫
T
fdν satisfies Tν(z

n) = 0. Since

trigonometric polynomials are dense in C(T), it follows that Tν(C(T)) = {0}. By Riesz

representation theorem, Tν = 0 and hence ν = 0. (Note that ‖Tν‖ = ‖ν‖). That is,

g = χ(1 − χ̄) = 0. This implies that χ = |χ|2. Thus, χ takes values either 0 or 1. Let

σ = {t ∈ T : χ(t) = 1}. Then σ is measurable. For simplicity, let P denotes the space of

all trigonometric polynomials on T. Since χ ∈ E, we get znχ ∈ E and hence χP ⊂ E. This

implies clos (χP) ⊆ E. On the other hand, clos (χP) = χL2(µ), as we know closP = L2(µ).

Thus, χL2(µ) ⊆ E. Therefore, it remains to show that χL2(µ) = E.

For this, let f ∈ E and f ⊥ znχ, ∀n ∈ Z (since clos (χP) = χL2(µ)). Since znf ∈ E

and 1− χ ⊥ znf, ∀n ∈ Z. It follows that

(1.3)

∫
T
fχ̄z̄ndµ =

∫
T
znf(1− χ̄)dµ = 0

∀n ∈ Z. Thus, (1.3) is satisfied by every polynomial p ∈ P, and hence for every function

g ∈ C(T) in place of p. By Theorem 0.2, we get fχ̄ = f(1 − χ̄) = 0 a.e. µ. This implies

that f = 0 a.e. µ. Thus, χL2(T) = E. �
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1.1. Simply invariant subspaces of L2(µ). Let B = {zn}n∈Z. Notice that the Fourier

series of f ∈ L2(T,m) with respect to the orthonormal basis B is f ∼
∑
f̂(n)zn, where

f̂(n) =
∫
T
f z̄ndm. This implies that L2(T,m) can be identified with l2(Z). Since (̂zkf)(n) =

f̂(n−k), multiplication operator f 7→ zf acts as a right-shift operator on l2(Z). And hence

it is legitimate to consider the space

H2 = span{zn : n ≥ 0} = {f ∈ L2(m) : f̂(n) = 0, n < 0},

known as Hardy space. The space H2 is a simply invariant subspace of L2(m), and

plays a prominent role in complex and harmonic analysis H2.

The following theorem says that all the simply invariant subspaces have a somewhat

similar structure.

Theorem 1.5. (A. Beurling, H. Helson) Let E be a closed subspace of L2(T) and zE ⊂

E, zE 6= E. Then there exists a unique Θ (up to constant of modulus 1) with |Θ| = 1 a.e.

m on T such that E = ΘH2.

Notice that f 7→ Θf is an isometry on L2(m), and hence ΘH2 is closed.

Proof. Since zE ( E (zE 6= E), we consider the orthogonal complement of zE in E, and

denote it by E 	 zE = (zE)⊥. Then E 	 zE is non-trivial, and consider Θ ∈ E 	 zE

with ‖Θ‖2 = 1. Notice that Θ ∈ E and Θ ⊥ zE. Hence znΘ ∈ zE, ∀n ≥ 1 and

Θ ⊥ znΘ, ∀n ≥ 1. ∫ 2π

0

Θ̄Θzndm =

∫ 2π

0

|Θ|2zndm = 0, ∀n ≥ 1.

By taking complex conjugate, we have∫ 2π

0

|Θ|2z̄ndm = 0, ∀n ≥ 1.

This implies that (̂|Θ|2)(n) = 0, ∀n ∈ Z r {0}. By the uniqueness of Fourier series, it

follows that |Θ|2 = c (constant) a.e. m, and we get 1 =
2π∫
0

|Θ|2dm = c. Thus, |Θ| = 1

a.e. m. Clearly, f 7→ Θf is an isometry. Note that Θ ∈ E. Hence znΘ ∈ E, ∀n ≥ 0,

implies linear span of {zn : n ≥ 0} has the same property. Let P+ = span{zn : n ≥ 0}.
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Then ΘP+ ⊂ E and clos (ΘP+) = Θ clos(P+) = ΘH2. Thus, ΘH2 ⊆ E. It only remains

to show that ΘH2 coincides with E.

Let f ∈ E and f ⊥ ΘH2. We claim that f = 0. Since f ⊥ ΘH2, we get f ⊥ Θzn, ∀n ≥

0. Also, f ∈ E implies znf ∈ zE, ∀n ≥ 1 and hence znf ⊥ Θ, ∀n ≥ 1 since Θ ⊥ zE.

Thus, ∫
T
fΘ̄z̄ndm = 0, ∀n ≥ 0 and

∫
T
znfΘ̄dm = 0, ∀n ≥ 1.

That is, (̂fΘ̄)(n) = 0, ∀n ∈ Z. This implies fΘ̄ = 0 a.e. m. Since |Θ| = 1 a.e., we get

f = 0 a.e. m.

Uniqueness: Let Θ1H
2 = Θ2H

2 and |Θ1| = |Θ2| = 1 a.e. on T. Then Θ1Θ̄2H
2 = H2

and we get Θ1Θ̄2 ∈ H2. Also, by symmetry Θ2Θ̄1 ∈ H2, or Θ1Θ̄2 ∈ H̄2. But H2 ∩ H̄2 =

constant. (Hint: If f ∈ H2, then f̂(n) = 0, n < 0 and f̄ ∈ H2, then (̂̄f)(n) = f̂(−n) =

0, n < 0. This means f̂(n) = 0,∀n ∈ Z r {0}.) Hence Θ1Θ̄2 = c. Since |Θ1| ¯|Θ2| = 1, we

have Θ1 = c Θ̄2, where |c| = 1. �

Corollary 1.6. (Beurling theorem) Let E 6= {0}, E ⊂ H2 and zE ⊂ E. Then there exists

Θ ∈ H2 with |Θ| = 1 a.e. on T such that E = ΘH2.

Proof. It is impossible that z̄E ⊂ E.On the contrary, suppose this could be the case. Then

for f ∈ E with f 6= 0, there exists n ∈ N such that f̂(n) 6= 0. By assumption, zn+1f ∈ E.

However, ̂(zn+1f)(−1) = f̂(n) 6= 0 implies z̄n+1f 6∈ H2 leads to a contradiction. This

means E is simply invariant, and in view of Theorem 1.5 (Beurling-Helson), it follows

that E = ΘH2 and Θ ∈ H2 by definition of H2. �

Definition 1.7. A function Θ ∈ H2, with |Θ| = 1 a.e. is called inner function.

1.2. Uniqueness theorem in H2.

Theorem 1.8. If f ∈ H2 and f = 0 on a set of positive measure, then f = 0 a.e. on T.
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Proof. For f 6= 0, Ef = span{znf : n ≥ 0} ⊂ H2 and zEf ⊂ Ef = ΘH2, where Θ

is an inner function. Let σ = {z ∈ T : f(z) = 0}, Then m(σ) > 0. Let us verify

that g|σ = 0, ∀ g ∈ Ef . Since g ∈ Ef , there exists sequence pn ∈ P+ (the space of all

polynomials) such that pnf → g in L2(m). Hence

0 ≤
∫
σ

|g|2dm =

∫
σ

|g − pnf |2 ≤ ||g − pnf‖2
2 → 0 asn→∞.

Implies g|σ = 0 a.e. m. In particular, for g = Θ, Θ|σ = 0, which is a contradiction. �

1.3. Invariant subspaces of L2(µ). (Absolutely continuous and singular subspaces)

Let µ be a finite Borel measure on T, and E ⊂ L2(µ) with zE ⊂ E. We consider

invariant subspaces of L2(µ) which are based on Lebesgue decomposition of µ. A measure

µ is called absolutely continuous with respect to m if m(B) = 0 implies ν(B) = 0,

where B ∈ B and we write ν � m. By Radon-Nikodym theorem, there exists a positive

integrable function w such that dν = wdm. That is,∫
T
fdν =

∫
T
fwdm

for each Borel measurable function f on T.

A measure ν is called singular with respect to m if it is concentrated on a set C of

Lebesgue measure zero. That is, ν ⊥ m if ν(B) = ν(B ∩C) for every B ∈ B(T). Let µ be

a finite and positive Borel measure on T, then by Lebesgue decomposition,

µ = µa + µs, where µa � m and µs ⊥ m.

So, if f ∈ L2(µ), then ∫
T
|f |2dµ =

∫
T
|f |2dµa +

∫
T
|f |2dµs

By this, we can construct an orthogonal decomposition of f. Let σ be the concentration

set for µs. Then

(1.4) L2(µs) ⊂ L2(µ) and L2(µa) ⊂ L2(µ) and L2(µs) ⊥ L2(µa).

Now, f = fχTrσ + fχσ = fa + fs. This means

(1.5) L2(µ) = L2(µa)⊕ L2(µs).
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The subspaces L2(µa) and L2(µs) are invariant subspaces and are known as absolutely

continuous and singular spaces, respectively.

We need the following results in order to prove the main result about invariant subspaces

of L2(µ).

Lemma 1.9. Let µ be a finite complex Borel measure on T.

(i) If (̂dµ)(n) =
∫
T
e−intdµ(t) = 0, for all n ∈ Z, then µ = 0.

(ii) If (̂dµ)(n) = 0, for all n ∈ Z r {0}, then dµ = cdm.

Proof. (i) Let f ∈ C2(T), then f is Borel measurable and we have

Tµ(f) =

∫
T
f(t)dµ(t)

=

∫
T

(∑
n∈Z

f̂(n)eint
)
dµ(t)

=
∑
n∈Z

f̂(n)

∫
T
eintdµ(t) (By Fubini’s Theorem)

= 0 (By assumption).

Hence Tµ(f) = 0 for all f ∈ C2(T). Since C2(T) is dense in C(T), by Theorem 0.2, we get

µ = 0.

(ii) From the given condition and similar to the proof of case (i), we can write∫
T
f(t)dµ(t) = f̂(0)

∫
T
dµ = µ(T)

∫
T
f(t)dt.

Thus, dµ = µ(T)dm, where dm = dt. �

Let T : H → H be an isometry (or T ∈ iso(H)) on the Hilbert space H. A subspace D

of H is called wandering if TmD ⊥ T nD for m 6= n (m,n ≥ 0).

Lemma 1.10. (H. Wold, A. Kolmogorov) Suppose T ∈ iso(H) and TE ⊂ E. Let D =

E 	 TE. Then D is a wandering subspace of T, and E =
( ∑
n≥0

⊕T nD
)
⊕
( ⋂
n≥0

T nE
)

=

E0⊕E∞, where T |E∞ is unitary, and T |E0 is completely non-unitary (i.e. if E ′ ⊂ E0 and

TE ′ ⊂ E ′ implies T |E′ is not unitary).
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Theorem 1.11. (H. Helson 1964) Let dµ = wdm + dµs be the Lebesgue decomposition

of a positive finite Borel measure µ and let E ⊂ L2(µ) be simply invariant. Then there

exists σ ⊆ T with m(σ) = 0 and a measurable function Θ such that

E = E0 ⊕ E∞ = ΘH2 ⊕ χσL2(µs), where

ΘH2 ⊂ L2(µa), χσL
2(µs) ⊂ L2(µs) and

(1.6) |Θ|2w ≡ 1.

Conversely, if σ is measurable and Θ verified (1.6), then ΘH2 ⊕ χσL2(µs) is simply in-

variant.

Proof. Set D = E 	 zE = (zE)⊥ 6= {0} and let E =
( ∑
n≥0

znD
)
⊕
( ⋂
n≥0

znE
)

= E0⊕E∞

be the Wold-Kolmogorov decomposition of E. Let Θ ∈ D with ‖Θ‖2 = 1, then Θ ∈ E

and Θ ⊥ zE. This implies znΘ ∈ zE, ∀n ≥ 1, and hence znΘ ⊥ Θ∀n ≥ 1. That is,∫
T
(znΘ)Θ̄dµ =

∫
T
|Θ|2zndµ = 0, ∀n ≥ 1.

And by conjugation ∫
T
|Θ|2z̄ndµ = 0, ∀n ≥ 1.

Thus, ̂(|Θ|2dµ)(n) = 0, ∀n ∈ Z r {0}. By Lemma 1.9 (ii), we get |Θ|2dµ = cdm. But,

1 =
∫
T
|Θ|2dµ = c

∫
T
dm = c. Thus,

dm = |Θ|2dµ

= |Θ|2dµa + |Θ|2dµs

= |Θ|2wdm+ |Θ|2dµs.(1.7)

Implies |Θ|2 = 0 a.e. µs on T (because m has no singular part) and dm = |Θ|2wdm

implies |Θ|2w = 1 a.e. m. By Wold-Kolmogorov Lemma 1.10, restriction z|E∞ is unitary,

zE∞ ⊆ E∞ = E∞ ⊕ E0, and z|E0 is non-unitary on every section of E0, etc. Thus, we

conclude that zE∞ = E∞. By Wiener theorem, E∞ = χσL
2(µ) for some σ ⊂ T. As Θ ∈

D ⊂ E0 ⊥ E∞, implies Θ ⊥ χσL
2(µ). In particular, this implies

∫
σ

ΘΘ̄dµ =
∫
σ

|Θ|2dµ = 0.

Hence Θ|σ = 0 a.e. µ. But Θ 6= 0 a.e. m implies m(σ) = 0 (since dm = |Θ|2dµ). Thus, in
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view of (1.5) we obtain

E∞ = χσL
2(µ) = χσL

2(µs) ⊂ L2(µs).

We have already shown that D ⊂ L2(µa), because D ⊂ E0 ⊥ E∞ = L2(µs) implies

D ⊂ L2(µa). Therefore, E0 =
∑
n≥0

⊕znD ⊂ L2(µa). Also, span{znΘ : n ≥ 0} ⊂ E0, since

Θ ∈ E0. We claim that E0 = span{znΘ : n ≥ 0}.

On the contrary, suppose there exists f ∈ E0	span{znΘ : n ≥ 0}. Then f ⊥ znΘ, ∀n ≥

0. Recall that Θ ⊥ zE. But f ∈ E, implies znf ∈ E and hence znf ⊥ Θ, ∀n ≥ 1. Thus,∫
fznΘdµ = 0∀n ≥ 0 and

∫
znfΘ̄dµ = 0, ∀n ≥ 1.

That is, ̂(fΘ̄dµ)(n) = 0 ∀n ∈ Z. By Lemma 1.9(i), it implies that fΘ̄dµ = 0. Since Θ̄ 6= 0

a.e. m and f ∈ E0 ⊂ L2(µa), it follows that f ≡ 0. Now, by Parseval identity, it is easy

to verify that

span{znΘ : n ≥ 0} =
{∑
n≥0

anz
nΘ :

∑
n≥0

|an|2 <∞
}
.

(Notice that {znΘ}n≥0 is an orthonormal set in L2(µa), since dµa = w dm and |Θ|2w ≡ 1.)

Further, it is easy to see that

E0 = Θ
{∑
n≥0

anz
n :
∑
n≥0

|an|2 <∞
}

= ΘH2.

Indeed, f 7→ Θf is an isometry from L2(T, dm) onto L2(dµa) = L2(wdm). That is,∫
T
|f |2dm =

∫
T
|Θf |2dµa.

�
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2. First Applications

We have seen that there is one to one correspondence between simply invariant subspace

of L2(µ) with the set of measurable unimodular functions (inner functions) due to Helson’s

theorem. This congruence opens many possibilities to apply Hilbert space geometry and

operator theory to L2(µ) and vice-versa. Here we discuss inner-outer decomposition of the

Hardy class functions, Szegö infimum, and Riesz brother’s theorem for “analytic measure”.

That is, for which positive measure µ on T, the “analytic half” P+ = span{zn : n ≥ 0} is

dense in L2(T, µ).

2.1. Some consequences of Helson’s theorem. Let µ be a positive Borel measure

on T with dµ = wdm + dµs. Notice that if zE ⊂ E ⊂ L2(µ), then E = Ea ⊕ Es,

where zEa ⊂ Ea ⊂ L2(µa), because E = ΘH2 + χσL
2(µs), where ΘH2 ⊂ L2(µa) and

χσL
2(µs) ⊂ L2(µs).

(a) If µ = µs, then zE ⊂ E ⊂ L2(µs), implies zE = E, because, by Helson’s theorem

1.11, we already have E = χσL
2(µs), which is 2-invariant.

(b) Show that for dµ = dµa = w dm, the followings are equivalent:

(i) There exists E such that zE ( E ⊂ L2(µa).

(ii) There exists Θ such that |Θ|2w = 1 a.e. m.

(iii) w > 0 almost everywhere m.

(iv) m is absolutely continuous with respect to µa.

(c) If dµ = dµa = w dm and zE ( E ⊂ L2(µa), then E = ΘH2 with |Θ|2w ≡ 1 a.e. m.

2.2. Reducing subspaces. Let f ∈ L2(µ) and dµ = wdm + dµs. We look for sufficient

conditions that ensure that Ef is reducing. If there exists measurable set e ⊂ T such

that m(e) > 0 and f |e = 0. Then Ef is a reducing subspace, and there exists σ ⊂ T r e

such that Ef = χσL
2(µ). In fact, σ = {z ∈ T : f(z) 6= 0}. On the contrary, suppose

zEf ( Ef . Then by Theorem 1.11 we get Ef = ΘH2⊕χL2(µs), and hence f ∈ Ef implies

f = fa + fs, where fa = Θh, h 6= 0 a.e. m (by Theorem 1.8, since h ∈ H2). This implies
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fa 6= 0 a.e. m, which is impossible because f |e = 0 and m(e) > 0 implies fa|e = 0 with

m(e) > 0. Thus, Ef = zEf = χσL
2(µ) for σ ⊂ T (by Wiener theorem). Notice that

Ef = span{znχTref : n ≥ 0} = χTreEf = χσL
2(µ) and 1 ∈ L2(µ), implies σ ⊂ T \ e.

Indeed, σ = {z ∈ T : f(z) 6= 0}, which is defined up to a set of µ measure zero.

2.3. The problem of weighted polynomial approximation. We know that the space

of trigonometric polynomials P = span{zn : n ∈ Z} is dense in Lp(µ) for every positive and

finite measure µ and 1 ≤ p <∞. Let P+ = span{zn : n ≥ 0}. One of the main problems is

describing the closure of P+ in L2(µ). Denote H2(µ) = closP+|L2(µ). The most important

part of this problem is to distinguish between the completeness case H2(µ) = L2(µ), from

the incompleteness case H2(µ) ( L2(µ).

