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PRELIMINARY

Let us denote the unit circle in the complex plane by T = {z € C : |z| = 1}. Write
z=2e%0<60<2r. Then T = {e? : 0 < § < 27}. Consider p : R — T defined by
¢(x) = €. Then ¢ is a group homomorphism with ker(yp) = 27Z. Hence T = R/27Z. If
f:T — C, then f can be identified on R by f : R — C via the relations

f(z) = f(z + 27k) = f(2),
where k € Z and ¥ € [0,27). That is, the function on T can be identified with 27
periodic functions on R, which allow understanding the notions of continuity, Lebesgue
integrability, etc. on the unit circle T. Further, the arch length measure on T can be

identified with the restriction of Lebesgue measure on [0, 27) in the following way.

Denote dm = %, where m can be realized by m{e? : 6, < 6 < 6,} = % with

0 < 6y — 6y < 2m. Here m is known as the normalized Lebesgue measure on T 2 [0, 27).
Hence if f is continuous on T, then ,

(0.1) /f(z)dz = / ' f(t)dmi(t).

Now onwards, we shall identify Erunction f OI[I) R by f itself and dm(t) = dt. Moreover, m

is translation invariant on [0, 27) and
2 2

Ft—t)dt= [ fl)dt,
where t, € [0, 27). " ’

0.1. Complex Borel measure. The Borel g-algebra B(T) is the smallest o-algebra
generated by all open subsets (open arches) in T, where every member of B(T) is known

as a Borel set. For simplicity, we write B for B(T).
1
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A function f : T — C = CU{oo} is called Borel measurable if f~*(U) € B(T) for every
open set U of one point compactification space C. Typically, U is either an open subset
of C in its usual topology or U = C\K , where K is a compact subset of C.

A complex Borel measure on T is a set function p : B(T) — C satisfying u(0) = 0 and
(0.2) w(E) =" u(By)
j=1

for every countable partition {B;}:2, of E' € B(T). It follows that the series in the right-
side of (0.2) must be absolutely convergence unless p is a non-negative measure. Thus,
|(T)| < oo necessarily satisfied if g is not a non-negative measure. Consequently,
satisfies

o0 o

p(l By) = u(B;)
j=1 j=1

for every disjoint sequence {B,}5°, _in B(T). We denote the space of all finite complex
Borel measures by M(B). For u € M(B), define
liall = sup { S 1By \J By =T}
j=1 j=1

The space (M(B), || -||) is a Banach space. Here || - || is known as the total variation norm,

and [|p|| = [p[(T).

Exercise 0.1. Show that

lm) = { Sl B =7} = sup{imwi)r : UB _1).

(Hint: If {B;}$2, is a countable cover of T, then Z |u(B;)| < 00.)

i=1

For n € M(B), define a linear functional 7, on C(T) by T,(f) = [ fdu. Then
T

| T, = sup{|T.(f)] : Iflle < 1} = |lp||. Thus, every p € M(B) defines a bounded

linear functional on C(T) and vice-versa due to the following result.

Theorem 0.2. (Reisz representation theorem) Let T' be a bounded linear functional on

C(T), then there exists unique p € M(B) such that T =T,.
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1. INVARIANT SUBSPACES OF L?(1)

In this section, consider shift-invariant subspaces of square integrable functions on T.
Let
IA(T, 1) = {f : T — C is measurable and]| f|2 = / |F2dp < oo},
T

where 1 is a finite complex Borel measure on T.
2m

For f € L'(T,m), we define the Fourier coefficients of f by f(n) = [ e~ f(t)dt, where

0
00

n € Z, and the corresponding Fourier series is f ~ Y e™® f (n). Consider an operator
S on L*(T,m) defined by o

(1.1) S(f)(z) = 2f(2),

where z € T. Then (/Sf\)(n) = f(n—1). That is, the Fourier coefficients got a right-shift
due to the action of S. The operator S is known as the shift operator. The following

question can be raised.
Question 1.1. What are the shift-invariant subspaces E of L*(T, u)?

That is, when zFE C E? We shall use the notation closE for the closure of F, and E,
the complex conjugate of E. We always consider £ to be a closed subspace unless it is

specified.
Example 1.2. When f € L?(u), the space E; = span{z"f : n > 0} is shift-invariant.

Further, what are f € L*(u) such that E; = L*(u)? If so, we say f is a cyclic vector.
More generally, we consider identifying f € L?(u) such that zE; = E;.

Let E be a closed subspace of L2 Typically, we discuss the characterization of the
following two distinct cases.

We say FE is simply invariant (or 1-invariant) if zE' C F and zFE # E. On the other
hand, when zF = E, we say F is doubly invariant (or 2-invariant). Note that zF = F
if and only if ZE = F (since 2z = |z|?> = 1). This means zF C E and zE C E, and hence

FE is known as reducing space as well.
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For a measurable set 0 C T, the space E, = x,L*(1n) = {xof : f € L*(n)} = {f €
L*(p) : f =0 a.e.u onT \ o} satisfies 2E, = E,,.

Question 1.3. Does every reducing subspace look like F,7

Theorem 1.4. (Norbert Wiener) Let E C L*(T,u). Then zE = E if and only if there

exists a unique (up to set of measure zero) measurable set o C T such that E = x,L*(p).

Proof. Suppose zE = E. Let Pg be the orthogonal projection of L?(u) onto E. Set
X = Pgl (the evaluation of Py at the constant function 1). Then xy € E and 1 — x =
(I — Pg)l € E+. But 2"E C E, implies 2"y € E and hence 2"y L 1 —, Vn € Z. That
is,
(1.2) /z"x(l —X)du=0,Vn € Z.
Let g = x(1 — x), then dv = gqu is a finite complex Borel measure because of y € L(u).
Thus, by , T, : L*(u) — C defined by T,(f) = [ fdv satisfies T,(z") = 0. Since
trigonometric polynomials are dense in C(T), it followg that 7,,(C(T)) = {0}. By Riesz
representation theorem, 7, = 0 and hence v = 0. (Note that ||T,| = |lv||). That is,
g = x(1 — x) = 0. This implies that y = |x|?>. Thus, x takes values either 0 or 1. Let
o={teT: x(t) =1}. Then o is measurable. For simplicity, let P denotes the space of
all trigonometric polynomials on T. Since x € E, we get 2"y € E and hence yIP C E. This
implies clos (xPP) C E. On the other hand, clos (xPP) = xL*(u), as we know clos P = L?(p).
Thus, xL?(u) C E. Therefore, it remains to show that yL?(u) = E.

For this, let f € E and f L 2™y, Vn € Z (since clos (x\PP) = xL?(n)). Since z"f € E
and 1 —x L 2"f, Vn € Z. It follows that
(1.3) [ #an= [ 250 vdu=o
Vn € Z. Thus, is satisﬁqfed by every qu)lynomial p € P, and hence for every function
g € C(T) in place of p. By Theorem we get fx = f(1 —x) =0 a.e. pu. This implies
that f =0 a.e. u. Thus, YL*(T) = FE. |
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1.1. Simply invariant subspaces of L?(u). Let B = {2"},cz. Notice that the Fourier
series of f € L*(T,m) with respect to the orthonormal basis B is f ~ 3. f(n)z", where
f(n) = [ fz"dm. This implies that L2(T,m) can be identified with 12(Z). Since (¢ f)(n) =
f (n—k)i,r multiplication operator f — z f acts as a right-shift operator on (?(Z). And hence
it is legitimate to consider the space
H? =span{z": n >0} = {f € L*(m) : f(n) =0,n < 0},

known as Hardy space. The space H? is a simply invariant subspace of L?(m), and
plays a prominent role in complex and harmonic analysis H2.

The following theorem says that all the simply invariant subspaces have a somewhat

similar structure.

Theorem 1.5. (A. Beurling, H. Helson) Let E be a closed subspace of L*(T) and zE C
E, zE # E. Then there exists a unique © (up to constant of modulus 1) with |©| =1 a.e.
m on T such that E = ©H?.

Notice that f s ©f is an isometry on L*(m), and hence ©H? is closed.

Proof. Since zE C E (zE # E), we consider the orthogonal complement of zE in E, and
denote it by £ © 2E = (zE)t. Then E © zE is non-trivial, and consider © € E © zE
with ||©|]s = 1. Notice that © € E and © L zE. Hence 2"© € zE,Vn > 1 and
O 1z2"0,Vn > 1.
/27T 00z"dm = /27T |©)%2"dm =0, Vn > 1.
By taking complex conjougate, we have '
/27T |©]22"dm =0, Vn > 1.
0

—

This implies that (|0]2)(n) = 0,Vn € Z ~ {0}. By the uniqueness of Fourier series, it
27

follows that |©]* = ¢ (constant) a.e. m, and we get 1 = [ [©*dm = c. Thus, |0] =1
0

a.e. m. Clearly, f — ©f is an isometry. Note that ©® € E. Hence 2"0O € E, Vn > 0,

implies linear span of {2" : n > 0} has the same property. Let P, = span{z" : n > 0}.
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Then OP, C F and clos (P, ) = O clos(P,) = ©H? Thus, ©H? C F. It only remains
to show that © H? coincides with E.

Let f € E and f L ©H? We claim that f = 0. Since f L ©H? we get f 1L ©z" Vn >
0. Also, f € E implies z"f € zE,Vn > 1 and hence z"f L ©,Vn > 1 since © 1 zF.
Thus,

/f@Z”dm =0,Vn>0 and/z”f@dm =0,Vn2>1
That is, (7(3)(7@) j 0, Vn € Z. This implies fg = 0 a.e. m. Since |©] =1 a.e., we get
f=0ae m.
Uniqueness: Let ©;H? = ©,H? and |0©,] = |0;] = 1 a.e. on T. Then ©,0,H? = H?
and we get ©,0, € H?. Also, by symmetry 0,0, € H?, or ©,0, € H2. But H>N H? =

constant. (Hint: If f € H?, then f(n) = 0,n < 0 and f € H?, then (?)(n) = f(—n) =
0, n < 0. This means f(n) = 0,¥n € Z ~ {0}.) Hence ©,0, = ¢. Since |0,]|0y] = 1, we
have ©; = ¢©O,, where |c| = 1. O

Corollary 1.6. (Beurling theorem) Let E # {0}, E C H? and zE C E. Then there exists
© € H? with |©| =1 a.e. on T such that E = OH?.

Proof. 1t is impossible that ZE C E. On the contrary, suppose this could be the case. Then
for f € E with f # 0, there exists n € N such that f(n) # (0. By assumption, 2" f € E.
However, (Eﬁl\f)(—l) — f(n) # 0 implies 2"t f ¢ H? leads to a contradiction. This
means F is simply invariant, and in view of Theorem (Beurling-Helson), it follows

that £ = ©H? and © € H? by definition of H?. O

Definition 1.7. A function © € H?, with |©| =1 a.e. is called inner function.

1.2. Uniqueness theorem in H2.

Theorem 1.8. If f € H? and f = 0 on a set of positive measure, then f =0 a.e. on T.
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Proof. For f # 0,E; = span{z"f : n > 0} C H? and zE; C E; = ©H?, where O
is an inner function. Let ¢ = {z € T : f(z) = 0}, Then m(o) > 0. Let us verify
that g|, = 0, Vg € Ey. Since g € Ey, there exists sequence p, € P, (the space of all
polynomials) such that p,f — g in L?*(m). Hence

0§/|9|2dm:/|g—pnf|2§||g—pnf\|§—>0asn—>oo.

Implies g|, = 0 a.e. m. In particular, for g = ©, ©|, = 0, which is a contradiction. O

1.3. Invariant subspaces of L*(;). (Absolutely continuous and singular subspaces)

Let p be a finite Borel measure on T, and E C L?(u) with zE C E. We consider
invariant subspaces of L?(u) which are based on Lebesgue decomposition of y. A measure
w is called absolutely continuous with respect to m if m(B) = 0 implies v(B) = 0,
where B € B and we write v < m. By Radon-Nikodym theorem, there exists a positive
integrable function w such that dv = wdm. That is,

/ fdv = / fwdm
T T
for each Borel measurable function f on T.