Corollary 2.1. H2(µ) = H2(µa)⊕ L2(µs).

Proof. H2(µ) = span{zn : n ≥ 0}. By Helson decomposition H2(µ) = Ea ⊕ Es with

Ea ⊂ L2(µa) and Es ⊂ L2(µs). Since we know that zEs = Es, by Wiener theorem,

Es = χσL
2(µs) with m(σ) = 0. Since 1 ∈ H2(µ), we have 1 = 1a + 1s with 1s 6= 0 a.e. µs.

But 1s ∈ Es = χσL
2(µs) implies χσL

2(µs) = L2(µs).

Further, (P+)a ⊂ Ea implies clos (P+)a = H2(µa) ⊆ Ea. But, for f ∈ Ea ⊂ H2(µ),

implies there exists pn ∈ P+ such that ‖f − pn‖L2(µ) → 0. Since ‖f − pn‖2
L2(µ) = ‖f −

pn‖2
L2(µa) + ‖pn‖2

L2(µs)
, we get f ∈ H2(µa). (Since f = 0 a.e. µs.)

�

Remark 2.2. Note that for H2(µa), the closure of P+ in L2(µa) has two possibilities:

(i) zH2(µa) = H2(µa) and hence by Wiener theorem H2(µa) = χσL
2(µa) = L2(µa),

because 1a ∈ H2(µa) implies that there does not exist σ ⊂ T such that m(Trσ) > 0.

(ii) zH2(µa) ( H2(µa)(⊂ L2(µa)), and hence H2(µa) = ΘH2 with |Θ|2w ≡ 1.

The following results help to distinguish the above two cases.
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Lemma 2.3. H2(µ) is reducing (and hence H2(µ) = L2(µ)) if and only if z̄ ∈ H2(µ).

Proof. If H2(µ) is reducing, then z̄ ∈ H2(µ) is trivial. Suppose z̄ ∈ H2(µ), then exists

pn ∈ P+ such that ‖z̄ − pn‖L2(µ) → 0. Let q ∈ P+. Then∫
T
|z̄q − qpn|2dµ ≤ ‖q‖2

∞

∫
T
|z̄ − pn|2 → 0 asn→∞.

This implies z̄ P+ ⊂ H2(µ), or P+ ⊂ zH2(µ) (closed). Hence H2(µ) ⊆ zH2(µ), i.e.

z̄H2(µ) ⊆ H2(µ). But zH2(µ) ⊂ H2(µ) implies zH2(µ) = H2(µ). Now, it is clear from

Wiener theorem and theorem 1.8 that H2(µ) = χσL
2(µ) = L2(µ). �

Corollary 2.4. H2(µ) = L2(µ) if and only if dist (1, H2
0 (µ)) = 0, where H2

0 (µ) is the

closure of span{zn : n ≥ 1} in L2(µ).

Proof. Let H2(µ) = L2(µ), then z̄ ∈ H2(µ), implies dist (1, H2
0 (µ)) = dist (z̄, H2(µ)) = 0.

On the other hand, if dist (1, H2
0 (µ)) = 0, then z̄ ∈ H2(µ), and hence H2(µ) = L2(µ). �

Note that the quantity

dist2 (1, H2
0 (µ)) = inf

p∈P0
+

∫
T
|1− p|2dµ

is known Szegö infimum, where P0
+ = span{zn : n ≥ 1}.

It can be seen that dist(1, H2
0 (µ)) depends only on the absolute part of the measure

µ. Let dµ = wdm+ dµs be the lebesgue decomposition of µ. As similar to Corollary 2.1,

it can be seen that H2
0 (µ) = H2

0 (µa) ⊕ L2(µs). We also use the fact that if M1 and M2

are subspaces of a Hilbert space H such that M1 ⊥ M2, then PM1⊕M2 = PM1 + PM2 for

M1 ⊥M2. Thus, we can write

dist2(1, H2
0 (µ)) = ‖PH2

0 (µ) ⊥ 1‖2
L2(µ)

= ‖(PH2
0 (µa) ⊕ PL2(µs)) ⊥ (1a + 1s)‖L2(µ)

= ‖PH2
0 (µa) ⊥ 1a‖2

L2(µa) (since1s ∈ L2(µs))

= inf
p∈P0

+

∫
T
|1− p|2wdm.
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The evaluation of Szegö infimum is intimately related to the multiplicative structure of

H2.

2.4. The inner-outer factorization. Recall that a function f ∈ H2 is called inner if

|f | = 1 a.e. on T. On the other hand, f ∈ H2 is called outer if Ef = H2.

Theorem 2.5. (V. Smirnov, 1928) Let f ∈ H2 and f 6≡ 0, then there exists an inner

function finn ∈ H2 and an outer function fout ∈ H2 such that f = finnfout. Moreover,

this factorization is unique and Ef = finnH
2.

Proof. Note that Ef ⊂ H2, Ef 6= {0}, and Ef is not reducing, else z̄ ∈ H2. Here, Ef =

span{znf : n ≥ 0} ⊂ H2. By Theorem 1.5, we have Ef = ΘH2, where |Θ| = 1 a.e.

m. Let finn = Θ, then f = Θg, where g ∈ H2. We claim Eg = H2. Let h ∈ H2. Since

Ef = ΘH2 and Θh ∈ ΘH2, there exists pn ∈ P+ such that pnΘg = pnf → Θh inL2. But,

multiplication by an inner function is an isometry, we get

‖png − h‖2 = ‖Θ(png − h)‖2 → 0.

Hence, Eg = H2. Here g = fout is desired outer function.

Uniqueness: Take f = f1f2, where f1 is inner and f2 is outer. As f1 is inner, h 7→ f1h is

an isometry, and hence as Ef2 = H2, we get

finnH
2 = Ef = span{znf1f2 : n ≥ 0} = f1span{znf2 : n ≥ 0} = f1H

2.

By the uniqueness of the representing inner function of the simply invariant space Ef

(cf. Theorem 1.5 and Corollary 1.6), we get finn = λf1 with |λ| = 1, and λf1fout = f1f2

implies fout = λ̄f2. �

2.5. Arithmetic of inner functions.

Definition 2.6. Let Θ1,Θ2 be two inner functions inH2.We say Θ1 divides Θ2 if Θ2

Θ1
∈ H2.

Equivalently, Θ1 divides Θ2 if and only if Θ1H
2 ⊃ Θ2H

2. For this, if Θ2 = ΘΘ1, then Θ

is necessarily inner, and Θ2H
2 = Θ1ΘH2 ⊂ Θ1H

2, since ΘH2 ⊂ H2. On the other hand,

if Θ1H
2 ⊃ Θ2H

2, then we get Θ2 ∈ Θ1H
2 implies Θ = Θ2

Θ1
∈ H2.
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We deduce the following two elementary properties:

Let Θ = gcd{Θ1,Θ2}, the greatest common divisor of Θ1 and Θ2. Then

(i) span {Θ1H
2,Θ2H

2} = ΘH2

(ii) Θ1H
2 ∩Θ2H

2 = Θ̃H2, where Θ̃ = lcm{Θ1,Θ2}.

Proof. (i) ΘkH
2 ⊂ span{Θ1H

2,Θ2H
2} = ΘH2 ; k = 1, 2 for some inner function Θ (by

Beurling’s theorem) implies Θ divides Θk ; k = 1, 2. Let Θ′ be another divisor of Θk : k =

1, 2. Then Θ′H2 ⊃ ΘkH
2, and hence Θ′H2 ⊃ span{ΘkH

2; k = 1, 2} = ΘH2. This implies

Θ′ divides Θ and thus Θ = gcd{Θk; k = 1, 2}. The proof of (ii) is similar to (i). �

Definition 2.7. Let {Θi : i ∈ I} be a family of inner functions.

(i) Θ = gcd{Θi : i ∈ I} if Θ divides each Θi, and Θ is divisible by every other inner

function that divides each Θi.

(ii) Θ = lcm{Θi : i ∈ I} if each Θi divides Θ and Θ divides every other inner function

that is divisible by each Θi

Convention: In case the gcd or the lcm does not exist, we write gcd{Θi : i ∈ I} = 1

and lcm{Θi : i ∈ I} = 0.

Corollary 2.8. span {Θi ∈ H2 : i ∈ I} = ΘH2, where Θ = gcd {Θi : i ∈ I} and

∩ΘiH
2 = Θ̃H2, where Θ̃ = lcm {Θi : i ∈ I}.

Corollary 2.9. Let F be a proper subset of H2. Then span{znF : n ≥ 0} = ΘH2, where

Θ = gcd{finn : f ∈ F \ {0}}, and finn stands for inner factor of f.

Proof. We have span{znF : n ≥ 0} = span{finnH2 : f ∈ F \ {0}}. (By Smirnov’s

theorem). By applying Corollary 2.8 we get the required. �

2.6. Characterization of outer functions.

Theorem 2.10. Let f ∈ H2. Then the followings are equivalent:

(i) f is outer
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(ii) f is a divisor of the space H2, i.e. if g ∈ H2 and g
f
∈ L2, then g

f
∈ H2.

Proof. (ii) =⇒ (i): Let f = finnfout be an inner-outer factorization of f. Then f̄inn =

1
finn

= fout
f
∈ L2 because of finn ∈ H2 ⊂ L2. By (ii), we get f̄inn ∈ H2. But finn ∈ H2

implies f̄inn = λ (constant) with |λ| = 1. Hence f = λ̄fout.

(i) =⇒ (ii): Given f is outer, we have Ef = H2. Since 1 ∈ H2, there exists pn ∈ P+ such

that pnf → 1 in L2. Let g ∈ H2 and h = g
f
∈ L2. Then

(2.1)

∫
T
|png − h| =

∫
T
|pnf − 1||h| ≤ ‖pnf − 1‖2‖h‖2 → 0 asn→∞.

But png ∈ H2, implies (̂png)(k) = 0 if k < 0. Since ϕ 7→ ϕ̂(k) is continuous linear

functional on L1(T) for each k, by (2.1) we get ˆ(h)(k) = 0, ∀ k < 0. Thus, h ∈ H2. �

Corollary 2.11. If two outer functions f1 and f2 verify |f1| = |f2| a.e. on T, then

f1 = λf2 where |λ| = 1.

Proof. Since f2 is outer, f1 ∈ H2, and |f1
f2
| = 1 ∈ L2, by Theorem 2.10 (ii), we get

f1
f2
∈ H2. In the similar way f1

f2
= f2

f1
∈ H2 implies f1

f2
= λ (constant) and hence f1 = λf2

with |λ| = 1. Thus, an outer function is completely defined by its modulus. �

Corollary 2.12. Let w ≥ 0, w ∈ L1(T). If there exists f ∈ H2 such that |f |2 = w a.e.

T, then there exists a unique outer function f0 ∈ H2 such that |f0|2 = w a.e. T.

(Hint: By Smirnov theorem, f = finnfout etc.)

2.7. Szegö infimum and Riesz Brother’s theorem. Here we consider two theorems

in two different settings by using the fact that in an orthogonal complement of the analytic

polynomials P+ the absolute component of a measure is only important.

Theorem 2.13. (Szegö and Kolmogorov) Let µ be a finite Borel measure on T with

Lebesgue decomposition dµ = wdm+ dµs, where w ∈ L1
+(T).

(i) If there does not exist f ∈ H2 such that |f |2 = w a.e. m, then

inf
p∈P0

+

∫
T
|1− p|2dµ = 0.
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(ii) If there exists f ∈ H2 such that |f |2 = w a.e. m, and f is outer, then

inf
p∈P0

+

∫
T
|1− p|2dµ = |f̂(0)|2.

Proof. (ii). We know that the Szegö infimum I will satisfy

I2 = dist2(1, H2
0 (µ)) = dist2(1, H2

0 (µa))

= inf
p∈P0

+

∫
T
|1− p|2wdm.

Given that |f |2 = w a.e. m, and f is outer. Hence

I2 = inf
p∈P0

+

∫
T
|f − pf |2dm.

As f is an outer function, we can verify that span{znf : n ≥ 1} = zH2. Hence I =

distH2(f, zH2). Note that f =
∑
n≥0

f̂(n)zn = f̂(0) + g, where g ∈ zH2. Since f̂(0) ⊥ zH2,

it follows that I = distH2(f̂(0), zH2) = |f̂(0)|.

(i). Now, we consider the invariant space Ea = H2
0 (µa). If zEa 6= Ea, then there exists Θ

such that Ea = ΘH2 with |Θ|2w ≡ 1. But z ∈ Ea and hence z = Θf for some f ∈ H2.

This implies that |f |2 = 1
|Θ|2 = w (since |z| = 1), and this leads to case (ii). Hence,

case (i) is possible only if zEa = Ea. But, then Ea = L2(µa) by Remark 2.2(i). Hence

dist(1, H2
0 (µ)) = 0, since 1 ∈ L2(µa) = H2

0 (µa). �

The above Theorem (Szegö and Kolmogorov) leads to the problem of computing |f̂(0)|2

in terms of w. In order to do this, we have to consider H2 as a space of analytic functions

on the unit disc, which we do later.

Riesz Brother’s result is an important consequence of Helson’s theorem. For that, we

need to recall an important result related to the Radon-Nikodym derivative.

Let |µ| be the total variation measure of a complex-valued Borel measure µ on T, i.e.

|µ|(σ) = sup
{∑

i∈I

|µ(σi)| : {σi}i∈I is a partition ofσ inB(T)
}
.

Suppose µ is absolutely continuous with respect to a positive measure λ on B(T). Then

there exists ϕ ∈ L1(λ) (the Radon-Nikodym derivative of µ with respect to λ) such that

|µ|(σ) =

∫
σ

|ϕ|dλ.
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Theorem 2.14. (Riesz Brother’s, 1916) Let µ be a complex-valued Borel measure on T

such that ∫
T
zndµ = 0, ∀n ≥ 1.

Then µ� m and dµ = h dm, where h ∈ H1 = {f ∈ L1(T) : f̂(k) = 0, k < 0}.

Note that, a measure µ that satisfies
∫
T
z̄ndµ = 0 for n < 0 will be called analytic.

Proof. It is clear that µ � |µ|. Let g ∈ L1(|µ|) be the corresponding Radon-Nikodym

derivative of µ with respect to |µ|. We claim that |g| = 1 a.e. µ. For δ > 0, set σ = {t :

|g(t)| < 1− δ}. Then |µ|(σ) =
∫
σ

|g|d|µ| ≤ (1− δ)|µ|(σ). Implies |µ|(σ) = 0. Similarly, the

case σ′ = {t : |g(t)| > 1 − δ}. This proves the claim. As a consequence of the Corollary

2.1, we get

(2.2) H2
0 (|µ|) = H2(|µ|a)⊕ L2(|µ|s).

But |g| = 1 a.e. |µ| implies ḡ ∈ L2(|µ|), and

〈zn, ḡ〉L2(|µ|) =

∫
T
zngd|µ| =

∫
T
zndµ = 0, n ≥ 1.

In other words, ḡ ⊥ zn, n ≥ 1 in the Hilbert space L2(|µ|), and hence ḡ ⊥ H2
0 (|µ|). In view

of (2.2), we obtain ḡ ⊥ H2
0 (|µ|s). Now, by construction, |g| = 1 a.e. |µ|, which implies

|g| = 1 a.e. |µ|s. This is impossible (since ḡ ⊥ H2
0 (|µ|s)), unless |µ|s = 0. Finally, µ� |µ|

implies

µ(σ) =

∫
σ

gd|µ| =
∫
σ

gd|µ|a =

∫
σ

gwdm

for each σ ∈ B(T). That is, µ� m with Radon-Nikodym derivative h = gw ∈ L1(T), and

ĥ(k) =

∫
T
z̄khdm =

∫
T
z̄kgd|dµ| =

∫
T
z̄kdµ = 0 ifk ≤ −1.

Hence h ∈ H1. �

Question 2.15. *

For g ∈ L1(T), define gf = span{zng : n ≥ 0}|L1(T). Characterize all possible g ∈ L1(T)

such that inf
p∈P 0

+

‖1− p g‖1 = 0.
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3. Canonical factorization of Hp-spaces on disc

In this section, we discuss the canonical factorization of functions in Hp- spaces on the

open unit disc as a product of three factors, namely a Blaschke product, a singular inner

function, and an outer function in its Schwarz-Herglotz representation. This will help us

analyze the questions raised earlier. In particular, Szegö infimum etc.

Let D = {z ∈ C : |z| < 1} and Hol(D) denotes the space of analytic functions on D.

For p > 0, set

Hp(D) =

{
f ∈ Hol(D) : ‖f‖pHp = sup

0≤r<1

∫ 2π

0

|f(reit)|pdt <∞
}
,

and H∞(D) = {f ∈ Hol(D) : ‖f‖H∞ = sup
z∈D
|f(z)| < ∞}. Here dt is the normalized

measure on T.

For p ≥ 1, set Lp = Lp[0, 2π] = (Lp[0, 2π], dt) and Hp = {f ∈ Lp : f̂(k) = 0; k < 0}.

The space Hp(D) and Hp are called Hardy spaces of the disc and Hardy space

respectively. Later on we canonically identify these two spaces as same.

3.1. Straight forward properties:

(i) Hp(D) is a linear space.

(ii) f 7−→ ‖f‖Hp is a norm if p ≥ 1.

(iii) Hp(D) ⊂ Hq(D) if p > q.

(iv) For p = 2, let f ∈ Hol(D), and

f(z) =
∑
n≥0

f̂(n)zn, f̂(n) ∈ C.

By Parseval’s identity∫ 2π

0

|f(reit)|2dt =
∑
n≥0

|f̂(n)|2r2n, 0 ≤ r < 1

and we have

sup
0≤r<1

∫ 2π

0

|f(reit)|2dt =
∑
n≥0

|f̂(n)|2.

Thus, for f ∈ Hol(D), we have f ∈ H2(D) if and only if
∑
n≥0

|f̂(n)|2 <∞.
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3.2. A revisit to Fourier series: The functions in Lp[0, 2π] can be thought of as func-

tions on (0, 2π), which can be extended periodically to real line R.