A measure v is called singular with respect to m if it is concentrated on a set C' of
Lebesgue measure zero. That is, v L m if v(B) = v(BNC) for every B € B(T). Let u be
a finite and positive Borel measure on T, then by Lebesgue decomposition,

= ftg + ps, where pu, < m and pg L m.

[ [ 1rPan+ [ 112,

By this, we can construct an orthogonal decomposition of f. Let ¢ be the concentration

So, if f € L?(u), then

set for pg. Then

(1.4) L2()) © L2() and L3(s1,) © L¥(un) and L2(s) 1 L2(1).
Now, f = fXx1<s + [Xo = fa + fs. This means

(15) 12() = L2(1a) & L2 ().
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The subspaces L?(u,) and L?(u,) are invariant subspaces and are known as absolutely
continuous and singular spaces, respectively.

We need the following results in order to prove the main result about invariant subspaces

of L2(u).

Lemma 1.9. Let p be a finite complex Borel measure on T.
(i) If (d,u fe du(t) =0, for alln € Z, then u = 0.

(i1) If (du)( )= O, for allm € Z ~ {0}, then du = cdm.

Proof. (i) Let f € C?*(T), then f is Borel measurable and we have

T.(f) = / F(t)dult)

= [ (S dmem)ante

nez

= Z f / e™du(t) (By Fubini’s Theorem)

neL

= 0 (By assumption).
Hence T},(f) = 0 for all f € C*(T). Since C*(T) is dense in C(T), by Theorem 0.2} we get

nw=0.
(ii) From the given condition and similar to the proof of case (i), we can write
[ ftautt) = fo) [ = ur /f
Thus, dp = pu(T)dm, where dm = dt. O

Let T': H — H be an isometry (or T' € iso(H)) on the Hilbert space H. A subspace D
of H is called wandering if 7D L T"D for m # n (m,n > 0).

Lemma 1.10. (H. Wold, A. Kolmogorov) Suppose T' € iso(H) and TE C E. Let D =
ESTE. Then D is a wandering subspace of T, and E = < > EBT"D) ® < N T"E) =
n>0 n>0

Ey® Ew, where T is unitary, and T'|g, is completely non-unitary (i.e. if E' C Ey and

TE' C E' implies T'|g is not unitary).
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Theorem 1.11. (H. Helson 1964) Let dp = wdm + dus be the Lebesgque decomposition
of a positive finite Borel measure yu and let E C L*(u) be simply invariant. Then there
exists 0 C T with m(o) =0 and a measurable function © such that

E=Ey® E, =0H?® x,L*(u,), where

OH* C L*(tta), XoL*(1ts) C L*(p1s) and
(1.6) 102w = 1.
Conversely, if o is measurable and © wverified (@, then OH? ® o L*(us) is simply in-

variant.

Proof. Set D = E&2E = (zE)* # {0} and let £ = (¥ 2"D) @ ( () 2"E) = By ® Euc
be the Wold-Kolmogorov decomposition of E. Let © nEZOD with H@TEOZ 1, then © € £
and © | zFE. This implies 2"0© € zE, Vn > 1, and hence 2"0© 1. OV n > 1. That is,
/(z”@)@d,u = / |©]22"du =0, Vn > 1.
And by conjugation : T
/ 1©22"du =0, ¥n > 1.

T
Thus, (‘@/PEL)(TL) =0,Vn € Z ~ {0}. By Lemma (ii), we get |©*du = cdm. But,
1= [|8*du = c [ dm = c. Thus,

' ’ dm = |0*du

= |0 dpuq + 0 dps

(1.7) = |O]Pwdm + |O]*dps.

Implies |[©*> = 0 a.e. p, on T (because m has no singular part) and dm = |©O]*wdm
implies [©]?w = 1 a.e. m. By Wold-Kolmogorov Lemma [L.10} restriction z|p_ is unitary,
2B, C By = E @ Ey, and z|g, is non-unitary on every section of Ey, etc. Thus, we
conclude that zE,, = E.,. By Wiener theorem, E,, = x,L?*(i) for some o C T. As © €
D C Ey L E, implies © L x,L?*(i). In particular, this implies [ ©Odu = [ |©*du = 0.
Hence O, = 0 a.e. p. But © # 0 a.e. m implies m(c) =0 (sinceodm = |@|2Zl,u). Thus, in
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view of we obtain

B = XoL* (1) = X0 L*(1s) C L (1.
We have already shown that D C L*(u,), because D C FEy 1 E, = L*(us) implies
D C L*(pta). Therefore, By = Y. @2"D C L*(u,). Also, span{z"© : n > 0} C E, since
© € Ey. We claim that Ey = sg%{z"@ :n > 0}.

On the contrary, suppose there exists f € Eyospan{z"© : n > 0}. Then f 1 2"O, Vn >
0. Recall that © | zFE. But f € E, implies 2" f € F and hence z"f 1 ©, Vn > 1. Thus,
/fmdu =0Vn >0 and [ 2"fOdu=0,Vn>1.

That is, (@)( ) =0Vn € Z. By Lemma ( ), it implies that fOdu = 0. Since © # 0
a.e. mand f € Ey C L?(u,), it follows that f = 0. Now, by Parseval identity, it is easy

to verify that

span{z"©® :n >0} = {Zanz”@ : Z lan)? < oo}
n>0 n>0
(Notice that {2"©},>¢ is an orthonormal set in L?(,), since du, = wdm and |0)*w = 1.)

Further, it is easy to see that

= @{ Zanz” ; Z la,|? < oo} = OH".

n>0 n>0

Indeed, f — Of is an isometry from L?*(T,dm) onto L?*(du,) = L*(wdm). That is,

[ 1s2dm - /|@f| i,
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2. FIRST APPLICATIONS

We have seen that there is one to one correspondence between simply invariant subspace
of L?(u1) with the set of measurable unimodular functions (inner functions) due to Helson’s
theorem. This congruence opens many possibilities to apply Hilbert space geometry and
operator theory to L?(u1) and vice-versa. Here we discuss inner-outer decomposition of the
Hardy class functions, Szego infimum, and Riesz brother’s theorem for “analytic measure”.
That is, for which positive measure g on T, the “analytic half” P, = span{z" : n > 0} is

dense in L*(T, u).