Lemma 3.1. Let f ∈ L1[0, 2π], g ∈ Lp[0, 2π], 1 ≤ p ≤ ∞. Then

(i) for almost every x ∈ (0, 2π), y 7−→ f(x− y)g(y) is integrable on (0, 2π).

(ii) f ∗ g(x) =
∫ 2π

0
f(x− y)g(y)dy is well defined and belongs to Lp[0, 2π].

(iii) ‖f ∗ g‖p ≤ ‖f‖1‖g‖p.

Proof. Note that (x, y) 7−→ f(x − y)g(y) is measurable, and by Fubini’s theorem |f ∗

g(x)| ≤
∫
|f(x− y)||g(y)|dy <∞ a.e. x. By Minkowski integral inequality,∣∣∣∣∣∣ ∫ f(x− y)g(y)dy

∣∣∣∣∣∣
p
≤
∫
‖f(x− y)g(y)‖pdy = ‖g‖p‖f1‖.

Further, if f ∈ L1(0, 2π) and f̂(n) =
∫ 2π

0
f(t)e−intdt, then (̂f ∗ g)(n) = f̂(n)ĝ(n), when-

ever g ∈ Lp and 1 ≤ p ≤ ∞. (Using Fubini’s theorem) �

3.3. Approximation identity (or good kernel).

(i) If a family (Eα) ⊂ L1 satisfies

(a) sup
α
‖Eα‖1 <∞

(b) lim
α
Êα(n) = 1,

then lim
α
‖f − f ∗ Eα‖p = 0 for f ∈ Lp(1 ≤ p < ∞). This is still true for p = ∞, if

f ∈ C(T).

(ii) If (Eα) ⊂ L1 satisfies

(a) sup
α
‖Eα‖1 <∞

(b) lim
α

∫ 2π

0

Eαdx = 1

(c) lim
α

sup
δ<|x|<π

|Eα(x)| = 0∀ δ > 0.

then conditions of (a) and (b) of (i) is satisfied and we get lim
α
‖f − f ∗ Eα‖p = 0.

3.4. Dirichlet, Fejer and Poisson Kernels: (i) Dirichlet kernel

Dm =
m∑

k=−m

eikt =
sin(m+ 1

2
)t

sin(t/2)
.
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(ii) Fejer kernel

Φn(t) =
1

n+ 1

n∑
m=0

Dm =
n∑

k=−n

(
1− |k|

n+ 1

)
eikt =

1

n+ 1

( sin n+1
2
t

sin(t/2)

)2

.

(iii) Poisson kernel

Pr(t) = P (reit) =
1− r2

|1− reit|2
=
∑
k∈Z

r|k|eikt, 0 ≤ r < 1.

Result: If f ∈ L1, then

(1) f ∗Dm(t) =
m∑

k=−m

f̂(k)eikt = Sm(f ; t) (Partial Fourier series sums of f)

(2) f ∗ Φn(t) =
∑

f̂(j)
(

1 − |j|
n+ 1

)
eijt =

1

n+ 1

n∑
m=0

Sm(f ; t) (Arithmetic mean of

partial sum of Fourier series of f)

(3) f ∗ Pr(t) =
∑
k∈Z

f̂(k)r|k|eikt, 0 ≤ r < 1.

(4) (Φn)n≥1 and (Pr)0≤r<1 are good kernels, and ‖Pr‖1 = ‖Φn‖1 = 1.

(5) Pr ∗ Pr′ = Prr′ for 0 ≤ r, r′ < 1 (semi group property).

Corollary 3.2. If f ∈ Lp, 1 ≤ p <∞, then lim
n→∞

‖f − f ∗Φn‖p = 0. Hence trigonometric

polynomials are dense in Lp. (Hint: This follows from the property of the good kernel.)

The same is true for p =∞, if f ∈ C(T).

Corollary 3.3. If f ∈ L1, f̂(n) = 0, ∀n ∈ Z, then f = 0.

Notations: For f ∈ L1, set fr = f ∗ Pr, 0 ≤ r < 1. For f ∈ Hol(D), we set f(r)(z) =

f(rz), if |z| < 1
r
, 0 ≤ r < 1.

Corollary 3.4. If 0 ≤ r < ρ < 1 and f ∈ Lp, 1 ≤ p < ∞, then lim
r→1
‖f − fr‖p = 0.

Moreover, ‖fr‖p ≤ ‖fρ‖p ≤ ‖f‖p.(Using maximum modulus principle.) If f ∈ Hol(D),

then ‖f(r)‖p ≤ ‖f(ρ)‖p and lim
r→1
‖f(r)‖p ≤ ∞. In fact, lim

r→1
‖f(r)‖p = ‖f‖Hp(D) if f ∈ Hp(D).

(It follows due to Pr is a good kernel.)

3.5. Identification of Hp(D) with Hp(T).

Theorem 3.5. Let 1 ≤ p ≤ ∞,
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(i) If f ∈ Hp(D), then lim
r→1

f(r) = f̃ exists in Lp(T) and f̃ ∈ Hp(T). (For p = ∞, the

limit holds in the weak* topology of L∞(T) i.e. in σ(L∞, L1).)

(ii) f 7−→ f̃ is an isometry.

(iii) f and f̃ are related by f(r) = (f̃)r = f̃ ∗ Pr.

Here the function f̃ is called the boundary limit of function f.

Proof. Let f =
∞∑
n=0

anz
n ∈ Hp(D), then

(3.1) M = sup
0≤r<1

‖f(r)‖p <∞.

(i) For 1 < p <∞, by Banach Alaoglu theorem (3.1) implies that (f(r))0≤r<1 is weakly

relatively compact in Lp(T). Since Lp = (Lp
′
)∗, 1

p
+ 1

p′
= 1 and f(r) ∈ Lp; M =

sup
0≤r<1

‖Λf(r)‖ < ∞, where Λf(r) ∈ (Lp
′
)∗. This gives a limit point f̃ ∈ Lp(T) of

(f(rk))rk→1 in the weak topology of Lp. We claim that the convergence takes place

in Lp. As the functional φ 7−→ φ̂(n) is continuous on Lp, for ε > 0, 0 < r < 1, ∃ rk

with r < rk < 1 such that |f̂(r)(n)− ˆ̃f(n)| < ε. Note that

‖f(r) − f̃‖p ≤ ‖f(r) − f(rk)‖p + ‖f(rk) − f̃‖p → 0 asr → 1.

if we suppose f(rk) → f̃ in Lp. But then f̂(r)(n) = anr
n → an, n ∈ Z with an = 0 if

n < 0. Hence an = (̂f̃)(n) implies f ∈ Hp(T).

We deduce that f̃ does not depends on (rk)k≥1 and for ξ ∈ T,

(3.2) (f̃ ∗ Pr)(ξ) =
∑

anr
kξn =

∑
(̂f̃)(n)r|n|ξn = f(r)(ξ).

Now, by property of good kernel Pr we get

‖f(r) − f̃‖p = ‖(f̃)r − f̃‖p → 0 asr → 1.

That is f(r) → f̃ in Lp.

For p =∞, the similar reasoning gives the convergence f(r) = (f̃)r → f̃ in weak*

topology of L∞.

Case p = 1 : The space L1(T) can be regarded as a subspace of M(T), the space

of all complex measures on T. As M(T) = C(T)∗, by Banach Alaoglu theorem, the

balls of M(T) are weak∗ relatively compact.
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We again get the existence of limit f̃ ∈ M(T) as lim
r→1

f(r) = f̃ , but this is weak*

limit in M(T). That is,
∫
f(r)g →

∫
f̃ g, g ∈ C(T). As before take g(t) = e−int, then

(̂f̃)(n) = µ̂(n) = lim
r→1

f̂(r)(n), n ∈ Z, and hence µ̂(n) = 0 if n < 0. By Riesz Brother’s

theorem we get µ << m, and the corresponding Radon Nikodym derivative of µ

with respect to m is equal to f̃ ∈ H1. Using the same argument as in the beginning

of the proof, we get (̂f̃)(n) = an, n ≥ 0, fr = (f̃)r. Hence

lim
r→1
‖f̃ − f(r)‖1 = ‖f̃ − (f̃)r‖1 → 0

because fr → f in Lp for 1 ≤ p <∞.

(ii) Let us first consider the case p <∞. Since f̃ = lim
r→1

f(r), we get

‖f̃‖p = lim
r→1
‖f(r)‖p = ‖f‖Hp(D).

For p =∞, observe that as f̃ is weak* limit of f(r), we get

‖f̃‖∞ ≤ lim inf
r→1

‖f(r)‖∞ = ‖f‖H∞(D).

On the other hand f(r) = f̃ ∗ Pr, we get

lim sup
r→1

‖f(r)‖∞ ≤ ‖f̃‖∞.

Hence, we conclude that ‖f‖H∞(D) = ‖f̃‖H∞(T) = ‖f̃‖∞.

(iii) has been given in (3.1).

�

Convention: Thus, in view of Theorem 3.5, we can identify f ∈ Hp(D) and its boundary

limit f̃ by

f(r) = fr = f ∗ Pr and f =
∑
n≥0

f̂(n)zn.

Now, f̂(n) represents Fourier coefficient of f̃ at n and Taylor’s coefficient as well.

Corollary 3.6. For ξ ∈ D, f 7−→ f(ξ) is a continuous linear functional on H1 (and

hence on Hp, 1 ≤ p <∞).

Proof. Let f̃ be the boundary limit of f ∈ H1(D). Write ξ = reit, 0 ≤ r < 1. Then

f̃ ∗ Pr(eit) =
∑ ˆ̃f(n)eintr|n| =

∑
ane

intrn = f(r)(e
int) = f(reint) = f(ξ).
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Thus |f(ξ)| ≤ ‖f̃‖1‖Pr‖∞ ≤ ‖f̃‖1
1 + |ξ|
1− |ξ|

. �

Remark 3.7. If f̃n → f̃ in Hp, 1 ≤ p < ∞, then fn → f uniformity on compact sets in

D.

3.6. Jensen’s formula and Jensen’s inequality:

Lemma 3.8. Let f ∈ H1 with f̂(0) 6= 0(because f(0) = f̂(0)) and let λn be the sequence

of zeroes of f in D counted with multiplicity. Then

log |f(0)|+
∑
n≥1

log
1

|λn|
≤
∫
T

log |f(t)|dm(t).

If f ∈ Hol(D1+ε), then

log |f(0)|+
∑
n≥1

log
1

|λn|
=

∫
T

log |f(t)|dm(t).

Proof. First we consider f ∈ Hol(D1+ε). Let us assume that Z(f) ∩ T = ∅, i.e. f has

no zeroes on T. Then Z(f) ∩ D=finite={λ1, λ2, . . . , λn}. Set B(z) =
n∏
j=1

|λj |
λj

(λj−z)
(1−λ̄jz)

. For

Bλ(z) = |λ|
λ

(λ−z)
(1−λ̄z) , it is easy to see that

|Bλ(z)|2 = 1− (1− |λ|2)(1− |z|2)

|1− λ̄z|2
.

Thus we set |B| = 1 on T, and f/B is a zero free holomorphic function on D1+δ for some

δ > 0. Hence, log |f/B| is a harmonic function on D1+δ and allow to apply MVT (because

log g(z) = log |g(z)|+ i arg(g(z)), if g(z) 6= 0) and we get

log |(f/B)(0)| =
∫
T

log |f/B|dm =

∫
T

log |f |dm.

As log |(f/B)(0)| = log |(f)(0)|+
∞∑
j=1

log |λj|−1, we get the desired formula.

For f having zero on T, we consider fr, 0 ≤ r < 1. Choose r such that fr has no zero

on T. In view of the previous case, we get

(3.3) log |f(0)|+
∑
|λn|≤r

log
r

|λn|
=

∫
T

log |fr|dm(t)

Now, f is analytic in D1+ε, so f has finite number of zeros on T. Let Z(f) ∩ T = {ξj :

j = 1, 2, . . . , k}. Then in the neighborhood of each ξj, we have

log |f(rξ)| ≤ C log |ξ − ξj|−1, ∀ r; 0 ≤ r < 1,
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where C depends upon multiplicities of zeroes of ξj. (Hint: f(rξ) = (rξ − ξj)ng(rξ), and

easy to see that 1
2
|ξ − ξj| ≤ |rξ − ξj| etc.) As log |ξ − ξj|−1 is integrable, we may pass to

limit in (3.3).

The general case: Let f ∈ H1 and f(0) 6= 0. In order to pass limit in (3.3), note that

| log x− log y| ≤ Cε|x− y|, if x, y > ε. Hence

| log(|fr|+ ε)− log(|f |+ ε)| ≤ Cε||fr| − |f || onT and

log(|fr|+ ε)→ log(|f |+ ε) inL1(T) asr → 1.

But from (3.3)

(3.4) log |f(0)|+
∑
|λn|≤r

log
r

|λn|
≤
∫
T

log(|fr|+ ε)dm(t).

As LHS in (3.4) is increasing in r and RHS is convergent, we obtain

log |f(0)|+
∑
n≥1

log
1

|λn|
≤
∫
T

log(|f |+ ε)dm

for each ε > 0. This completes the proof. �

Remark 3.9. (Generalized Jensen’s inequality)

Let g ∈ H1, g 6≡ 0, and |ξ| < 1. Then

(3.5) log |g(ξ)| ≤
∫

1− |ξ|2

|ξ − t|2
log |g(t)|dm(t).

Indeed, to begin with, we may assume that g ∈ Hol(D1+ε). Apply the previous result

to the function

f(z) = g
( ξ − z

1− ξ̄z

)
,

and remark that Jacobian of this change of variable is 1−|ξ|2
|ξ−z| . (Hint: Put s = ξ−t

1−ξ̄t etc.)

3.7. The boundary uniqueness theorem:

Corollary 3.10. If g ∈ H1, g 6≡ 0, then log |g| ∈ L1(T). In particular, if g ∈ H1 and

m{t ∈ T : g(t) = 0} > 0, then g ≡ 0.

Proof. Indeed, g ∈ H1 may be expanded in its Taylor’s series (when realized on disc D)

as g =
∑

k≥n ĝ(k)zk, where ĝ(n) 6= 0, and n ≥ 0 is the multiplicity of the zero at z = 0.
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By applying Jensen’s inequality to function f = g/zn, we get∫
T

log |g|dm =

∫
T

log |f |dm > −∞.

Since, log x < x if x > 0, we also have∫
T

log |g|dm ≤
∫
T
|g|dm <∞.

Hence, log |g| ∈ L1(T). It is clear that ifm{t ∈ T : g(t) = 0} > 0, then
∫
T log |g|dm = −∞,

which is possible only if g ≡ 0. �

Remark 3.11. Recall that we have seen the second statement of the above corollary for

f ∈ H2 using a completely different approach.

3.8. Blaschke Product.

Lemma 3.12. (Blaschke condition, interior uniqueness theorem) Suppose f ∈ Hol(D), f 6≡

0, and let (λn)n≥1 be the zero sequence of f in D, where each zero is repeated according to

its multiplicity. Suppose that

lim inf
r→1

∫
T

log |fr|dm <∞,

then
∑

n≥1(1− |λn|) <∞. In particular, this holds whenever f ∈ Hp(D), p > 0.

Remark 3.13. The condition
∑
n≥1

(1− |λn|) <∞ is called Blaschke condition.

Proof. Without loss of generality, we can assume that f(0) 6= 0. But then Jensen’s formula

gives ∑
n≥1

log
1

|λn|
= lim inf

r→1

∑
|λn|≤r

log
r

|λn|
<∞

As |λn| → 1, we have log
(

1
|λn|

)
∼ (1 − |λn|), and hence the desired conclusion followed.

The Hp(D) case is a consequence of the obvious estimate log x < Cpx
p for x > 0, p > 0,

because

lim inf
r→1

∫
T

log |fr| ≤ lim inf
r→1

∫
T
Cp|fr|p <∞.

�
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For λ ∈ D, we define Blaschke factor by

bλ(z) =
|λ|
λ

(λ− z)

(1− λ̄z)
.

(i) If we assume the normalization bλ
(
− λ
|λ|

)
= 1, then for λ = 0, we can define b0(z) = z.

(ii) Zero set Z(bλ) = {λ}, bλ ∈Hol(C \ { 1
λ̄
}), |bλ| ≤ 1 on D and |bλ| = 1 on T.

Lemma 3.14. If (λn)n≥1 ∈ D satisfies the Blaschke condition
∑
n≥1

(1 − |λn|) < ∞, then

the infinite product

B =
∏
n≥1

bλn = lim
r→1

∏
|λn|<r

bλn

converges uniformly on compact subsets of D and even on compact subsets of C\clos{ 1
λ̄n
}n≥1.

Moreover, |B| ≤ 1 in D, |B| = 1 a.e. on T, and Z(B) = (λn)n≥1 (counting multiplicity).

Proof. Set Br =
∏
|λn|<r

bλn . Then for 0 ≤ r < R < 1, we have

‖BR −Br‖2
2 = 2− 2 Re(BR, Br)

= 2− 2 Re

∫
BRB̄rdm

= 2− 2 Re

∫
BR

Br
dm ( because|Br| = 1 onT).

So by MVT for holomorphic function BR

Br
we get

‖BR −Br‖2
2 = 2− 2 Re

(BR

Br

)
(0) = 2− 2

∏
r≤|λn|<R

|λn|.

By Blaschke condition
∑
n≥1

log |λn|−1 <∞, the product∏
n≥1

|λn|

converges, which implies lim
r→1

∏
r≤|λn|<R

|λn| = 1. This shows that (Br) is a Cauchy sequence

in H2 ⊂ L2 for every r = rk → 1. So we deduce the existence of B = lim
r→1

Br. Moreover,

|B| = 1 a.e. on T because |Br| = 1 on T, and B ∈ H2. As the point evaluation is

continuous linear functional on H2, the limit limr→1B
r(λ) = B(λ) exists uniformly on

compact subsets of D, and hence |B(λ)| ≤ 1, λ ∈ D. Using B
Br
→ 1 in H2 (easy to see),
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we get B
Br
→ 1 uniformly on compact subsets of D as r → 1 and

(3.6) lim
r→1

( B
Br

)
(λ) = 1.

This shows that B(λ) = 0, |λ| < 1 if and only if λ = λn for some n ≥ 1 (counting

multiplicity). If λ 6= λn and B(λ) = 0, then (3.6) will fail.

In order to prove convergence on compact subsets of C r clos{ 1
λ̄n
}n≥1, the following

observation is enough.

|bλn − 1| = (|1− |λn|)(λn + |λn|z)

λ(1− λ̄z)
≤ (1− |λn|)(1 + |z|)

|λn|
∣∣z − 1

λ̄n

∣∣ ≤ c
1− |λ|

dist(z,N)
,

where N = clos{ 1
λ̄n

: n ≥ 1}. �

Corollary 3.15. Let f ∈ Hp(D), p > 0 with corresponding zero sequence (λn)n≥1. Then

there exists g ∈ Hp(D) with g(ξ) 6= 0, ∀ ξ ∈ D such that f = Bg and ‖f‖p = ‖g‖p on

Lp(T).

This may be thought as the Blaschke filtering of the holomorphic functions.

Proof. Take Br =
∏
|λn|<r

bλn , 0 < r < 1. Clearly, f
Br
∈Hol(D) and for ρ → 1, we get

|Br(ρξ)| → 1 uniformly on T. Hence,∣∣∣∣∣∣ f
Br

∣∣∣∣∣∣p
p

= lim
ρ→1

∫
T

∣∣∣ f
Br

(ρξ)
∣∣∣pdm(ξ) = ‖f‖pp.

And thus by definition of Hp(D),(∫
T

∣∣∣ f
Br

(ρξ)
∣∣∣pdm(ξ)

) 1
p ≤ ‖f‖p for every 0 ≤ ρ < 1.

Fix ρ, set g = f
B
, and letting r → 1, we obtain(∫

T

∣∣∣g(ρξ)
∣∣∣pdm(ξ)

) 1
p ≤ ‖f‖p,

and hence ‖g‖p ≤ ‖f‖p. The other inequality follows from g = f
B
. �

Question 3.16. * Is it possible to replace log | · | in Jensen’s inequality with some suitable

increasing function?

Remark 3.17. It is useful to introduce the notion of the zero divisor (or multiplicity

function) of a holomorphic function. For f ∈ Hol(Ω), Ω ⊂ C, f 6≡ 0, λ ∈ Ω, set
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df (λ) =


0 iff(λ) 6= 0

m iff(λ) = · · · = f (m−1)(λ) = 0 andfm(λ) 6= 0.

The value of df (λ) is called zero multiplicity of λ. We can redefine the Blaschke condition.

The zero divisor of f ∈ Hol(D) verifies the Blaschke condition if and only if∑
λ∈D

df (λ)(1− |λ|) <∞.

The corresponding Blaschke product is given by∏
λ∈D

b
df (λ)

λ =
∏
n≥1

b
df (λn)

λn
.

Corollary 3.18. Let f ∈ Hp, p > 0 then there exists fk ∈ Hp ; k = 1, 2 such that

f = f1 + f2, ‖fk‖p ≤ ‖f‖p, and fk(z) 6= 0 for z ∈ D

Indeed, we have f = Bg, and set f1 = 1
2
(1−B)g, f2 = 1

2
(1 +B)g.

3.9. Non-tangential boundary limits. Recall that we have identified boundary limit

f̃ of f ∈ Hp(D) via

lim
r→1
‖fr − f̃‖p = 0, f̃ ∈ Hp, 1 ≤ p <∞.

We shall see another convergence of f(z) to its boundary values, namely the so-called

non-tangential convergence a.e. on T for f ∈ Hp(D) with 0 < p ≤ ∞.

Let µ be a complex valued Borel measure on T and µ ∈ M(T). Let dµ = hdm + dµs,

h ∈ L1(m) be Lebesgue decomposition of µ with respect to m. Then the derivative of µ

with respect to m exists at almost every point ξ ∈ T, in the following sense.

lim
∆→ξ, ξ∈∆

µ(∆)

m(∆)
=
dµ(ξ)

dm
(= h(ξ)),

where ∆ is an arc on T tending to ξ. Such a point will be called Lebesgue point of µ.

Note that the Poisson kernel satisfies P (reit) =
1− r2

|1− reit|2
. For f ∈ Lp(T) (1 ≤ p < ∞),

we have

Pr ∗ f(eit) =

∫
T

1− r2

|1− rei(t−s)|2
f(eis)dm(eis)

=

∫
T

1− |z|2

|ζ − z|2
f(ζ)dm(ζ) (putz = reit, ζ = eis)

= f ∗ P (z) (write).
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That is, Pr ∗ f(eit) = f ∗ P (z), where z = reit. We see one of the most important result

about non-tangential limit.

Theorem 3.19. (P. Fatou’s, 1996 ) Let µ ∈ M(T) and ξ ∈ T be a Lebesgue point of µ,

then Poisson integral of µ

f(z) = P ∗ µ(z) =

∫
1− |z|2

|ζ − z|2
dµ(ζ)

has a non-tangential limit at ξ, and equal to dµ
dm

(ξ). In other words, if Sξ is an angular

sector centered at ξ with bisector [0, ξ] and opening angle less than π, then

lim
z→ξ,z∈Sξ

f(z) =
dµ

dm
(ξ) a.e. on T.

In particular, lim
r→1

f(rξ) =
dµ

dm
(ξ) on T. Sξ is so-called Stolz angle at ξ.

Proof. We know that Sξ = {z ∈ D : |z − ξ| ≤ c(1 − |z|)}. Without loss of generality,

we may suppose that µ(T) = 0 (just replace µ by µ − cm), and by rotation, assume

ξ = 1. Then there exists a left continuous function F on [−π, π] of the bounded variation

such that µ[eiα, eiβ) = F (β) − F (α), and F (−π) = F (π) (because µ(T) = 0). Writing

f(z) =
∫ π
−π P (ze−it)dF (t), z ∈ D and integrating by parts, we get

(3.7)

f(z) = −
∫ π

−π

dP (ze−it)

dt
F (t)dt = −

∫ π

−π
kz(t)

F (t)

t
dt =

∫ π

−π
kz(t)2π

F (t)− F (−t)
2t

dt

2π
,

where kz(t) = −tdP
dt

(ze−it). Then the family {kz}z∈S1 is a good kernel.
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(i) Set z = reiτ , |τ | ≤ π, 0 ≤ r < 1. Then we have

||kz||1 =

∫ π

−π

∣∣∣tdP (ze−it)

dt

∣∣∣dt
≤

∫ τ+π

τ−π
(|τ |+ |s|)

∣∣∣dP (ze−is)

ds

∣∣∣ds, (put s = τ − t)

≤ C1
|τ |

1− r
+ C2 +

∫ π

−π

∣∣∣sdP (re−is)

ds

∣∣∣ds
= C1

|τ |
1− r

+ C2 −
∫ π

−π
s
dP (re−is)

ds
ds

≤ C1
|τ |

1− r
+ C2 −

1

2π

[
sP (re−is)

]π
−π +

∫ π

−π
sP (re−is)ds

≤ const,

as the quantity |τ |
1−r is uniformly bounded in S1.

(ii) Again by partial integration, we get

lim
z→1,z∈S1

∫ π

−π
kz(t)

dt

2π
= lim

z→1,z∈S1

(1− P (−reiτ )) = 1.

(iii) By straightforward calculation, we get

kz(t) = 2rt
sin(τ − t)

1− 2r cos(τ − t) + r2
P (rei(τ−t))→ 0

uniformly on δ < |t| < π, whenever δ > 0.

From (3.7) and (ii), for fixed δ > 0, as z → 1, z ∈ S1,

f(z) =
dµ

dm
(1) +

∫ π

−π
k2(t)

(
2π
F (t)− F (−t)

2t
− dµ

dm
(1)
) dt

2π
+ o(1)

=
dµ

dm
(1) +

∫ −δ
−π

+

∫ π

δ

+

∫ δ

−δ
+o(1),

where the latter integral is arbitrarily small for small δ (in view of (i) and

∆(t) = 2π
F (t)− F (−t)

2t
− dµ

dm
(1) = o(1)),

and the two former tend to zero as z → 1 in S1, for every fixed δ > 0 (in view of (iii) and

boundedness of ∆(t).) �

Corollary 3.20. If f ∈ Hp(D), 0 < p ≤ ∞, then the non-tangential boundary limits of f

exist a.e. on T. That is,

lim
z→ξ,z∈Sξ

f(z) = f̃(ξ) for a.e.ξ ∈ T.
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The boundary function ξ 7→ f(ξ) is in Lp(T), and for p ≥ 1, f(ξ) = f̃(ξ) a.e. on T.

Proof. For p ≥ 1, the claim follows from (3.7) and the identification theorem (because

radial limit exists). Note that for f ∈ Lp (1 ≤ p <∞) and dµ = fdm, we have

P ∗ µ(z) =

∫
T

1− |z|2

|ζ − z|2
f(ζ)dm(ξ)

= Pr ∗ f(eit) (letz = rξ)

= f(r)(e
it) = f(rξ)→ f(ξ) as r → 1

in Lp(T). Hence, there exists (rk) such that P ∗ µ(z) → f̃(ξ) as rk → 1 for a.e. ξ ∈ T.

And by Fatou’s theorem, limz→ξ,z∈Sξ f(z) = f̃(ξ) for a.e.ξ ∈ T. Hence f(ξ) = f̃(ξ) for

a.e. ξ ∈ T.

For general case, we know that f = Bg = B(g1/p)p, where g ∈ Hp(D). This implies

g1/p ∈ H1(D). The result follows from the previous reasoning. �

Notation: From now onward, we identify the functions f ∈ Hp(D) with their boundary

values on T, and write Hp(D) = Hp(T), 0 < p ≤ ∞, where Hp(T) is the collection of

boundary functions of Hp(D).

3.10. The Riesz - Smirnov canonical factorization. Here we see the main result

of the Hardy space theory - a parametric representation of f ∈ Hp as a product of

Blaschke product, a singular inner function, an outer (maximal) function. The last two

functions are exponential of integral depending on the holomorphic Schwarz - Herglotz

kernel z → ζ+z
ζ−z , whose real part is the Poisson kernel.

Theorem 3.21. Let f ∈ Lp, 0 < p ≤ ∞ be such that log |f | ∈ L1, and define

[f ](z) = exp

(∫
T

ζ + z

ζ − z
log |f(ζ)|dm(ζ)

)
, |z| < 1.

Then

(i) [f ] ∈ Hp(D) and |[f ]| = |f | a.e. on T.

(ii) If 0 6≡ g ∈ Hq(D), q ≥ 1, and |g| ≤ |f | a.e. on T, then |g| ≤ |[f ]| on D (and hence

g ∈ Hp(D)).
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(iii)
[
f
g

]
= [f ]

[g]
and [[f ]] = [f ].

Proof. (i) Clearly, [f ] is a holomorphic function (D). Recall that for a finite Borel mea-

sure µ and a convex function ψ, we have the Jensen-Young geometric mean inequality

(3.8)

∫
ψ ◦ F dµ∫

dµ
≥ ψ

(∫ Fdµ∫
dµ

)
.

[ Proof Let F : (Ω, µ) → I ⊂ R (I is finite or infinite interval), set ν = µ∫
dµ
. Let

A = {h : h(x) = ax+ b; h ≤ ψ on I}. Then h
( ∫

Fdν
)

=
∫
h ◦Fdν ≤

∫
ψ ◦Fdν. We

get the inequality since ψ(x) = sup{h(x) : h ∈ A}.] By apply inequality (3.8) to the

Borel measure dµ = 1−|z|2
|ζ−z|2 dm(ζ), we get

|[f ]|p = exp
(∫

T

1− |z|2

|ζ − z|2
log |f(ζ)|pdm(ζ)

)
≤
∫
T
|f(ζ)|p 1− |z|2

|ζ − z|2
dm(ζ).

Set z = reit. By Fubini’s theorem, we get∫ 2π

0

∣∣∣[f ](reit)
∣∣∣p dt

2π
≤
∫
T
|f(ζ)|p

(∫ 2π

0

1− |z|2

|ζ − z|2
dt

2π

)
dm(ζ) = ||f ||pp.

Now, by Fatou’s theorem and its corollary there, we have

|[f ](ξ)| = lim
r→1

log |[f ](rξ)| = log |f(ξ)| a.e.ξ on T.

The modifications in the case p =∞ are obvious.

(ii) Given that 0 6≡ g ∈ Hq(D), q ≥ 1, and |g| ≤ |f | a.e. on T. This implies log |g| ∈ L1,

and hence by generalized Jenson’s inequality (3.5), we get

log |g(z)| ≤
∫
T

1− |z|2

|ζ − z|2
log |g(ζ)|dm(ζ)

≤
∫
T

1− |z|2

|ζ − z|2
log |f(ζ)|dm(ζ)

= log |[f ](z)|.

(iii) is a direct consequence of the definition.

�

The following result ensures the existence of enough harmonic functions as Poisson

integrals of finite Borel measures.
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Theorem 3.22. (G. Herglotz, 1911 ) Let u be a non-negative harmonic function on D.

Then there exists a unique finite Borel measure µ ≥ 0 such that u = P ∗ µ, that is

u(z) =

∫
T

1− |z|2

|ζ − z|2
dµ(ζ).

Proof. By MVT we have for all z in D

ur(z) =

∫
T

1− |z|2

|ζ − z|2
ur(ζ)dm(ζ) =

∫
T

1− |z|2

|ζ − z|2
dµr(ζ),

where we have set ur(z) = u(rz), 0 ≤ r < 1, and dµr = urdm. Then µr is a positive

measure and Var(µr) = µr(T) = ur(0) = u(0) < ∞. Thus, the family (ur)0≤r<1 is

uniformly bounded in M(T), and has week∗ convergent subsequence µrn that converges

to µ ∈ M(T). Recall that M(T) is dual of C(T)∗ with the duality < f, µ >=
∫
T
fdµ.

Thus, if f ∈ C(T), f ≥ 0, then∫
T
fdµ = lim

n→∞

∫
T
furndm ≥ 0 =⇒ µ ≥ 0.

Moreover, since u is continuous on D, for z ∈ D, we have

u(z) = lim
n→∞

u(rnz) = lim
n→∞

∫
1− |z|2

|ζ − z|2
dµrn(ζ) =

∫
T

1− |z|2

|ζ − z|2
dµ(ζ).

Uniqueness of µ: Note that P ∗µ(reit) =
∑
n∈Z

r|n|µ̂(n)eint. For any ν such that P ∗µ = P ∗ν

implies µ̂(n) = ν̂(n). Hence, µ = ν. �

Theorem 3.23. (Singular inner function): Let S ∈ Hol(D), then the following are equiv-

alent:

(i) |S(z)| ≤ 1 and S(z) 6= 0 on D, S(0) > 0 and |S(ξ)| = 1 a.e. on T.

(ii) there exists a unique finite Borel measure µ ≥ 0 on T with µ ⊥ m such that

S(z) = exp

(
−
∫
T

ζ + z

ζ − z
dµ(ζ)

)
, z ∈ D.

Proof. (ii) implies (i) is a corollary of Fatou’s theorem (because of S ∈ H∞(D) by (ii)).

For (i) implies (ii), let u = log |S|−1, then by Herglotz theorem, there exists µ such that

log |S(z)|−1 =

∫
T

1− |z|2

|ζ − z|2
dµ(ζ).

Once again by Fatou’s theorem (and |S(ξ)| = 1 a.e. on T), we get
dµ

dm
(ξ) = lim

r→1
u(rξ) = 0 a.e. onT.

Hence µ ⊥ m. �
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Definition 3.24. A function S verifying (i) or (ii) of the preceding theorem is called a

singular inner function.

Theorem 3.25. (F. Riesz, V. Smirnov) Let f ∈ Hp(D), p > 0. Then there exists a

unique factorization f = λBS[f ], where λ ∈ C, |λ| = 1, B, S and [f ] are defined earlier.

Proof. Set g = f
B
. Then |f | = |g| a.e. on T, and hence [g] = [f ]. Set λ = g(0)

[g](0)
and

S = g
λ[g]
. Then f = Bg = BλS[g] = λBS[f ]. As B and [f ] are uniquely defined for f, the

uniqueness of factorization follows. �

Next, we consider the structure of the outer functions in Hp.

Theorem 3.26. (Structure of outer function) Let p, q, r ≥ 1 and f ∈ Hp. Then the

following are equivalent.

(i) There exists λ ∈ C, |λ| = 1 such that f = λ[f ].

(ii) for all z ∈ D, the generalized Jensen inequality is equality:

(3.9) log |f(z)| =
∫
T
P (zξ̄) log |f(ξ)|dm(ξ).

(iii) Identity (3.9) holds for at least one z ∈ D.

(iv) If g ∈ Hq and g
f
∈ Lr, then g

f
∈ Hr (integral maximal principle).

If p = 2, then (i)-(iv) are equivalent to

(v) the function f is outer in H2(in the earlier sense i.e., Ef = H2).

Proof. (i) implies (ii) is followed from the definition of [f ]. The implication (iii) goes to

(ii) is trivial. For (iii) implies (i), suppose (3.9) holds for some zo ∈ D. By Riesz-Smirnov

factorization theorem, we have f = λBS[f ], and by (3.9), we get

|f(zo)| = |λB(zo)S(zo)[f ](zo)| =⇒ |B(zo)S(zo)| = 1 =⇒ |B(zo)| = |S(zo)| = 1.

By maximum principle, B = S =constant= 1 in D, implies f = λ[f ].

(i) implies (iv): If g ∈ Hq, then g = λ1BS[g] and we get g
f

= λ1BS[g]
(λ[f ])

=
(
λ1
λ

)
BS
[
g
f

]
∈ Hr

in view of Riesz-Smirnov theorem and by the hypothesis that g/f ∈ Lr.
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(iv) =⇒ (i): Let f = λBS[f ] and set g = min(|f |, 1). Then [g] ∈ H∞ and
∣∣ [g]
f

∣∣ ≤ 1 a.e.

on T. By (iv) we get [g]
f
∈ Hr (r arbitrary). Again, we have [g]

f
= λ1B1S1

[
g
f

]
= λ1B1S1

[g]
[f ]

(because [[g]] = [g] and
[
g
f

]
= [g]

[f ]
), we get 1 ≡ λλ1BB1SS1 = λ2B2S2 with |λ2| = 1,

where B2 is a Blaschke product and S2 is a singular inner function. As |B2(z)| ≤ 1 and

|S2(z)| ≤ 1 for all z ∈ D, we get |B2| = |S2| ≡ 1 and hence B2 ≡ S2 ≡ 1. Thus, we

conclude that B = S = 1, implies f = λ[f ].