2.1. Some consequences of Helson’s theorem. Let p be a positive Borel measure
on T with du = wdm + du,. Notice that if zE C E C L*(u), then E = E, ® E,,
where 2FE, C E, C L*(i,), because E = OH? + x,L?*(u,), where ©H? C L?(u,) and
Xo L2 (1ts) C L (ps)-

(a) If p = ps, then zE C E C L*(us), implies zE = E, because, by Helson’s theorem
m, we already have E = x,L*(u5), which is 2-invariant.

(b) Show that for du = du, = wdm, the followings are equivalent:
(i) There exists E such that 2E C E C L*(114)-
(ii

(i

)
) There exists © such that |0]°w =1 a.e. m.

) w > 0 almost everywhere m.

(iv) m is absolutely continuous with respect to p,.

(¢) f dp = dp, = wdm and zE C E C L*(u,), then E = ©H? with |0]?w =1 a.e. m.

2.2. Reducing subspaces. Let f € L*(u) and du = wdm + dus. We look for sufficient
conditions that ensure that Ef is reducing. If there exists measurable set e C T such
that m(e) > 0 and f|. = 0. Then Ey is a reducing subspace, and there exists 0 C T \ e
such that E; = x,L*(p). In fact, 0 = {z € T : f(z) # 0}. On the contrary, suppose
2E; C E;. Then by Theoremwe get By = OH* @ xL*(pis), and hence f € E; implies
f = fao+ fs, where f, = ©h, h # 0 a.e. m (by Theorem , since h € H?). This implies
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fa # 0 a.e. m, which is impossible because f|. = 0 and m(e) > 0 implies f,|c = 0 with
m(e) > 0. Thus, By = zE; = x,L*(u) for ¢ C T (by Wiener theorem). Notice that
E; = span{z"x1.f : n > 0} = xreFEf = x,L*(p) and 1 € L?*(p), implies ¢ C T\ e.

Indeed, o0 = {z € T : f(2) # 0}, which is defined up to a set of u measure zero.

2.3. The problem of weighted polynomial approximation. We know that the space
of trigonometric polynomials P = span{z" : n € Z} is dense in L?(u) for every positive and
finite measure g and 1 < p < co. Let P = span{z" : n > 0}. One of the main problems is
describing the closure of P in L?*(y). Denote H?(p1) = closP|;2(,). The most important
part of this problem is to distinguish between the completeness case H?(u) = L*(u1), from

the incompleteness case H?(u) C L*(p).
Corollary 2.1. H?(u) = H?*(pa) ® L*(ps).

Proof. H*(u) = span{z™ : n > 0}. By Helson decomposition H*(u) = E, ® F, with
E, C L*(u,) and E, C L*(us). Since we know that zE, = F,, by Wiener theorem,
Es = xo L?(us) with m(c) = 0. Since 1 € H?(u1), we have 1 = 1, + 1, with 1, # 0 a.e. .
But 1, € E, = x,L*(11s) implies xo L?(j1s) = L*(jus).

Further, (P,), C E, implies clos (P,), = H?*(u,) C E,. But, for f € E, C H*(n),
implies there exists p, € Py such that ||f — pullz2(y — 0. Since ||f — pall7zy = IIf —

pn”%%“a) + ||Pn||%2(us)a we get f € H?(p,). (Since f =0 ae. ps.)

Remark 2.2. Note that for H?(u,), the closure of P, in L?(ju,) has two possibilities:

(i) zH*(pa) = H*(po) and hence by Wiener theorem H?(p,) = XoL*(ita) = L*(ia),
because 1, € H?(j,) implies that there does not exist o C T such that m(T~ o) > 0.
(i1) 2H?(pa) © H?(1a)(C L*(q)), and hence H?(pu,) = OH? with |0]2w = 1.

The following results help to distinguish the above two cases.
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Lemma 2.3. H?(u) is reducing (and hence H?*(u) = L*(u)) if and only if z € H*(p).

Proof. If H*(u) is reducing, then z € H?(u) is trivial. Suppose z € H?(p), then exists
pn € Py such that ||Z — py||2(y) — 0. Let ¢ € P,. Then

[ 120 amuPdie <l [ Jz = pul? > 0 asn > 0.
This implies ZP, g H?*(u), or Py C zHQj(Tu) (closed). Hence H?*(u) C zH?*(p), i.e.
ZH?(u) C H*(p). But zH?*(u) € H?*(p) implies zH*(u) = H?*(p). Now, it is clear from
Wiener theorem and theorem [1.8| that H?(u) = x,L*(1) = L*(p). O

Corollary 2.4. H*(u) = L*(p) if and only if dist (1, H3 (1)) = 0, where HZ(u) is the

closure of span{z" :n > 1} in L*(u).

Proof. Let H*(u) = L*(p), then z € H?(u), implies dist (1, HZ(u)) = dist (z, H*(p)) = 0
On the other hand, if dist (1, H2(x)) = 0, then z € H?(u), and hence H?(u) = L*(p). O

Note that the quantity
dist? (1, H3(p)) = inf /|1 —plAdp

is known Szeg6 infimum, where P = span?ip :n > 1}

It can be seen that dist(1, H2()) depends only on the absolute part of the measure
p. Let du = wdm + dus be the lebesgue decomposition of u. As similar to Corollary [2.1]
it can be seen that HZ(u) = HZ(ua) ® L*(us). We also use the fact that if M; and M,
are subspaces of a Hilbert space H such that M; L M, then Py,aen, = Pu, + Py, for
M, 1 Ms. Thus, we can write

dist™(1, H3 (1)) = 1Pz L Iz
= (Prz(ua) ® Progun) L (o + 1s)ll 2
= [|Pr2(ua) L Lall72(, (sincels € L*(us))

= 1nf/|1—p|2wdm

peP?
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The evaluation of Szeg6 infimum is intimately related to the multiplicative structure of

H?.