It remains to show that (iv) and (v) are equivalent if p = 2. As (i)-(iii) are independent

of choice of q and r, we get equivalence between (iv) as well with p = 2, and arbitrary

q, r and with p = q = r = 2, (iv) is just earlier characterization of the outer function on

H2. �

Definition 3.27. Let f ∈ Hp, p > 0. The function [f ] is called the outer part of f, and

λBS is called the inner part of f.

Notation: We write [f ] = fout and λBS = finn. If f = λ[f ], then f is called outer.

It is clear from the above theorem that if p = 2, then definition of inner and outer

functions coincide with previous ones.

Corollary 3.28. Let w ∈ L1
+(T), and p ≥ 1. The followings are equivalent.

(i) There exists f ∈ Hp, f 6≡ 0 such that |f |p = w a.e. on T.

(ii) logw ∈ L1.

Proof. As Hp ⊂ H1, (i) implies (ii) follows from the boundary uniqueness theorem and

(ii) implies (i) follows by taking f = [w1/p]. Since

f(z) = exp

(∫
T
P (zξ̄) log |w(ξ)|1/pdm(ξ)

)
,

by Theorem 3.5, f ∈ Hp(D) because

|f(z)|p = exp

(∫
T
P (zξ̄) log |w(ξ)|dm(ξ)

)
.

By Fatou’s theorem, we get |f |p = w a.e. on T. �
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3.11. Approximation by inner functions and Blaschke products. Using Fatou’s

theorem, we prove two important theorems on uniform approximation by inner functions.

Theorem 3.29. (R. Douglas and W. Rudin, 1969 ) Let Σ be the set of all inner functions.

Then

(3.10) L∞(T) = closL∞
(
Θ̄H∞ : Θ ∈ Σ

)
= spanL∞

(
Θ̄1Θ2 : Θ1,Θ2 ∈ Σ

)
.

Moreover, any unimodular function in L∞(T) belongs to closL∞(Π)
(
Θ̄1Θ2 : Θ1,Θ2 ∈ Σ

)
.

Proof. It is enough to show that χσ ∈ spanL∞
(
Θ̄1Θ2 : Θ1,Θ2 ∈ Σ

)
for every Borel mea-

surable set σ in T. Let

fn =
[
nχσ +

1

n
χTrσ

]
, n = 2, 3, . . .

and An = {z ∈ C : 1
n
< |z| < n}. It is clear that fn(D) ⊂ An (by maximum principle)

and fn(T) ⊂ ∂An. Now, let φ1(ζ) = ζ + 1
ζ

for ζ ∈ C r {0}, and w : φ1(An) → D be a

conformal (Riemann) mapping of the ellipse φ1(An) onto D. Since the boundary of ellipse

is smooth, w can be continuously extended to closφ1(An), and hence

w ◦ φ1 ◦ fn = θ1

is an inner function (because θ1 ∈ H∞(D), and by Fatou’s theorem |θ1| = 1 a.e. on T).

Since w−1 is continuous on clos(D), it can be approximated by its Fejer polynomials.

Therefore,

fn +
1

fn
= φ1 ◦ fn = w−1 ◦ θ1 ∈ spanL∞ (θn1 : n ≥ 0) .

Doing the same for the function φ2(ζ) = ζ − 1
ζ
, we get an inner function θ2 such that

fn − 1
fn
∈ spanL∞ (θn2 : n ≥ 0) . Hence fn ∈ spanL∞{θk1θn2 : k, n ≥ 0}, implies

|fn|2 ∈ spanL∞
(
θk1θ

n
2 θ
−l
1 θ
−m
2 : k, n, l,m ≥ 0

)
.

Thus,

χσ +
1

n4
χTrσ ∈ spanL∞

(
Θ̄1Θ2 : Θ1,Θ2 ∈ Σ

)
, forn = 1, 2, . . . .

Letting n→∞, we get χσ ∈ spanL∞
(
Θ̄1Θ2 : Θ1, Θ2 ∈ Σ

)
.

Let u ∈ L∞(T), and |u| = 1 a.e. and u1 ∈ L∞(T) with |u1| = 1 a.e. and u = u2
1. Given

ε > 0, by (3.10) there exists ϕ,Θj ∈ Σ such that |u1−ϕ̄g| < ε, where g =
n∑
j=1

ajΘj, aj ∈ C.
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Set Θ =
∏n

j=1 Θj, and observe that ḡΘ ∈ H∞. Since [ḡΘ] = [g] (because |ḡΘ| = |ḡ|), the

inner-outer factorizations of g and ḡΘ are of the form ḡΘ = v[g] and g = w[g], where

v, w ∈ Σ, and 1− ε < |[g]| < 1 + ε. Now, |ū1 − ϕḡ| = |ū1 − ϕΘ̄v[g]| < ε gives∣∣∣ 1

ū1

− 1

φΘ̄v[g]

∣∣∣ < ε

1− ε
.

Since |u1− a| < ε and |u1− b| < ε implies that |u2
1− ab| ≤ |u1− a|+ |a||u1− b|, we obtain∣∣∣u− φ̄w[g]φ̄Θv̄

1

[g]

∣∣∣ < 2ε

1− ε
,

which completes the proof. �

Theorem 3.30. (O. Frostman, 1935 ) Let Θ be a (non-constant) inner function and

ζ ∈ T. Then btζ ◦ Θ are Blaschke products with simple zeros for a.e. t ∈ (0, 1), where

bλ(z) = λ−z
1−λ̄z , λ ∈ D. In particular, Θ is a uniform limit of Blaschke products with simple

zeros.

Proof. Let ζ = 1. Then Θ̃t = bt ◦ Θ is an inner function for all t ∈ [0, 1) (by definition

of bt and Θ), and it has factorization Θ̃t = λBS[Θ̃t]. Let µt be the singular measure

corresponding S. Then by Jensen formula (and expression of S and S ∈ H∞ with ‖S‖∞ ≤

1), we get

µt(T) = log |S(0)|−1 =

∫
T

log |S(rξ)|−1dm(ξ) ≤
∫
T

log |Θ̃t(rξ))|−1dm(ξ) = g(r, t),

for all t, r ∈ [0, 1). Therefore, it is sufficient to check that lim
r→1

g(r, t) = 0 a.e. t ∈ (0, 1).

Note that r 7→
∫
T log |f(rξ)|dm(ξ) increases with r ↗ 1, hence r 7→ g(r, t) decreases

for every t. Secondly, t 7−→ g(0, t) = log |Θ̃t(0))|−1 is integrable on [0, 1). By dominated

convergence theorem, we get∫ 1

0

lim
r→1

g(r, t)dt = lim
r→1

∫
T

(∫ 1

0

log |bt ◦Θ(rξ)|−1dt

)
dm(ξ).

The last limit is zero since the function

u : w 7→
∫ 1

0

log |bt(w)|−1dt

is well defined and continuous in D̄ and u(w) = 0 for |w| = 1 (see below). Hence µt(T) = 0

for a.e. t ∈ [0, 1). The same reasoning for any other ζ ∈ T. The zeros of bλ ◦Θ are simple
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if λ − Θ(zj) 6= 0, ∀ j, where (zj)j≥1 are the zeroes of Θ′. Indeed, if bλ(Θ(z)) = 0, then

λ−Θ(zj) = 0 and hence (bλ ◦Θ)′(z) = b′λ(Θ(z))Θ′(z) 6= 0.

Finally, we show thar u is continuous on D̄. Note that the integrals
∫ 1

0
log |1 − tw|dt

and
∫ 1

0
log |t− w|dt are similar and for w = x+ iy, we have∫ 1

0

log |t− w|2dt =

∫ 1

0

log{(t− x)2 + y2}dt

is continuous in x and y (for instance
∫ 1

0
log(t− x)2dt = χ(0,1) ∗ log(x2)).

�
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4. Szegö infimum and generalized Phragmen-Lindelöf

principle

In this section, we consider two applications of the canonical Riesz-Smirnov factor-

ization. Namely, the Szegö infimum dist(1, H2
0 (µ)) is expressed in terms of measure µ,

the cyclic functions of L2(T) are described. The classical logarithmic integral criterion

for completeness of the polynomials, the case of incompleteness, and the closure of the

polynomials H2(µ) is described in terms of the outer function related to Radon-Nikodym

derivative w = dµ
dm
. We consider outer functions, their extremal and extension proper-

ties, and distribution value properties. The important Smirnov subclass of Nevanlinna

functions is considered. After transferring these results to an arbitrary simply connected

domain of C, we use these techniques to get a remarkably general Phragmen-Lindelöf type

principle due to Smirnov (1920) and then by Helson (1960).

4.1. Szegö infimum and weighted polynomial approximation.

Theorem 4.1. (Szegö, Kolmogorov) Let dµ = wdm+ dµs be a Borel measure. Then

inf
p∈P0

+

∫
T
|1− p|2dµ = exp

(∫
T

logw dm

)
.

Proof. We know that the infimum is equal to |f̂(0)|2 if there exists an outer function f

such that |f |2 = w and otherwise 0. On the other hand, (by Corollary 3.10 and Theorem

3.21) such an outer function exists if and only if logw ∈ L1. In this case, we have

f(z) = exp
(∫

T

ξ + z

ξ − z
logw

1
2dm(ξ)

)
and |f̂(0)|2 = |f(0)|2 = exp(

∫
T logwdm). �

Let f ∈ L2(T), and write Ef = span{znf : n ≥ 0}. If Ef = L2(T), we say f is a cyclic

vector. Note that the half of the trigonometric system (zn)n≥0 is far from being complete

in L2(T), but multiplying by a suitable function f one can get completeness property i.e.

span{znf : n ≥ 0} = L2(T). It may happen that for different halfs of (zn)n∈Z, nothing

similar is true.
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Corollary 4.2. Let f ∈ L2. Then Ef = span{znf : n ≥ 0} = L2 if and only if f(ξ) 6= 0

a.e. on T and
∫
T log |f |dm = −∞.

By Wiener Theorem 1.4 we have zEf = Ef if and only if Ef = χσ(L2(T), and by

Beurling- Helson Theorem 1.5, zEf ⊂ Ef , there exists θ ∈ Ef such that Ef = θH2

( |θ| = 1 a.e.). Thus, Ef is reducing if and only if there does not exist g ∈ H2 such that

|g| = |f | a.e. T. That is, if and only if log |f | 6∈ L1. We easily deduce the necessity of the

condition claimed.

For the sufficiency, we again use Theorem 1.4 to get Ef = χσL
2(T). As f ∈ χσL2(T)

and f 6= 0 a.e. on T we get σ = T.

Example 4.3. (a) If f(eiθ) = |1− eiθ|α, α > −1
2
, then Ef 6= L2(T).

(b) If f(eiθ) = exp
(
−1

1−eiθ

)
, then Ef = L2(T).

The following two theorems are final statements on weighted polynomial approximation

on the circle T.

Theorem 4.4. Let µ be a positive measure on T and let w = dµ
dm

its Radon-Nikodym

derivative. Then polynomials P+ are dense in L2(µ) if and only if logw 6∈ L1(T).

Proof. This is immediate from Corollary 2.4 and Theorem 4.1. �

Theorem 4.5. Let µ be a positive measure on T, let dµ = wdm + dµs be its Lebesgue

decomposition and suppose that logw ∈ L1(T). Let φ ∈ H2 be the outer function defined

by φ = [w
1
2 ]. Then closure H2(µ) = closL2(µ)P+ is given by

H2(µ) = L2(µs)⊕ (φ−1H2) = L2(µs)⊕ {f ∈ Hol(D) : fφ ∈ H2}.

Proof. Indeed, Corollary 2.1 gives H2(µ) = H2(wdm)⊕ L2(µs) and Lemma 2.3 and The-

orem 4.1 show that H2(wdm) is 1-invariant (non-reducing) subspace of L2(wdm) ( see

also Remark 2.2). Now, Theorem 1.8 implies that H2(wdm) = φ−1H2. �



42 MA650: LECTURE NOTES, JAN-MAY, 2022

4.2. How to recognize an outer function. It is of practical importance to know how

to recognize an outer function. We recognize outer function in terms of its boundary

behavior.

Fact 4.6. If f ∈ Hp(D), p ≥ 1 and inf
z∈D
|f(z)| > 0, then f is outer

It is clear that for g ∈ Hq (q ≥ 1) we have g
f
∈ Hq and hence by Theorem 3.26 f is

outer.

Exercise 4.7. What is an interpretation of the above fact in case of p = 2 on the circle.

Theorem 4.8. (V. Smirnov, 1928 ) If f ∈ Hol(D) and Ref(z) ≥ 0 for all z ∈ D, then

f ∈ Hp, 0 < p < 1, and f is outer.

Proof. By hypothesis, z 7−→ (f(z))p is analytic and we can choose arg f(z) such that

| arg f(z)p| ≤ pπ/2, z ∈ D. Hence, if 0 < p < 1, then there exists cp > 0 such that

|f(z)|p ≤ cp Ref(z)p. The MVT applied to the harmonic function Ref(z)p gives∫ 2π

0

|f(reiθ)|p dt
2π
≤ cp

∫ 2π

0

Re(f(reiθ)p)
dt

2π
= cp Re(f(0)p),

For 0 ≤ r < 1 and hence f ∈ Hp, 0 < p < 1. Moreover, since Re( 1
f(z)

) ≥ 0 in D, we have

f and 1
f

in Hp, 0 < p < 1. By Fact 4.10 (below), f is an outer function. �

Example 4.9. (V. Smirnov,1928) Let µ ∈M(T) and set

fµ(z) =

∫
T

ξ + z

ξ − z
dµ(ξ).

Then

(i) fµ ∈ Hp, 0 < p < 1.

(ii) If µ ≥ 0, then fµ is outer.

Fact 4.10. Let f1, f2 ∈ Hp. Then f1f2 is outer if and only if f1, f2 are outer. In particular,

if f ∈ Hp and 1
f
∈ Hq (p, q > 0), then f is outer.

This follows by the uniqueness of the factorization Theorem 3.25.
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Example 4.11. If a polynomial p has no zero in the open disc D, then p is outer. Consider

p(z) = constt
n∏
i=1

(
1 − z

ξi

)
, |ξi| ≥ 1. As |z| < 1 and |ξi| ≥ 1, we have Re

(
1- z
ξi

)
≥ 0. By

applying Theorem 4.8 and Fact 4.10.

Fact 4.12. Let f be an outer function and let h ∈ Hp (p ≥ 1). If |f | ≤ |h| on D, then h

is outer.

Obviously, f
h
∈ H∞ and f

h
has no zeros in D. By Theorem 3.25 we get the representation

f
h

= λSF, where F is outer. Suppose that h is not outer. Then h = λ1S1F1 with S1 is

a non-trivial singular inner function and f = (λλ1)(SS1)(FF1) with SS1 6≡ constt, which

contradicts the hypothesis.

Theorem 4.13. Let p > 0.

(i) Let fn ∈ Hp be a sequence of outer functions with fn(0) > 0. If |fn| ↘ on T, then

f(z) = lim
n→∞

fn(z), z ∈ D exists uniformly on compact sets. Moreover, if lim
n→∞

fn(0) =

0, then f ≡ 0, otherwise f is an outer Hp function.

(ii) Let f ∈ Hp be an outer function. Then there exists a sequence of outer functions

fn ∈ Hp and inf
z∈D
|fn(z)| > 0, n ≥ 1, |fn| ↘ |f | on T (and hence on D) and f(z) =

lim
n→∞

fn(z), z ∈ D.

Proof. (i) As the functions fn are outer, we have

log |fn(z)| =
∫
T
P (zξ̄) log |fn(ξ)|dm(ξ).

To show the uniform convergence of fn, it is enough to show that fn is uniformly

Cauchy sequence. For this, we will show log |fn(z)| is a uniformly Cauchy.

| log |fn(z)| − log |fn+p(z)|| =
∣∣∣ ∫

T
P (zξ̄) log

|fn(ξ)|
|fn+p(ξ)|

dm(ξ)
∣∣∣

≤ sup
|z|≤R

|P (zξ̄)|
∫
T

∣∣∣ log
|fn(ξ)|
|fn+p(ξ)|

∣∣∣dm(ξ)

= const

∫
T

log
|fn(ξ)|
|fn+p(ξ)|

dm(ξ)

= const
(∫

T
log |fn(ξ)|dm(ξ)−

∫
T

log |fn+p(ξ)|dm(ξ)
)
.
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The conclusion is followed by monotone convergence theorem.

Suppose that inf
n≥1

fn(0) = 0, then

lim
n→∞

∫
T

log |fn|dm = lim
n→∞

log fn = −∞.

For a point z0 ∈ D, we have P (z0ξ̄) ≤ 1+|z0|
1−|z0| = C0. Hence,

log |fn(z0)| ≤ C0

∫
T

log |fn|dm.

We conclude that lim
n→∞

log |fn(z0)| = −∞ and similarly for all z ∈ D and we get

f ≡ 0.

If inf
n≥1

fn(0) > 0 and |fn| ↘ h on T, then∫
T

log hdm = lim
n→∞

∫
T

log |fn|dm > −∞,

and hence log h ∈ L1. Now, it is obvious that lim
n→∞

fn(z) = f(z) with f = [h].

(ii) Without loss of generality, we may assume that f(0) > 0. Set fn = [|f |+ δn], where

δn > 0 an appropriate sequence with lim
n→∞

δn = 0 and
∫
T log(|f |+ δn)dm <∞. Then

fn satisfies the desired properties.

�

4.3. The Smirnov class D. We know that Nevanlinna class can be represented as

Nev =
{
f ∈ Hol(D) : there exist f1, f2 ∈

⋃
p>0

Hp such that f = f1/f2

}
and let

D =
{
f ∈ Hol(D) : there exist f1, f2 ∈

⋃
p>0

Hp such that f = f1/f2 and f2 is outer
}

be the Smirnov class (sometimes denoted by Nev+).

Lemma 4.14. We have

Nev =
{
f ∈ Hol(D) : there exist f1, f2 ∈ H∞ such that f = f1/f2

}
and

D =
{
f ∈ Hol(D) : there exist f1, f2 ∈ H∞ such that f = f1/f2 and f2 is outer

}
.

Proof. Let f ∈Nev, f 6≡ 0 and f = f1
f2
, where f1, f2 ∈ H1 have canonical factorizations

f1 = λ[f1]B1S1 and f2 = λ[f2]S2. Set F1 = λ[min(1, |f |)]B1S1 and F2 = [min(|f |−1, 1)]S2.

Clearly F1, F2 ∈ H∞ and since |f |.min(|f |−1, 1) = min(1, |f |), we also get f = F1

F2
.
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�

4.4. The Smirnov class D. We know that Nevanlinna class can be represented as

Nev =
{
f ∈ Hol(D) : there exist f1, f2 ∈

⋃
p>0

Hp such that f = f1/f2

}
and let

D =
{
f ∈ Hol(D) : there exist f1, f2 ∈

⋃
p>0

Hp such that f = f1/f2 and f2 is outer
}

be the Smirnov class (sometimes denoted by Nev+).

Lemma 4.15. We have

Nev =
{
f ∈ Hol(D) : there exist f1, f2 ∈ H∞ such that f = f1/f2

}
and

D =
{
f ∈ Hol(D) : there exist f1, f2 ∈ H∞ such that f = f1/f2 and f2 is outer

}
.

Proof. Let f ∈Nev, f 6≡ 0 and f = f1
f2
, where f1, f2 ∈ H1 have canonical factorizations

f1 = λ[f1]B1S1 and f2 = λ[f2]S2. Set F1 = λ[min(1, |f |)]B1S1 and F2 = [min(|f |−1, 1)]S2.

Clearly F1, F2 ∈ H∞ and since |f |.min(|f |−1, 1) = min(1, |f |), we also get f = F1

F2
.

�

Definition 4.16. A function f ∈ Nev is called outer if there exist two outer functions

f1, f2 such that f = f1
f2
.

Properties 4.17. (of the class D and Nevanlinna outer functions)

(a) If f is outer, then f ∈ D.

(b) If f1 and f2 is outer, then so is f1f2.

(c) If f1f2 are outer, and f1, f2 ∈ D, then f1, f2 are outer.

(d) If f1, f2 ∈ D, then f1f2 ∈ D.

(e) If F ∈ Hol(D), G ∈ D and |F | ≤ |G| in D, then F ∈ D.

To verify (c), just let G = G1

G2
with G1, G2 ∈ H∞, and G2 outer. By hypothesis |G2F | ≤

|G1| in D, and hence G2F ∈ H∞. We conclude that F = G2F
G2
∈ D
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Theorem 4.18. (Generalized Maximum Principle) Let f ∈ D and g be an outer function

in Nev. If |f | ≤ |g| on T, then |f | ≤ |g| on D.

Proof. Let f = f1
f2

and g = g1
g2

where f2, g1 and g2 are outer functions in H∞ and f1 ∈ H∞.

By assumption |f1g2| ≤ |f2g1| on T and hence |f1g2| ≤ |[f1g2]| ≤ |[f2g1]| = |f2g1| in D. �

Remark 4.19. This result is not true in general if f ∈ Nev\D and/or if g is not outer.

4.5. A conformably invariant framework. Here we consider the classes Nev(Ω) and

D(Ω), where Ω is a simply connected domain ( 6= C), that is, domains that are conformably

equivalent to the open unit D.

Definition 4.20. Define

H∞(Ω) = {f ∈ Hol(Ω) : ‖f‖H∞ = sup
z∈Ω
|f(z)| <∞}

and

Nev(Ω) = {f ∈ Hol(Ω) : there exist f1, f2 ∈ H∞(Ω) such that f = f1/f2} .

For ω : D → Ω be an onto conformal map. A function f ∈ Nev(Ω) is called outer if

f ◦ w is an outer in Nev(D). With this definition, we get

D(Ω) =
{
f ∈ Hol(Ω) : there exist f1, f2 ∈ H∞(Ω) such that f = f1/f2 and f2 is outer

}
.

The following two results are simple factorization to Ω of the corresponding well known

facts in D. Note if ω : Ω→ D extends to a homeomorphism of clos (Ω) onto clos (D), then

we say Ω is Jordan domain.

Lemma 4.21. (Generalized Maximum Principle) Let Ω be a Jordan domain. Let λ ∈

∂Ω, f ∈ D(Ω)∩C
(

clos(Ω)\{λ}
)

and let g be an outer function such that g ∈ C
(

clos(Ω)\

{λ}
)

and |f | ≤ |g| on ∂Ω \ {λ}. Then |f | ≤ |g| on Ω.

Lemma 4.22. Let f ∈ H∞(Ω). Then f is outer if and only if there exists a sequence of

outer functions (fn)n≥1 ∈ H∞(Ω) such that

inf
z∈Ω
|fn(z)| > 0, n ≥ 1, lim

n→∞
fn(z) = f(z), |fn(z)| ↘ |f(z)|, z ∈ Ω.
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Corollary 4.23. Let Ω1 ⊂ Ω2 be two simply connected domains and f ∈ Nev(Ω2).

(i) If f is outer on Ω2, then f |Ω1 is outer on Ω1.

(ii) If f ∈ D(Ω2), then f |Ω1 ∈ D(Ω1).

4.6. The generalized Fragmen-Lindlöf principle. The result of Theorem 4.18 and

Lemma 4.21 are, in fact, the versions of the Fragmen-Lindlöf principle. The difference is

that, in general, the mejorants are not given by analytic functions.

Let Ω be a Jardon Domain, let M and M∗ be two non-negative functions on Ω, and let

ω ∈ C(∂Ω r {λ}), where λ ∈ ∂ω, Ω > 0. Then M∗ is called Fragmen-Lindlöf majorant

for M and ω if for every f ∈ Hol(Ω) ∪ C(clos(Ω) r {λ}) with |f | ≤ M on ∂Ω r {λ} we

have |f | ≤M∗.

Theorem 4.24. (Generalized Fragmen-Lindlöf principle) Let f ∈ D(Ω) and G ∈ Nev(Ω)∩

C(clos(Ω) r {λ}) be such that M ≤ |F | on Ω, ω ≤ |G| on ∂Ω r {λ}. Then either there

exists an outer function [ω ◦ ω] (and then M∗ = |[ω ◦ ω] ◦ ω−1| is a Fragmen-Lindlöf

majorant for M and ω) or f ≡ 0 for all f ∈ Hol(Ω)∪C(clos(Ω)r{λ}) such that |f | ≤M

on Ω and |f | ≤ ω on ∂Ω{λ} (and then M∗ = 0).

Proof. In view of (e) of Properties 4.17, the inequalities |F | ≤M ≤ |F | show that f ∈ (Ω).

If there exists f 6≡ 0, f ∈ Nev(Ω) such that

|f ◦ ω| ≤ ω ◦ ω ≤ |G ◦ ω|

on Trω−1({λ}), then we can define the outer function [ω ◦ω]. Applying Lemma 4.21 we

get |f ◦ ω| ≤ |[ω ◦ ω]| on T r ω−1({λ}) and hence the desired result. �
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5. Harmonic analysis in L2(T, µ)

The main result of this section is the Helson- Szegö theorem characterizing those

L2(T, µ) in which the Fourier series of every function f ∈ L2(T, µ) converges in the

norm topology. This is one of the main results of harmonic analysis on the circle group

T. It is closely related to generalized Fourier series with respect to a minimal sequence;

harmonic conjugates, the Riesz projections, and weighted estimates for Hilbert singular

integrals.

Definition 5.1. A sequence (xn)n≥1 in Banach Space X is called minimal if xn 6∈Mn =

span{xk : k 6= n}, and is called uniformly minimal if inf
n≥1

dist
( xn
‖xn‖

,Mn

)
> 0.

Lemma 5.2. (i) A sequence (xn)n≥1 ⊂ X is minimal if and only if there exists fn ∈ X∗

such that (xk, fn) = δkn. Such a pair ((xn)n≥1, (fk)k≥1) will be called biorthonormal

and fn, n ≥ 1 coordinate functionals.

(ii) (xn)n≥1 ⊂ X is uniformly minimal if and only if there exists a sequence (fn)n≥1 of

coordinate functionals such that sup
n≥1
‖xn‖ ‖fn‖ <∞.

Proof. (i) By Hahn-Banach theorem, if xn 6∈Mn, then there exists a sequence fn ∈ X∗

with ‖fn‖ = 1, fn(xn) = ‖xn‖, f̃n(xn) = 1, f̃n = fn
‖xn‖ .

(ii) Moreover for any subspace E ⊂ X,

dist(x,E) = sup{|f(x)| : f ∈ X∗, f |E ≡ 0, ‖f‖ ≤ 1}.

For this, if x ∈ E then both sides are equal. So firstly we will show ”≤”. When

x 6∈ E, by Hahn- Banach theorem there exists f̃ ∈ X∗ such that f̃(x) = dist(x,E),

and f̃(E) = 0 with ‖f̃‖ ≤ 1. Implies

dist(x,E) = |f̃(x)| ≤ sup{|f(x)| : f ∈ X∗, f |E ≡ 0, ‖f‖ ≤ 1}.

For the other inequality, let y ∈ E, then we have

|f(x)| = |f(x− y)| ≤ ‖f‖‖x− y‖ ≤ ‖x− y‖,

and hence |f(x)| ≤ inf
y∈E
‖x− y‖ = dist(x,E). This implies

sup{|f(x)| : f ∈ X∗, f |E ≡ 0, ‖f‖ ≤ 1} ≤ dist(x,E).
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Thus,

sup{|f(x)| : f ∈ X∗, f |E ≡ 0, ‖f‖ ≤ 1} = dist(x,E).

Now, replacing f by f/f(x), it follows that

inf
{
‖f‖ : f ∈ X∗, f |E ≡ 0, f(x) = 1} =

1

dist(x,E)
.

Apply this to x = xn, E = Mn, and let fn ∈ X∗ be the corresponding coordinate

functionals with minimal norm. Then,

dist
( xn
‖xn‖

,Mn

)
=

1

‖xn‖
dist(xn,Mn) =

1

‖xn‖
1

‖fn‖
.

Thus,

inf
n≥1

dist
( xn
‖xn‖

,Mn

)
> 0 if and only if sup

n≥1
‖xn‖ ‖fn‖ <∞.

�

Definition 5.3. To a minimal sequence (xn) we associate the (formal) Fourier series

x ∼
∑
n≥1

(x, fn)xn, x ∈ X.

The operator x 7−→ Pnx = (x, fn)xn is called the projection on the nth Fourier compo-

nent (or the co-ordinate projection with respect to the biorthogonal pair ((xn)n≥1, (fk)k≥1).

Remark 5.4. We have ‖Pn‖ = ‖fn‖‖xn‖ (because fn(xn) = 1).

Definition 5.5. A sequence (xn) in Banach space X is called a basis of X if for all x ∈ X

there exists a unique sequence (an) ⊂ C such that x =
∑
k≥1

akxk. Note that an = an(x) A

sequence xn is called a basis sequence if it is basis in spanX{xn : n ≥ 1}.

Theorem 5.6. (S. Banach, 1932 ) Let (xk) be a basis of the Banach space X. Then (xk)

is uniformly minimal and fk(x) = ak(x), x ∈ X are the coordinate functionals.

Definition 5.7. Let X be a Banach space and let (xn)n∈Z be a family in X. Then it is

called symmetric basis if for all x ∈ X, there exists a unique (ak(x))k∈Z ⊂ C such that

x = lim
n→∞

n∑
k=−n

ak(x)xk. It is called non-symmetric if x = lim
n,m→∞

n∑
k=−m

ak(x)xk.
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Lemma 5.8. Let χ = (xk)k∈Z and (fk)k∈Z be a biorthogonal pair in a Banach space X.

Set Pm,n =
n∑

k=−m

(. , fk)xk, m, n ∈ Z. Then

(i) χ is a symmetric (respectively non-symmetric) basis if and only if sup
n≥1
‖P−n,n‖ <∞

(respectively sup
m,n
‖Pm,n‖ <∞) and χ is complete.

(ii) If χ is a (at least symmetric) basis, then (fk)k∈Z is total, i.e. fk(x) = 0 for all k ∈ Z

implies x = 0.

(iii) For σ ⊂ Z, define χσ = span{xk : k ∈ σ} and χσ = span{x ∈ X : fk(x) =

0 for all k 6∈ σ}. If χ is a basis, then for all σ ⊂ Z, we have χσ = χσ.

Proof. (i) is followed from the Banach-Steinhaus theorem, and the fact that lim
m,n

Pm,nx =

x for all x ∈ Lin{xk : k ∈ Z}.

(ii) If fk(x) = 0 for all k ∈ Z, then P−n,nx = 0 for all n ≥ 1. Hence x = 0.

(iii) The inclusion χσ ⊂ χσ is clear (even for minimal families). On the other hand, if

x ∈ Xσ, then x = lim
n→∞

P−n,nx with P−n,nx ∈ Xσ. Hence x ∈ Xσ.

�

5.1. Skew projections. Let L,M be two subspaces of a vector space X such that L ∩

M = {0}. Define P : L+M → X by P (x+ y) = x, then P 2 = P, P |L = id and P |M = 0.

Then P is called skew projection onto L parallel to M and denoted as P := PL||M .

Lemma 5.9. Let L,M be two subspaces of a Banach space X verifying L ∩M = {0}.

Then

(i) PL||M is continuous if and only if PL̄||M̄ is well defined and continuous (here L̄ =

clos L and M̄ = clos M).

(ii) If L,M are closed, then PL||M is continuous if and only if L+M = clos (L+M).

Proof. (i) is clear from the definition, and (ii) follows from the closed graph theorem. �
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Definition 5.10. Let L,M be two subspaces of a Hilbert space H. Define angle α ∈ [0, π
2
]

(or minimal angle) between L and M by

cosα = sup
x∈L, y∈M

|〈x, y〉|
‖x‖‖y‖

.

NOTATION: We write α = 〈L,M〉.

Remark 5.11. L ⊥M if and only if α = π
2
.

Lemma 5.12. With the above notations we have

cos〈L,M〉 = cos〈L̄, M̄〉 = ‖PM̄PL̄‖

and

sin〈L,M〉 = sin〈L̄, M̄〉 = ‖PL||M‖−1,

where the symbols have obvious meaning.

Proof. Clearly, sup
y∈M\{0}

|(PM̄x, y)|
‖y‖

= ‖PM̄x‖. Moreover, 〈x, y〉 = 〈PM̄x, y〉 for y ∈ M and

hence

cos〈L,M〉 = sup
06=x∈L, 06=y∈M

|〈x, y〉|
‖x‖‖y‖

= sup
0 6=x∈L

‖PM̄x‖
‖x‖

.

But

sup
06=x∈L

‖PM̄x‖
‖x‖

= sup
06=x∈L

‖PM̄PL̄x‖
‖x‖

= sup
0 6=x∈H

‖PM̄PL̄x‖
‖x‖

= ‖PM̄PL̄‖.

Next,

‖PL||M‖2 = sup
x∈L, y∈M

‖x‖2

‖x+ y‖2
= sup

x∈L

‖x‖2

infy∈M ‖x+ y‖2
= sup

06=x∈L

‖x‖2

‖(1− PM̄)x‖2
.

This now gives

sin2〈L,M〉 = 1− cos2〈L,M〉 = 1− sup
06=x∈L

‖PM̄x‖2

‖x‖2
= inf

06=x∈L

‖(1− PM̄)x‖2

‖x‖2
=

1

‖PL||M‖2.
�

Corollary 5.13. The projection PL||M is continuous if and only if ‖PL̄PM̄‖ < 1 (and

hence if and only if 〈L,M〉 > 0). Moreover, ‖PL||M‖ = ‖PM ||L‖.

5.2. Bases of exponentials in L2(T, µ). Now, let X = L2(T, µ), where µ is a finite

Borel measure, and xk = eikt, k ∈ Z (or xk = zk, k ∈ Z).
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Lemma 5.14. If (eikt)k∈Z is a basis of L2(µ) (at least in the sense of symmetric sums),

then µs ≡ 0.

Proof. Let σn = {k : k ≥ n}, let L2
σn = spanL2(µ){zk : k ≥ n}, and let fk be coordinate

functionals associated to (eikt)k∈Z, then⋂
n≥1

L2
σn = {x ∈ L2(µ) : fk(x) = 0 for allk ∈ Z} = {0}

(by Banach theorem 5.6). Clearly, L2
σn is an invariant subspace, and zn ∈ L2

σn and zn 6= 0

on T. So it can be deduced (as in Corollary 2.1) that L2
σn = L2

σn(µa)+L2(µs) for all n ∈ Z.

But then also,
⋂
n≥1

L2
σn ⊃ L2(µs), implies L2(µs) = 0. �

Remark 5.15. For studying exponential basis in L2(T, µ) one can restrict to measure

which is absolutely continuous with respect to the Lebesgue measure m, dµ = wdm, w ∈

L1
+(T,m).

Lemma 5.16. (Kolmogorov, 1941 ) Let w ≥ 0, w ∈ L1
+. Then (zn)n∈Z is a minimal

sequence in L2(wdm) if and only if 1
w
∈ L2(T).

Proof. Due to biorthogonality, we have

δn,k = (zn, fk)L2(µ) =

∫
T
znf̄kwdm, n, k ∈ Z.

So we deduce that f̄kw = z̄k, k ∈ Z, that is fk = zk

w
, k ∈ Z (if the coordinate functional

exists) Hence,

fk ∈ L2(wdm) if and only if

∫
T

1

w2
wdm <∞.

�

5.3. A fundamental reduction. Let P,P+ be as earlier and P− = span{eikt : k < 0}.

Define the Riesz projection P+ by

P+f =
∑
k≥0

f̂(k)eikt, f ∈ P.

Then

P+ = PP+||P− .
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Let also

Pm,nf =
n∑

k=m

f̂(k)eikt, f ∈ P, m, n ∈ Z, m ≤ n.

The following result gives the principle link between the problem of bases and the norm

estimation of the Riesz projection.

Lemma 5.17. Let w ∈ L1
+. Then the followings are equivalent.