2.4. The inner-outer factorization. Recall that a function f € H? is called inner if

|f| =1 a.e. on T. On the other hand, f € H? is called outer if E; = H?

Theorem 2.5. (V. Smirnov, 1928) Let f € H? and f # 0, then there exists an inner
function finn € H? and an outer function fou € H? such that f = fipnfour- Moreover,

this factorization is unique and E¢ = fi,, H?.

Proof. Note that E; C H?, E; # {0}, and E; is not reducing, else z € H?. Here, E; =
span{z"f : n > 0} C H? By Theorem [L.5 we have E; = ©H?, where |0] = 1 a.e.
m. Let fin, = O, then f = Og, where g € H?. We claim E, = H? Let h € H?. Since
E; = ©H? and ©h € ©H?, there exists p, € P, such that p,0g = p,f — Oh inL*. But,
multiplication by an inner function is an isometry, we get
Ipng = hll2 = 1©(png — h)]l2 = 0.

Hence, E, = H 2. Here g = fou is desired outer function.
Uniqueness: Take f = fi fo, where f; is inner and f5 is outer. As f; is inner, h — fih is
an isometry, and hence as E;, = H?, we get

fanH? = Ey =span{z"fif, : n > 0} = fispan{z"fo: n >0} = f1H",
By the uniqueness of the representing inner function of the simply invariant space Ey
(cf. Theorem and Corollary [1.6)), we get fin, = Afi1 with [A| =1, and Afi four = f1 /o
implies four = Afa. O

2.5. Arithmetic of inner functions.
Definition 2.6. Let ©,, O, be two inner functions in H2. We say ©, divides O, if g—f € H?.

Equivalently, ©; divides O, if and only if ©; H? D ©,H?. For this, if O, = ©0,, then ©
is necessarily inner, and ©,H? = ©,0H? C ©,H?, since ©H? C H?2. On the other hand,
if ©,H? D ©,H?, then we get Oy € ©;H? implies © = 8—? e H?.
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We deduce the following two elementary properties:

Let © = gcd{©;, 05}, the greatest common divisor of ©; and ©5. Then

(i) span {©,H% ©,H?} = OH>

(i) ©1H? N O, H? = OH?, where © = lem{0y, 0,}.
Proof. (i) ©yH? C span{©,H? ©,H?} = ©OH?; k = 1,2 for some inner function © (by
Beurling’s theorem) implies © divides Oy ; k = 1,2. Let ©' be another divisor of Oy : k =
1,2. Then ©'H? D ©,H?, and hence ©'H? D span{©,H?; k = 1,2} = ©H?. This implies
©' divides © and thus © = ged{Oy; k = 1,2}. The proof of (ii) is similar to (i). O

Definition 2.7. Let {©; : i € I} be a family of inner functions.
(i) © = ged{©; : i € I} if O divides each ©;, and © is divisible by every other inner
function that divides each ©;.
(ii)) © = lem{©; : i € I} if each ©; divides © and © divides every other inner function
that is divisible by each ©;
Convention: In case the ged or the lem does not exist, we write ged{©; : i € [} =1

and lem{©; : 1€ I} = 0.

Corollary 2.8. span{©; € H?> : i € I} = OH?, where © = gcd{©; : i € I} and
NO,H? = OH? where © = lem{O; : i € I}.

Corollary 2.9. Let F be a proper subset of H?. Then span{z"F :n > 0} = ©H?, where
© = gcd{ finn : [ € F\{0}}, and fin, stands for inner factor of f.

Proof. We have span{z"F : n > 0} = span{fi..H> : f € F\ {0}}. (By Smirnov’s
theorem). By applying Corollary [2.8| we get the required. O

2.6. Characterization of outer functions.

Theorem 2.10. Let f € H?. Then the followings are equivalent:

(i) f is outer
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i) f is a divisor of the space H?, i.e. if g € H? and % € L?, then % ¢ H?.
f f

Proof. (ii) = (i): Let f = finnfouw be an inner-outer factorization of f. Then fi, =
f% = % € L? because of fi,, € H?> C L% By (ii), we get fin, € H?. But fi,, € H?
implies fin, = A (constant) with |A\| = 1. Hence f = A fou.

(i) = (ii): Given f is outer, we have E; = H?. Since 1 € H?, there exists p, € P such
that p,f — 1in L2 Let g € H?> and h = 4 € L?. Then

@) g == [ Ipuf = 1B < paf = Ul > 0 asn - o

T T
But p,g € H?, implies (p,g)(k) = 0 if & < 0. Since ¢ — ¢(k) is continuous linear
functional on L'(T) for each k, by (2.1) we get (h)(k) =0, Vk < 0. Thus, h € H2. O

Corollary 2.11. If two outer functions fi and fo verify |fi| = |f2] a.e. on T, then
fi = Afo where |\ = 1.

Proof. Since f, is outer, f; € H?, and |§—;| = 1 € L? by Theorem [2.10] (ii), we get

% € H?. In the similar way % = % € H? implies % = X (constant) and hence f; = \fy

with |A\| = 1. Thus, an outer function is completely defined by its modulus. O

Corollary 2.12. Let w > 0, w € L (T). If there exists f € H* such that |f|* = w a.e.

T, then there exists a unique outer function fo € H? such that |fo|> = w a.e. T.

(Hint: By Smirnov theorem, f = fin four etc.)

2.7. Szego infimum and Riesz Brother’s theorem. Here we consider two theorems
in two different settings by using the fact that in an orthogonal complement of the analytic

polynomials P, the absolute component of a measure is only important.

Theorem 2.13. (Szegd and Kolmogorov) Let p be a finite Borel measure on T with

Lebesgue decomposition dp = wdm + dus, where w € L1 (T).
(i) If there does not exist f € H? such that | f|* = w a.e. m, then

inf / 11— p|*du = 0.
T

0
p€P+
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(ii) If there exists f € H? such that |f|* = w a.e. m, and f is outer, then
inf !1 = pldu = |f(0)*.

peP +
Proof. (ii). We know that the Szeg6 infimum I will satisfy
I? = dist®(1, H2(p)) = dist?(1, H3 (pa))

= 1nf/|1—p|2wdm

S
Given that |f|? = w a.e. m, and f is outer. Hence
~ inf /|f pfltdm.

As f is an outer function, we can Verlfy that span{z"f : n > 1} = zH? Hence [ =
distg2(f, zH?). Note that f = gof(n)z” — f(0) + g, where g € zH?. Since f(0) L zH?,
it follows that I = dist 2 f(O),n£H2) — [£(0)].

(i). Now, we consider the invariant space FE, = HZ(ju,). If zE, # E,, then there exists ©

such that E, = ©H? with |[©]*w = 1. But 2z € E, and hence z = Of for some f € H?.

This implies that |f]*? = ‘@% = w (since |z| = 1), and this leads to case (ii). Hence,
case (i) is possible only if zE, = E,. But, then E, = L?(u,) by Remark [2.2{1). Hence
dist(1, H3 (1)) = 0, since 1 € L* () = HE(14a)- O

The above Theorem (Szegd and Kolmogorov) leads to the problem of computing | £(0)
in terms of w. In order to do this, we have to consider H? as a space of analytic functions
on the unit disc, which we do later.

Riesz Brother’s result is an important consequence of Helson’s theorem. For that, we

need to recall an important result related to the Radon-Nikodym derivative.

Let |p| be the total variation measure of a complex-valued Borel measure p on T, i.e.

|| (o) = sup { Z |p(o:)| = {oi}ier is a partition ofc inB(T )}
i€l
Suppose 4 is absolutely continuous with respect to a positive measure A on B(T). Then

there exists p € L'()\) (the Radon-Nikodym derivative of p with respect to A) such that

(@) = | lelar
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Theorem 2.14. (Riesz Brother’s, 1916) Let 1 be a complex-valued Borel measure on T
such that
/Z”d,u =0,Vn > 1.
Then p < m and dp = hdm, wherqeI heH'={feLMT): f(k)=0, k< 0}.

Note that, a measure u that satisfies [ z"du = 0 for n < 0 will be called analytic.
T

Proof. Tt is clear that u < |u|. Let g € L'(|u|) be the corresponding Radon-Nikodym
derivative of p with respect to |u|. We claim that |g| = 1 a.e. p. For § > 0, set 0 = {t :
lg(t)] <1—0}. Then |u|(o) = [|gld|p| < (1 = 8)|u|(o). Implies |u|(o) = 0. Similarly, the
case o/ = {t : |g(t)] > 1 —0}. gfhis proves the claim. As a consequence of the Corollary
2.1] we get
(2.2) Hi () = H*(|ula) ® L*(|nl,)-
But |g| =1 a.e. |u| implies g € L*(|u|), and

(2", )12 (1u) Z/Z”gd\ul Z/Z”duzoa n>1
In other words, g L 2", n > 1in the Iq-iilbert space 122(|,u|), and hence g L HZ(|u|). In view
of ([2.2)), we obtain g L HZ(|uls). Now, by construction, |g| = 1 a.e. |u|, which implies

lg] = 1 a.e. |p|s. This is impossible (since g L HZ(|uls)), unless |p|, = 0. Finally, g < ||

p(o) = /9d|u| Z/gdlula = /gwdm

for each o € B(T). That is, u < m with Radon-Nikodym derivative h = gw € L'(T), and

h(k) :/zkhdm:/zkgd|du| :/de,u:() itk < —1.
T T T
Hence h € H'. O

implies

Question 2.15. *
For g € L'(T), define gy = span{z"g : n > 0}|.1(1). Characterize all possible g € L*(T)

such that inf ||1 —pgl|s = 0.
pepP?
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3. CANONICAL FACTORIZATION OF HP-SPACES ON DISC

In this section, we discuss the canonical factorization of functions in HP- spaces on the
open unit disc as a product of three factors, namely a Blaschke product, a singular inner
function, and an outer function in its Schwarz-Herglotz representation. This will help us

analyze the questions raised earlier. In particular, Szego infimum etc.

Let D = {z € C: |z|] < 1} and Hol(D) denotes the space of analytic functions on D.
For p > 0, set
1) = {7 € Ho®): 1l = s [ 15Grepat < oo}
and H*(D) = {f € Hol(D) : || fllg~ = sup(|)?(3| 0< oo}. Here dt is the normalized
measure on T. “
For p > 1, set LP = L?[0,2n1] = (L?[0,2x],d¢t) and H? = {f € L? : f(k) = 0; k < 0}.
The space HP(D) and HP? are called Hardy spaces of the disc and Hardy space

respectively. Later on we canonically identify these two spaces as same.

3.1. Straight forward properties:
(i

) HP(D) is a linear space.

(ii) f > ||f|lg» is a norm if p > 1.
) H
)

(iii) H?(D) Cc HY(D) if p > q.

(iv) For p =2, let f € Hol(DD), and

=> f(n)z", f(n) €C.

n>0
By Parseval’s identity

[ e pa = Y1 0 <1
0

n>0
and we have

sup / Flret)Pdt =3 ()

0<r<1 n>0

Thus, for f € Hol(D), we have f € H*(D) if and only if » _|f(n)]?

n>0



20 MAG650: LECTURE NOTES, JAN-MAY, 2022

3.2. A revisit to Fourier series: The functions in L?[0, 27| can be thought of as func-

tions on (0, 27), which can be extended periodically to real line R.

Lemma 3.1. Let f € L'[0,27], g € L?[0,27], 1 < p < co. Then

(i) for almost every x € (0 27m), y — f(z —y)g(y) is integrable on (0, 27).
(i1) f*g(x fo g(y)dy is well defined and belongs to LP|0, 27].