(i) (zk)k∈Z is a nonsymmetric basis of L2(wdm).

(ii) sup
n,m∈Z

‖Pm,n‖ <∞.

(iii) (zk)k∈Z is a symmetric basis of L2(wdm).

(iv) sup
n∈Z
‖P−n,n‖ <∞.

(v) The Riesz projection P+ is continuous on L2(wdm).

(vi) 〈P+, P−〉 > 0 (or 〈H2
+, H

2
−〉 > 0, where H2

± closL2(wdm)P±.

Proof. In view of Lemma 5.8 we get (i) ⇔ (ii) and (iii) ⇔ (iv). It is also clear that

(ii) implies (iv). Using Lemma 5.12 and Corollary 5.13 we obtain (v) ⇔ (vi). Next,

we verify that (iv) implies (v). Pick f ∈ P, then for n = n(f) sufficiently large, we get

P+f = znP−n,nz
−nf, so ‖P+f‖ = ‖P−n,nz−nf‖ ≤ ‖P−n,n‖‖f‖ implies ‖P+‖ ≤ sup

n≥1
‖P−n,n‖.

It remains to show that (v) implies (ii). Note that

Pm,nf = zn+1(1− P+)z−(n+m+1)P+z
mf, f ∈ P.

But, then

‖Pm,nf‖ = ‖(1− P+)z−(n+m+1)P+z
mf‖ ≤ ‖P+‖‖P+z

mf‖ ≤ ‖P+‖2‖f‖

for all f ∈ P. Since ‖1− P+‖ = ‖P+‖, (by Corollary 5.13) the result follows. �

5.4. Harmonic conjugates. In order to get the desired characterization of exponential

type bases in L2(µ), we need a result of analytic type, namely, the so-called harmonic

conjugation on T(or D).
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Theorem 5.18. Let u ∈ L2(T) be a real valued function. Then there exist a unique real

valued function v ∈ L2(T) such that v̂(0) = 0 and u + iv ∈ H2. The mapping u 7→ v is

linear and continuous with ‖v‖ ≤ ‖u‖.

Proof. Let u =
∑
n∈Z

û(n)eint ∈ L2. Then ū =
∑
n∈Z

¯̂u(n)e−int. Since u is real valued, ū = u⇔

¯̂u(n) = û(−n), n ∈ Z. Define

f = û(0) + 2
∑
n≥1

û(n)zn.

Then f ∈ H2 and

Ref =
1

2
(f + f̄) = û(0) +

∑
n≥1

û(n)eint +
∑
n≥1

¯̂u(n)e−int = u.

This means that v = Im f will satisfy the conclusion of the theorem. Next, we show that v

is unique. If u+ iv = u+ iv1 ∈ H2, then v−v1 ∈ H2. As v−v1 is real valued v − v1 ∈ H2.

But this is possible only if v − v1 = c. Also c = v̂(0)− v̂1(0) = 0. Finally, we have

v = Imf =
f − f̄

2i
=

1

i

(∑
n≥1

û(n)eint −
∑
n≥1

¯̂u(n)e−int
)

=
1

i

(∑
n>0

û(n)eint −
∑
n<0

û(n)eint
)
.

The process u 7−→ v is linear and

‖v‖2 =
∑
k 6=0

|û(k)|2 ≤ ‖u‖2,

and if û(0) = 0, then ‖u‖ = ‖v‖. �

Definition 5.19. The function v is called Harmonic conjugate of u. Let v = ũ. The

mapping H : L2(T)→ L2(T), u 7−→ ũ is called the Hilbert transform.

5.5. Different formula for ũ.

(a) We can translate the above formula for ũ in terms of Riesz projections

ũ =
1

i
(P+u− P−u)− 1

2
û(0).

In particular, if û(0) = 0, then ũ = 1
i
(P+u − P−u). Also, we have f = u + iũ =

2P+u− û(0).

(b) If u verify the conditions of the theorem, then f = u + iv ∈ H2 and u = Re f. As f

extends to D so Ref does as well. For z ∈ D, u(z) = Ref ∗ Pz = u ∗ Pz. Since the
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Poisson kernel verify Pz(ζ) = Re
(ζ + z

ζ − z

)
, we get u(z) = Ref1(z), where

f1(z) =

∫
T

ζ + z

ζ − z
u(ζ)dm(ζ).

Note that f1 ∈ Hol(D) and Re f1 = u, f1(0) =
∫
T
udm ∈ R. By uniqueness, we have

f = f1 and

ũ = Imf = Imf1 =

∫
T

Im
(ζ + z

ζ − z

)
u(ζ)dm(ζ) =

∫ 2π

0

Qr(τ − t)u(eit)
dt

2π
where z = reit and

Qr(t) = Im
(ζ + z

ζ − z

)
=

2r sin t

1− 2r cos t+ r2
.

Remark 5.20. For r → 1, Qr ∼
sin t

1− cos t
= cot(t/2). In fact, one can show that

ũ(τ) = (u ∗ cot(./2))(τ) =

∫ 2π

0

u(τ − t) cot
(
t/2
) dt

2π
in the sense of Cauchy principle valued integral.

5.6. The Helson-Szegö theorem.

Theorem 5.21. Let µ be a finite Borel measure on T. Then the followings are equivalent.

(i) The family (zn)n∈Z is a (symmetric or nonsymmetric) basis of L2(µ).

(ii) The Riesz projection P+ is bounded on L2(µ).

(iii) The angle satisfies sin〈P+, P−〉 > 0.

(iv) dµ = |h|2dm, where h ∈ H2 is an outer function such that dist
( h̄
h
,H∞

)
< 1.

(v) dµ = wdm, where w = eu+ṽ and u, v are real valued bounded functions and ‖v‖∞ < π
2

(condition (HS)).

The proof of the theorem will be given in several steps based on the following lemmas.

Lemma 5.22. The mapping j : H2 × H2 → H1, (φ, ψ) 7−→ φψ is continuous and sym-

metric. Moreover, j(B2 ×B2) = B1, where Bp is the unit ball in Hp.

Proof. The continuity follows from the Cauchy Schwarz inequality ‖φψ‖1 ≤ ‖φ‖2‖ψ‖2.

For surjectively, let f ∈ H1, then f = λBS[f ]. Write φ = λBS[f ]
1
2 and ψ = [f ]

1
2 then

φψ ∈ H2. �
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Lemma 5.23. Let E be a subspace of the Banach space X, and Φ ∈ X∗. Then

‖Φ|E‖ = inf{‖Ψ‖X∗ : Ψ = Φ onE} = inf{‖Φ + α‖X∗ : α ∈ X∗ andα|E = 0}

Proof. The inequality ”≤” is clear. For ”≥” apply Hahn-Banach theorem. Let Ψ′ = Φ|E.

Then

‖Ψ‖X∗ = sup
x∈X
|Ψ(x)| ≥ ‖Ψ′‖X∗ = sup

x∈X
|Ψ′(x)| = ‖Φ|E‖.

By Hahn-Banach theorem, there exists Ψ′ ∈ X∗ such that ‖Φ|E‖ = ‖Ψ′‖X∗ , and hence

the result follows. �

Lemma 5.24. Let f ∈ H1 and suppose that f(T) ⊂ A ⊂ C. Then f(D) ⊂ conv(A) (the

closed convex hull of A).

Proof. Observe that for z ∈ D, we have f(z) = Pz ∗ f =
∫
T

1−|z|2
|ζ−z|2f(ζ)dζ ∈ conv(A). �

Lemma 5.25. (V. Smirnov, A. Kolmogorov) Let v ∈ L∞(T) be a real valued function

then eλṽ ∈ L1(T) if λ‖v‖∞ < π
2
.

Proof. It is sufficient to show that ‖u‖∞ < π
2

implies eũ ∈ L1. Set f = e−i(u+iũ), which is

well defined in D, since u + iũ ∈ H2. Clearly |f | = eũ and | arg f | = |u| < π(1− ε)
2

for

some ε > 0 (on T and hence on D in view of Lemma 5.24). The same reasoning as in

(Theorem 4.8) now gives f ∈ H1 and hence |f | = eũ ∈ L1(T). �

Proof. Implication (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) of Helson-Szegö theorem.

Recall that we may restrict to dµ = wdm, w ∈ L1
+(T). By Lemma 5.17 we get the

equivalence of (i),(ii) and (iii).

Next we show (i) and (ii) are equivalent to (iv). Note that if the sequence (zn)n∈Z is

a basis, then we can see from Banach’s (Theorem 5.6) and Kolmogorov’s (Lemma 5.16)

that 1
w
∈ L1 and hence logw ∈ L1 (this can be justified without using Banach theorem

as z̄ 6∈ H2(µ) we get logw ∈ L1). In view of the later observation, we suppose that there

exists an outer function h ∈ H2 such that |h|2 = w. Thus,

(f, g)L2(µ) =

∫
T
fḡwdm =

∫
T
fhḡh

h̄h

h2
dm =

∫
T
(fh)(ḡh)

h̄

h
dm =

∫
T
FG

h̄

h
dm
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for all f ∈ P+ and g ∈ P− and therefore,

‖f‖2
L2(µ) =

∫
|fh|2dm = ‖F‖2

L2(T), ‖g‖2
L2(µ) = ‖G‖2

L2(T).

Clearly F = fh ∈ H2, since ḡ ∈ P0
+, we get G ∈ H2

0 . By definition of outer function, it

follows that span{F = fh : f ∈ P+} = H2, and also A := {F = fh : f ∈ P+, ‖F‖ ≤ 1}

is dense in the unit ball B2 of H2. For the same reason, we see that B := {G = ḡh : g ∈

P−, ‖G‖ ≤ 1} is dense in B2 ∩H2
0 . We deduce that

cos〈P+,P−〉L2(µ) = sup{|(f, g)| : f ∈ P+, g ∈ P− ‖f‖2
L(µ) ≤ 1, ‖g‖2

L(µ) ≤ 1}

= sup
{∣∣∣ ∫

T
FG

h̄

h
dm
∣∣∣ : F ∈ A, G ∈ B

}
.

Set Φ(k) =
∫
T
k( h̄

h
)dm, k ∈ L2(T). As h̄/h ∈ L∞(T), we get Φ ∈ (L1(T))∗. By (Lemma

5.22), we see that the angle 〈P+,P−〉 = ‖Φ|H1
0
‖, and by means of (Lemma 5.23), we can

express it in terms of h:

cos〈P+,P−〉L2(µ) = ‖Φ|H1
0
‖ = distL∞(T)

( h̄
h
, (H1

0 )⊥
)

= distL∞(T)

( h̄
h
,H∞

)
.

The last equality is the consequence of the relation

(H1
0 )⊥ = {g ∈ L∞ :

∫
T
gfdm = 0 for allf ∈ H1

0} = H∞.

Now, we conclude that cos〈P+,P−〉 < 1 if and only if logw ∈ L1, w = |h|2 for an outer

function h ∈ H2 satisfying distL∞(T)(
h̄
h
, H∞) < 1, that is (i) and (ii) are equivalent to (iv).

Proof of implication (iv) =⇒ (v):

Suppose distL∞(T)(
h̄
h
, H∞) < 1, where h is a outer and |h|2 = w. Then there exists

g ∈ H∞ such that ‖ h̄
h
− g‖∞ < 1. That is, for ε > 0, we have | h̄

h
− g| < 1 − ε a.e. on T,

and hence ||h|2 − gh2| < (1 − ε)|h|2 a.e. on T. Setting a = |h(ξ)|2 > 0, for ξ ∈ T, we see

that |a− gh2| < (1− ε)a.

Geometrically, it means that if α ∈ (0, π
2
) is such that sinα = 1 − ε, and A = {z :

| arg z| < α}, then we get gh2(T) ⊂ A (cf. Figure 1).

From (Lemma 5.24) we get gh2(D) ⊂ A, so log gh2 is analytic in D. We set v = −

Im log gh2 = − arg gh2 and get |v| = Re log gh2 + c = log |gh|2 + c, where c has to be

chosen such that ṽ(0) = 0. We obtain log gh2 = ṽ − iv − c and gh2 = eṽ−iv−c on T, we
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have | h̄
h
− g| < 1− ε, which implies that |1− |g|| < 1− ε, hence ε ≤ |g| ≤ 2− ε. Finally,

|h|2 =
eṽ−c

|g|
= eu+ṽ, where u = − log |g| − c ∈ L∞(T) and ‖v‖∞ < π

2
.

Proof of implication (v) implies (iv):

Let wdm = eu+ṽdm, where u, v ∈ L∞(T) are real valued and ‖v‖∞ < π
2
. Clearly

logw = u+ ṽ ∈ L1 and by (lemma 5.25) we have w ∈ L1(T). Hence there exists an outer

function h ∈ H2 such that |h|2 = w. Thus log |h|2 = u+ ṽ and log h2 = u+ ṽ+ i(u+ ṽ)∼ =

u + ṽ + i(ũ − v + c) for some constant c ∈ R. Setting g = e−(u+iũ)−ic we obtain, in view

of |g| = e−u, a bounded holomorphic function g ∈ H∞. Moreover,
h

h̄
g =

h2

|h|2
g = exp(i(ũ− v + c)− u− iũ− ic) = exp(−u− iv),

where ‖v‖∞ < π
2
. This gives the following estimates on T.

e−‖u‖∞ ≤
∣∣∣h
h̄
g
∣∣∣ ≤ e‖u‖∞ ,

∣∣∣ arg(
h

h̄
)g
∣∣∣ = |v| < π

(1− ε)
2

.

(cf. Figure 2). The value of (h
h̄
)g thus belongs to

D :=
{
z ∈ C : e−‖u‖∞ ≤ |z| ≤ e‖u‖∞ , | arg z| < π

(1− ε)
2

}
.

For λ sufficiently big and some δ > 0 we have B(λ, (1 − δ)λ) ⊃ closD or λ−1B(λ, (1 −

δ)λ) = B(1, 1 − δ) ⊃ λ−1 closD. Then λ−1 h
h̄
g ∈ B(1, 1 − δ) a.e. on T. In other words,

|λ−1(h
h̄
)g − 1| < 1− δ a.e. on T, and |λ−1g − ( h̄

h
)| < 1− δ a.e. T. As g ∈ H∞, this gives

dist L∞(T)(
h̄
h
, H∞) < 1. �

5.7. An example. Let ω(eit) = |t|α, t ∈ (−π, π), α ∈ R. Then for α ≥ 1 we have

1/ω 6∈ L1(T) and (eint)n∈Z cannot be uniformly minimal in view of Lemma 5.16. For

α ≤ −1, ω 6∈ L1. Thus, the only interesting case is α < 1.

First note that if the quotient ω1/ω2 and ω2/ω2 are bounded, then the sequence (eint)n∈Z

is a basis of L2(ω1) if and only if it is one of L2(ω2). Indeed, the identity map f 7−→ f is

an isomorphism from L2(ω1) to L2(ω2).

Next, let ω1 = ω and ω2 = (1− eit)α. Then

logω2 = log |1− eit|α = αRe arg(1− eit) := u.
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Necessarily, we get

ũ(t) = α arg(1− eit) = α arg(eit/2(e−it/2 − eit/2)

= α arg(eit/2(−2i sin t/2).

=

 α(t/2− π/2), ift > 0;

α(π/2− t/2), ift < 0.
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6. Transfer to the half-plane

In this section, we give an outline of the Hardy-space theory in the half-plane and

on the line. We restrict ourselves to the key results only: an isometric correspondence

between Hardy-space in the disc and in the half-plane, the canonical factorization, the

Fourier transform representation (Paley-Wiener theorem), and invariant subspaces.

6.1. A unitary mapping from Lp(T) to Lp(R). Let ω : D → C, ω(z) = i1+z
1−z , be the

usual conformal mapping of the disc D to the upper half-plane C+ = {ξ ∈ C : Im ξ > 0}.

The restriction to the boundary ω|T is a one to one correspondence between T r {1}

and R. The inverse ω−1, ω−1(x) =
x− i
x+ i

has Jacobian |J(x)| = 2

1 + x2
, x ∈ R. Hence the

mapping U = Up,

Upf(x) =

(
1

π(x+ i)

)1/p

f(ω−1(x)), x ∈ R

is an isomorphic isomorphism (unitary for p = 2) of the space Lp(T) onto Lp(R).

First, we give three descriptions of the image under U of the Hardy-space H2(T) ⊂

L2(T), then pass to arbitrary p, 1 ≤ p ≤ ∞. Clearly, UpH
p(T) is a closed subspace of

Lp(R).

6.2. Cauchy kernel and Fourier transform. The first description of U2H
2(T) is

straightforward.

Lemma 6.1.

U2H
2(T) = spanL2(R)

{ 1

x− µ̄
: Imµ > 0

}
.

Proof. Since

H2(T) = spanL2(T)

{ 1

1− λ̄z
: |λ| < 1

}
,

and U2 is an isometry, we have

H2(T) = spanL2(T)

{
U2(1− λ̄z)−1 =

Cλ

x− ω(λ)
: λ ∈ D

}
.

Clearly, µ = ω(λ) runs over the entire upper half-plane C+. �
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Now, we recall that Fourier transform F and its inverse F−1,

F(f)(z) =
1√
2π

∫
R
f(x)e−ixzdx,

F−1(f)(z) =
1√
2π

∫
R
f(x)eixzdx

are unitary mapping of L2(R) onto itself.

Lemma 6.2. U2H
2 = F−1L2(R), where L2(R+) = {f ∈ L2(R) : f = 0 on (−∞, 0)}.

Proof. Compute the inverse Fourier transform of the function χR+e
iλx ∈ L2(R+), where

Imλ > 0 :

F−1(χR+e
iλx) =

1√
2π

∫
R
χR+e

iλxeixzdx =
1√
2π

1

i(z + λ)
[ix(z + λ)]∞x=0 =

i√
2π

1

z − (−λ)
,

where −λ = µ runs, again, over the entire half-plane C+. Since F−1 is an isometry, Lemma

6.2 reduces to the proof of the following identity:

L2(R+) = span{χR+e
iλx Imλ > 0}.