(iii) || f *g||p < ||f||1||9||p-

Proof. Note that (x,y) — f(z — y)g(y) is measurable, and by Fubini’s theorem |f

)| < [|f(z—=y)llg(y |dy < o0 a.e. x. By Minkowski integral inequality,

| /f v = ()| /Ilf v = gy = gl Al
Further, if f € L'(0,27) and f(n) = )e~"dt, then (f*g)( ) = f(n)g(n), when-
ever g € LP and 1 < p < oo. (Using Fubini’s theorem) O

3.3. Approximation identity (or good kernel).

(i) If a family (E,) C L' satisfies
(a) sup[|Eally < oo
(b) lign E.(n) =1,
then ligl |f = f*Eq|p,=0for f e LP(1 <p < oo). This is still true for p = oo, if
feC(T).
(i) If (E,) C L' satisfies

(a) sup ||[Eqll; < oo
(6%

2
b) lim/ E,dr =1
* Jo

(c) lim sup |E.(z)|=0Vd > 0.
& S<lzl<m

then conditions of (a) and (b) of (i) is satisfied and we get lim || f — f * E,||, = 0.

3.4. Dirichlet, Fejer and Poisson Kernels: (i) Dirichlet kernel

: sin(m + 2)t
Dm — ikt — 2 ]
D¢ sin(t/2)

k=—m
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(ii) Fejer kernel
ntly 2

— Ho - )
_n+1Z Z( n+1 ~ n+1\sin(t/2)/
(ili) Poisson kernel

: 1—r2 .
Pr(t> = P(T@Zt) = m = Zr‘k‘elkt’ O S r < 1
kezZ

n

Result: If f € L', then

(1) fxDy(t) = Em: f(k)e* = S,,(f:t) (Partial Fourier series sums of f)

k=—m

(2) [ * D, Zf ( — %)emt = 3 mZ:OSm(f;t) (Arithmetic mean of
partial sum of Fourier series of f)

(3) f*P.(t Zf Jrikletkt 0 < < 1.
keZ
(4) (®,)n>1 and (Py)o<r<1 are good kernels, and || P,||; = ||®,]1 = 1.

(5) P.* Py = P, for 0 <r,r" <1 (semi group property).

Corollary 3.2. If f € LP, 1 <p < o0, then lim ||f — f*®,||, = 0. Hence trigonometric
n—oo

polynomials are dense in LP. (Hint: This follows from the property of the good kernel.)
The same is true for p = oo, if f € C(T).
Corollary 3.3. If f € L', f(n) =0,V n € Z, then f = 0.

Notations: For f € L', set f, = f* P,, 0 <r < 1. For f € Hol(D), we set f(z) =
flrz),if 2] < 2, 0<r < 1.

Corollary 3.4. If 0 <r <p<land f € [P, 1 < p < oo, then lim||f — fell, = 0.
Moreover, || frll, < follp < || fllp-(Using mazimum modulus principle.) If f € Hol(ID),

then I fllp < 1fiply and i | fil < 00. In fact, litm | fil = 1l sy if £ € EP(D).
(It follows due to P, is a good kernel.)

3.5. Identification of H?(D) with H?(T).

Theorem 3.5. Let 1 < p < o0,
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(i) If f € HP(D), then li_r}r%f(r) — f exists in LP(T) and f € HP(T). (For p = oo, the
limit holds in the weak™ topology of L°°(T) i.e. in o(L>, L').)
(ii) f+— f is an isometry.
(i11) f and f are related by foy = (f)r = fx P,

Here the function f is called the boundary limit of function f.

Proof. Let f = Z a,z" € H?(D), then
n=0

(3.1) M = sup || fullp < oo
0<r<1

(i) For 1 < p < oo, by Banach Alaoglu theorem implies that (f))o<r<1 is weakly
relatively compact in LP(T). Since LP = (L)%, 1—17 —l—ﬁ = land fy € LP; M =
sup [|[Afm|l < oo, where Afyy € (L”)*. This gives a limit point f € LP(T) of
??Z?)mél in the weak topology of LP. We claim that the convergence takes place
in L?. As the functional ¢ — ngS(n) is continuous on L?, for e > 0,0 <r < 1, dry
with r < r; < 1 such that |f(T)(n) — f(n)\ < €. Note that
1y = Fllo < 1 fery = Ferllp + 1 fery = Fllp = 0 asr = 1.

if we suppose f(r,) — f in L?. But then f(r)(n) = ap,r" — a,, n € Z with a,, = 0 if
n < 0. Hence a,, = (/f:)(n) implies f € HP(T).

We deduce that f does not depends on (ri)g>1 and for £ € T,

(32) (F* PO = Y awrten = 37 (Nm"e" = fir ().
Now, by property of good kernel P, we get
Iy = fllo = I(F)r = fll, = 0 asr — 1.

That is f,) — fin LP.

For p = oo, the similar reasoning gives the convergence f(,y = ( f)y — f in weak*
topology of L*°.

Case p = 1: The space L*(T) can be regarded as a subspace of M(T), the space
of all complex measures on T. As M(T) = C(T)*, by Banach Alaoglu theorem, the

balls of M(T) are weak* relatively compact.
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We again get the existence of limit f € M(T) as 71}_13 foy = f, but this is weak*

limit in M(T). That is, [ fiyg — [ fg, g € C(T). As before take g(t) = e~ then
(/\f)(n) = i(n) = ll_rg f(r) (n), n € Z, and hence fi(n) = 0 if n < 0. By Riesz Brother’s
theorem we get © << m, and the corresponding Radon Nikodym derivative of pu
with respect to m is equal to f € H'. Using the same argument as in the beginning
of the proof, we get (/f\)(n) = ayp, n >0, f, = (f),. Hence

tim 1~ fiyla = 1~ (Pl 0
because f, — fin LP for 1 < p < oo.

(i) Let us first consider the case p < co. Since f = ll_rg fir), we get
171l = e Fi s = 1o

For p = oo, observe that as f is weak™® limit of f,), we get

1flloo < tminf || filloe = I/l zr(o)-

On the other hand f(,) = f * P, we get
limsup || fir) oo < [ flloo-
r—1 5 B
Hence, we conclude that || f|| goem) = || f|lzoe(r) = || .f]|oo-

(iii) has been given in (3.1J).

O

Convention: Thus, in view of Theorem , we can identify f € HP(D) and its boundary
limit f by
f(r) =fr=fxP and f = Zf(n)zn

n>0
Now, f (n) represents Fourier coefficient of f at n and Taylor’s coefficient as well.

Corollary 3.6. For £ € D, f — f(£) is a continuous linear functional on H' (and

hence on HP, 1 <p < o0).