The equality follows from the injectivity (classical Fourier uniqueness theorem) of the

Fourier transform F . Namely, let f ∈ L2(R+) and suppose that f⊥χR+e
iλx, for all λ with

Imλ > 0. Taking λ = i + y, y ∈ R, we get F(f χR+e
−x(y) = 0 for all y ∈ R. Hence

f χR+e
−x = 0 a.e. on R and so f = 0. �

6.3. The Hardy space Hp
+ = Hp(C+). Here we see from real line R to the half-plane

C+. We identify the subspace UpH
p ⊂ L2(R) with the space of boundary values of a

certain holomorphic space in the half-plane C+. Note that ω−1(z) = z−i
z+i

is a conformal

mapping from C+ to D. Hence the same formula as above,

Upf(z) =

(
1

π(z + i)

)1/p

f(ω−1(z)), Im z > 0

defines a holomorphic function in C+ for all f ∈ Hp(C+). Moreover, ω−1 is still conformal

at the boundary points r ∈ R and transfers a Stolz angle in C+, {x+ iy : |x− r| < cy},

into a Stolz angle in D. Now, Fatou’s theorem implies that the functions Upf, f ∈ Hp(D),

have non-tangential boundary limits (Up(f))R a.e. on R, Up(fT) = (Upf)R. Hence in order

to get another characterization of UpH
p(T), it remains to describe UpH

p(D) in intrinsic
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terms as a subset of Hol(C+). This is done in the next theorem. But, first we define Hardy

classes on C+.

Definition 6.3. Hardy space Hp
+ = Hp(C+), 0 < p ≤ ∞, is the class of functions

g ∈ Hol(C+) such that

‖g‖Hp
+

= sup
y>0

(∫
R
|g(x+ iy)|pdx

) 1
p
<∞,

with the usual modification for p = ∞. In order to compare Hp(C+) with UpH
p(D), we

need the following simple result.

Lemma 6.4. (i) Let γ be an arbitrary circle in D. Then∫
γ

|f(z)|p|dz| ≤ 2

∫
T
|f(z)|p|dz|

for all f ∈ Hp(D), 1 ≤ p <∞, here |dz| stands for the arc length measure.

(ii) Let g ∈ Hp(C+), 1 ≤ p <∞ and z ∈ C+, then

|g(z)| ≤
( 2

πIm z

) 1
p‖g‖Hp

+
.

Proof. (i) First let p = 1. For x ∈ L2(µ), denote by u∗ be the harmonic extension of u in

the unit disc,

u∗(z) =

∫
T
u(ζ)

1− |z|2

|ζ − z|2
dm(ζ), z ∈ D.

We show that u 7−→ u∗|γ is a bounded operator from L1(π) to L1(γ) of norm at most 4π.

Indeed, ∫
γ

|u∗(z)||dz| ≤
∫
γ

|u(ζ)|1− |z|
2

|ζ − z|2
dm(ζ)|dz|

=

∫
T
|u(ζ)|

(∫
γ

1− |z|2

|ζ − z|2
|dz|
)
dm(ζ)

= 2πr

∫
T
|u(ζ)|1− |c|

2

|ζ − c|2
dm(ζ),

where γ = γ(c, r). In the last inequality, we have used the MVT for harmonic functions

applied to the Poisson kernel Pz(ζ) = Re
(
z+ζ
z−ζ

)
. Since 2πdm(z) = |dz| on T, r ≤ 1 − |c|

and 1−|c|2
|ζ−c|2 ≤

1+|c|
1−|c| ≤

2
1−|c| , we get the desired inequality. For an arbitrary p, 1 ≤ p < ∞,

we have |u∗|p ≤ (|u|p)∗, from Holder’s inequality, and the result follows.
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(ii) Using the MVT in the disc, D = {x+ iy : |λ− (x+ iy)| < Imλ}, Holder’s inequality,

and what is sometimes called the “rolling a disk” trick:

|g(λ)| =
1

π(Imλ)2

∫
D

|g dxdy| ≤
( 1

(πImλ)2

)1− 1
p
(∫

D

|g|pdxdy
) 1
p

≤
( 1

π(Imλ)2

) 1
p
(∫ 2Imλ

0

dy

∫
R
|g(x+ iy)|pdy

) 1
p

≤
( 2

(πImλ)

) 1
p‖g‖Hp

+
.

�

The following theorem is one of the main result of this section.

Theorem 6.5. Let 1 ≤ p ≤ ∞. Then UpH
p(D) = Hp(C+).

Proof. If g ∈ Hol (C+), y > 0, and Uf = g, then∫
R
|g(x+ iy)|pdx =

1

2π

∫
Cy

|f(z)|2|dz|,

Where Cy is the circle in D having the interval [y − 1/y + 1, 1] as diameter and being

tangent to the unit circle T at the point 1. So it remains to verify that

sup
0<r<1

∫
T
|f(rξ)|p|dξ| <∞⇔ sup

y>0

∫
Cy

|f |p|dz| <∞,

for every f ∈ Hol (D).

The implication =⇒ is a straightforward implication of Lemma 6.4 (i).

To prove the converse, let g ∈ Hp
+. By Lemma 6.4(ii), g is bounded on every half-plane

Im ≥ y > 0. Hence g ◦ w is bounded on the disc int(Cy). Since the function (1 − z)−1

is outer on the int(Cy) and f = π
((

2i
1−z

)2
) 1
p
(g ow) ∈ Lp(Cy), we get f ∈ Hp(Cy) by

the integral maximum principle 3.26(iv). (We use the previous theory for the following

classes Hp(D) over disc D = int (Cy), instead of the unit disc D; the corresponding

modifications, including the very definition of Hp(D), do not cause any difficulties and

can be obtained by a linear change of variable). Now, applying Lemma 6.4(i) to the circle

γ(r) = {z ∈ C : |z| = r} ⊂ int(Cy), we get∫
γ(r)

|f(z)|p|dz| ≤ 2 sup
y>0

∫
Cy

|f(z)|p|dz|.
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In fact, the Poisson representation (Corollary 6.7) implies that for g ∈ Hp
+, the norms(∫

R
|g(x+ iy)|pdx

) 1
p

are monotonically increasing in y > 0 and tend to ‖g|R‖Lp as y → 0 (to see this, use

approximate identity properties of the Poisson kernel). This shows that ‖g|R‖Lp = ‖g‖Hp
+
.

�

Theorem 6.6. (R. Paley and N. Wiener, 1934 )

Hp(C+) = F−1L2(R+)

Proof. This is immediate from Lemma 6.2 and Theorem 6.5. �

6.4. Canonical factorization and other properties: The following properties are

straightforward consequences of the change of variables from Section 6.1, Theorem 6.5,

and the corresponding facts from Hp theory in the disc D.

Corollary 6.7. (Poisson formula) If f ∈ Hp(C+), 1 ≤ p ≤ ∞, then

f(x+ iy) =
1

π

∫
R

y

(x− t)2 + y2
f(t)dt, y > 0.

Corollary 6.8. (Boundary uniqueness theorem) If f ∈ Hp(C+), 1 ≤ p ≤ ∞ and f 6= 0,

then ∫
R

| log |f(x)|
1 + x2

dx <∞.

Corollary 6.9. (Blaschke condition and Blaschke product) If f ∈ Hp(C+), 1 ≤ p ≤ ∞,

and f 6= 0, then ∑ Imλn
1 + |λn|2

<∞,

where λn are the zero of f in C+ (counting multiplicities). The corresponding Blaschke

product (having similar properties as in D) is

B(z) =
∏
n

εn
z − λn
z − λ̄n

, z ∈ C+,

where εn = |λ2n+1|
λ2n+1

(by definition, εn = 1 for λn = i).
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Theorem 6.10. Each function f ∈ Hp(C+); 1 ≤ p ≤ ∞, has a unique factorization of

the form f = λBV [f ], where λ ∈ T, B is the Blaschke product constructed from the zeroes

of f, V is a singular inner function (an H∞ function having no zeroes in C+ and with

unimodular boundary values on R) of the form

V (z) = eiazVv(z) = eiaz exp

(
i

∫
R

1 + tz

t− z
dv(t)

)
,

where a ≥ 0, and v is a finite positive singular measure on R, [f ] is the Schwarz-Herglotz

outer factor of the form

[f ](z) = exp
( 1

πi

∫
R

1 + tz

t− z
log |f(t)| dt

1 + t2

)
, z ∈ C+

Proof. Just a change variable in the Riesz Smirnov Theorem 3.25. The only new detail

concerns the factor eiaz. Namely, changing variables in the integral for the singular inner

factor S of Theorem 3.25. We have to take care of the exceptional point 1 ∈ T, since it

may carry a positive mass, say a > 0. To do this, it is natural to extend the mapping w−1

to a bijection of R∪{∞} to T by simple setting w−1(∞) = 1. Now, the point mass aδ, of

the measure µ at 1 turns into the point mass aδ∞ of v at ∞, and replacing the measure

µ on T by its preimage v = w−1µ on R ∪ {∞}, we get eiaz as a part of the integral for

V = S ◦ w−1. We prefer to separate the point mass at infinity and write V = eiazVv. �

Remark 6.11. It is clear from the previous computations that other facts of the Hardy

Nevanlinna theory of Sections 3 and 4 in the disc can be transferred to the half-plane.

In particular, the properties of the inner outer factorization from subsections 4.2-4.4

still hold with corresponding modifications caused by the change of variables. For in-

stance, a function f ∈ Hp(C+) having an analytic continuation across a point x ∈ R has

singular representing measure zero in a neighborhood of this point. To find the point

mass of the singular measure, the logarithmic residues of Section 4 (to be added) can

be redefined and computed and so on and so on. In particular, the point mass at ∞ is

a = − lim
y→∞

1

y
log |f(iy)|.
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6.5. Invariant subspaces. Here we consider translation invariant subspaces of L2(R)

and their Fourier dual objects - character invariant subspaces.

6.6. Duality between translation and multiplication by characters. Define the

translation operator τs by

(τsf)(x) = f(x− s), x ∈ R, for s ∈ R.

This is a group of unitary operators on L2(R). A subspace E ⊂ L2(R) (closed, as always)

is said to be (translation) 2-invariant and if τsE ⊂ E for all s ∈ R, and (translation)

1-invariant if τsE ⊂ E for all s ≥ 0 but not for (all) s < 0. The Fourier image of the

translation operator τs is the multiplication operator by the corresponding character eisx

of the group R:

τs(Ff) = F(eisf), for all f ∈ L2(R).

Without any risk of confusion, we write eisx both for the function x 7−→ eisx and for the

multiplication operator by this function, f 7−→ eisxf. Hence, we have

τs = FeisxF−1,

that is, the groups (τs)s∈R and (eisx)s∈R are unitarily equivalent (conjugate) via the Fourier

transform.

We use the same terminology as above for eisx -invariant subspaces. A subspace E ⊂

L2(R) is (character) 2-invariant if eisxE ⊂ E for all s ∈ R, and (character) 1-invariant if

eisxE ⊂ E for s ≥ 0 but for (all) s < 0. Hence, E is an 1- or 2- character invariant if and

only if its Fourier image FE is a 1- or 2- translation invariant subspace.

Clearly, the Hardy space H2(C+) is a character 1-invariant subspace, and FH2(C+) =

L2(R+) is translation 1-invariant.

Below, we will derive analogue of the Wiener theorem 1.4 and Beurling Helson theorem

1.5 for character invariant subspaces. First, we prepare the transfer of these results to

L2(R) by means of the operator U2.
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Lemma 6.12. Let us = exp
(
s z+1
z−1

)
s ∈ R, and let E be a (closed) subspace of L2(R). The

E is a 2-invariant subspace (with respect to the shift operator f 7−→ zf) if and only if

usE ⊂ E, for all s ∈ R, and E is 1-invariant subspace if and only if usE ⊂ E, for all

s ≥ 0, but not for (all) s < 0.

Proof. If b ∈ H∞, and E is a z-invariant subspace of L2(T), then bE ⊂ E. Indeed, by

DCT, we have

lim
r→1
‖bf − brf‖2 = 0, for all f ∈ E,

where br(z) = b(rz).

On the other hand, znf ∈ E, for n ≥ 0 and therefore, brf ∈ E, since Taylor series of

br is absolutely convergent on T. Hence bf ∈ E. The same holds true for b̄ ∈ H∞ and

z̄−invariant subspace E. These prove the “only if” part of the lemma.

By analogous reasoning, to prove the converse, it suffices to show that the function

z is the bounded pointwise limit of functions φs =
us − (1− s)
us − (1 + s)

as s → 0+. We have

Re(1 − us(ζ)) ≥ 0, and hence |φs(ζ)| ≤ 1, for ζ ∈ T. On the other hand, using the

standard formula

esw = 1 + sw + o(s) as s→ 0+, we easily get lim
s→0

φs(ζ) = ζ for ζ ∈ T \ {1}. �

Theorem 6.13. (P. Lax, 1959 ) Let E be a subspace of L2(R).

(i) E is a (character) 2-invariant subspace if and only if E = χΣL
2(R) for a measurable

subset Σ ⊂ R.

(ii) E is a (character) 1-invariant subspace if and only if E = FqH2(C+) for a measur-

able function q on R with |q| = 1 a.e.

Proof. Lemma 6.12 shows that E is 2 or 1-invariant if and only if its preimage U−1
2 E ⊂

L2(T) has the same property with respect to the shift operator on L2(R). The results thus

follow by applying theorems 1.4, 1.5 and Theorem 6.5. �

Corollary 6.14. Let E be a subspace of L2(R).
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(1) E is translation 2-invariant if and only if E = FχΣL
2(R) for a measurable subset

Σ ⊂ R.

(2) E is translation 1-invariant if and only if E = FqH2(C+) for a measurable func-

tion q on R with |q| = 1 a.e.

Indeed, it suffices to use Theorem 6.13 and duality of Subsection 6.6.

Corollary 6.15. (i) If F ⊂ H2(C+), then spanH2
+
{eisxF : s ≥ 0} = ΘH2(C+), where

Θ is the g.c.d of the inner factors of f ∈ F.

(ii) If F ⊂ L2(R+), then spanL2(R+){τsF : s ≥ 0} = F(ΘH2(C+)), where Θ is the g.c.d

of the inner factors of F−1f, f ∈ F.

(iii) If f ∈ L2(R), then spanL2(R){eisxf : s ∈ R} = L2(R) if and only if f 6= 0 a.e. on R.

(iv) If f ∈ L2(R), then spanL2(R){eisxf : s ≥ 0} = L2(R) if and only if f 6= 0 a.e. and∫
R
(1 + x2) log |f |dx = −∞

(v) If f ∈ L2(R), then spanL2(R){τsf : s ≥ 0} = L2(R) if and only if Ff 6= 0 a.e. on R

(vi) If f ∈ L2(R), then spanL2(R){τsf : s ≥ 0} = L2(R) if and only if Ff 6= 0 a.e. and∫
R
(1 + x2) log |Ff |dx = −∞.

Indeed, it suffices to use Theorem 6.13 and Corollary 6.14 and the corresponding prop-

erties of z-invariant subspaces of L2(R).

6.7. Cauchy kernels and Lp- decomposition.

(a) Show that Hp(C+) = spanL2(R)

{ 1

x− µ̄
: Imµ > 0

}
for 1 ≤ p ≤ ∞.

(Hint: Use Hp(C+) = UpH
p and solve Upf = 1

x−µ̄).

(b) Let 1 < p < ∞. Show that Lp(R) = Hp(C+) ⊕ Hp(C−), where ⊕ stands for the

orthogonal sum for p = 2 and direct sum for p 6= 2.

(c) Let

Cf(z) =
1

2πi

∫
R

f(t)

t− z
dt, z ∈ C \ R

be the Cauchy integral of f ∈ Lp(R), 1 ≤ p <∞, then the followings are equivalent.
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(a) f ∈ Hp(C+).

(b) Cf = f∗, where f∗ stands for the Poisson integral extension.

(c) Cf(z) = 0 for Im z < 0.

Theorem 6.16. (The Paley Wiener theorem) An entire function E is called of exponential

type if

lim|z|→∞
log |E(z)|
|z|

<∞;

the limit itself is the type of E. Let Ea = set of all entire functions of exponential type

≤ a. For a > 0, show that the followings are equivalent.

(i) E ∈ Ea and E|R ∈ L2(R).

(ii) There exists f ∈ L2(R) such that Ff = E and supp f ∈ [−a, a].

(Hint: For (ii) =⇒ (i), estimate the exponential type of E applying the Cauchy inequality

to the Fourier transform of f :

|E(z)| =
∣∣∣ ∫ a

−a
e−ixzf(x)dx

∣∣∣ ≤ ‖f‖2

(e2a| Imz| − 1

Imz

) 1
2 ≤ (2a)

1
2 ea| Imz|.

Moreover, ‖E‖2 = ‖f‖2 by Plancherel’s theorem:

(i) =⇒ (ii): First suppose that E|R ∈ L2(R) ∩ L∞(R). Then by Phragmèn-Lindelöf

theorem |E(z)| ≤ ‖E‖∞ea| Imz|, for z ∈ C, implies

|Eλ(z)| = iλ

z + iλ
eaizE(z) ∈ H2(C+), λ > 0.

The Paley Wiener theorem 6.6 entails that F(Eλ) = 0 a.e. on (−∞, 0) and hence

F(eaizE) = 0 on (−∞, a) (because lim
λ→∞
‖Eλ − eaizE‖L2(R) = 0). Therefore, F(E) =

τaF(eiazE) = 0 a.e on (−∞,−a). Similarly F(E) = 0 a.e. on (a,∞.) and we get (ii).

In general case, replace E by Eε(z) =
∫
RE(z − t)φε(t)dt, where φε(t) = ε−1φ( t

ε
), φ ≥ 0

is compactly supported in R. It is easy to see that Eε ∈ Ea+ε and supp (Eε) ⊂ [−a−ε, a+ε],

and we have lim
ε→0
‖Eε − E‖L2(R) = 0.

Question 6.17. (a) Show that f ∈ H2(C+) if and only if f ∈ L2(R) and F(f) =

0 a.e. on R.
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(b) Find f ∈ L1(R) ∩ L2(R) such that L2(R) = spanL2(R)(τsf : s ∈ R) and L1(R) 6=

spanL1(R){τsf : s ∈ R} (Hint: Consider f = χ(a,b))

(c) Riesz Brother’s theorem for R: Let µ be a complex Borel measure on R such that∫
R e

istdµ(t) = 0 for all s > 0. Show that µ << m.
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