Proof. Let f be the boundary limit of f € H* (D). Write £ = re, 0 < r < 1. Then
FrPu(ey =" fn)e™ I =3 "ane™r = fo)(e™) = f(re™) = f(©).
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1+ ¢
1— ¢

Remark 3.7. If f, — f in H?,1 < p < oo, then f, — f uniformity on compact sets in

D.

Thus |[f(E)] < [IFILlIPllee < [1F]: -

3.6. Jensen’s formula and Jensen’s inequality:

Lemma 3.8. Let f € H' with f(0) # 0(because f(0) = £(0)) and let ), be the sequence

of zeroes of f in D counted with multiplicity. Then

o817 0) + o 37 < [ g 0amee)
If f € Hol(Dy.), then
o2 /(0)] + 310w 7= = [ tog £ (0)dm(r).

n>1

By(2) = % ((1/\—_,’\2))7 it is easy to see that

L= AP = [2%)
1 — Az|?
Thus we set |B| =1 on T, and f/B is a zero free holomorphic function on Dy 4 for some

Ba(a)P =1

9 > 0. Hence, log | f/B| is a harmonic function on Dy, s and allow to apply MVT (because
log g(2) = log |g(2)| + i ara(g(=)), if g(z) # 0) and we get
log (#/B)(0)| = [ 1og f/Bldm = [ log|flam.
T T
As log |(f/B)(0)| =log |(f)(0)] + Zlog |\, we get the desired formula.

j=1
For f having zero on T, we consider f., 0 < r < 1. Choose r such that f,. has no zero
on T. In view of the previous case, we get
r

(3.3) log|£(0)] + |AZ| log 7 = /T log | f,|dm(t

Now, f is analytic in Dy, so f has finite number of zeros on T. Let Z(f) N T = {¢; :

j=1,2,...,k}. Then in the neighborhood of each &;, we have
log |f(ré)] < Cloglé =&, Vr 0 <r <1,
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where C' depends upon multiplicities of zeroes of &;. (Hint: f(r§) = (r§ — &;)"g(r), and
casy to see that 3| — &| < |r€ — & ete.) As log|€ — &[™" is integrable, we may pass to
limit in (3.3]).
The general case: Let f € H' and f(0) # 0. In order to pass limit in (3.3), note that
|logx —logy| < Ce|z — y|, if 2,y > €. Hence
| log(lfr| 4 €) —log(|f + €)| < Cellfv] — | f]] onT and

log(|f.]| +€) — log(|f| + €) inL*(T) asr — 1.
But from (3.3))
(3.4) log | £(0)] + 3 log - / log (1, + e)dm(t)
As LHS in is increasing in‘;\’ ;Zd RHS is convergent, we obtain

log | £(0) / log (1| + €)dm

n>1 T

for each € > 0. This completes the proof. O

Inl

Remark 3.9. (Generalized Jensen’s inequality)

Let g€ H', g #0, and [£| < 1. Then

(35 lgl9(6)] < [ =55 Yola(o) ().

Indeed, to begin with, we may assume that g € Hol(D1,.). Apply the previous result

to the function

16 =a(i=2).

and remark that Jacobian of this change of variable is IE ¢ || (Hint: Put s = £ - etc.)

3.7. The boundary uniqueness theorem:

Corollary 3.10. If g € H',g # 0, then log|g| € LY(T). In particular, if g € H' and
m{t € T: g(t) =0} >0, then g = 0.

Proof. Indeed, g € H' may be expanded in its Taylor’s series (when realized on disc D)
9= D kon 9(k)2*, where g(n) # 0, and n > 0 is the multiplicity of the zero at z = 0,
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By applying Jensen’s inequality to function f = g/2", we get
/log\g|dm = /log|f|dm > —00.

T T

Since, logx < z if > 0, we also have
/10g|g|dm < / lg|ldm < oo.
T T
Hence, log |g| € L'(T). It is clear that if m{t € T : g(t) = 0} > 0, then [} log|g|dm = —o0,

which is possible only if g = 0. U

Remark 3.11. Recall that we have seen the second statement of the above corollary for

f € H? using a completely different approach.
3.8. Blaschke Product.

Lemma 3.12. (Blaschke condition, interior uniqueness theorem) Suppose f € Hol(D), f #
0, and let (\,)n>1 be the zero sequence of f in D, where each zero is repeated according to
its multiplicity. Suppose that

liminf/log|fr\dm < 00,
r—1 T
then >~ (1 = [Au]) < 0o. In particular, this holds whenever f € HP(D), p > 0.

Remark 3.13. The condition Z(l — |An]) < oo is called Blaschke condition.
n>1
Proof. Without loss of generality, we can assume that f(0) # 0. But then Jensen’s formula

gives

1 L. r

n>1 nl An|<r a

As |\,| — 1, we have log <ﬁ> ~ (1 —|\,|), and hence the desired conclusion followed.
The HP(D) case is a consequence of the obvious estimate logx < Cpa? for z > 0, p > 0,

because

liminf/log|fr| < liminf/C’p|fr|p < 0.
r—1 T r—1 T
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For A € D, we define Blaschke factor by
Al (A= 2)
b = — "
() 1—Az2)
(i) If we assume the normalization by ( — 1, then for A = 0, we can define by(z) = z.

|
(i) Zero set Z(bx) = {A}, by €Hol(C\ {3

>
I —

,oa] <1 on D and |by] =1 on T.

Lemma 3.14. If (\,),>1 € D satisfies the Blaschke condition Z(l — | An]) < o0, then
n>1
the infinite product

B = = 1
1o lim IT o
n>1 [An|<r
converges uniformly on compact subsets of D and even on compact subsets of(C\clos{;\l—}nzl.

Moreover, |B| <1 inD, |[B| =1 a.e. on'T, and Z(B) = (An)n>1 (counting multiplicity).

Proof. Set B" = H by,. Then for 0 < r < R < 1, we have
[An|<r

|BF— B} = 2-2Re(B",B")

= 2—2Re/BRBrdm

BR
= 2-2 Re/ ——dm ( because|B"| = 1 onT).

Br
So by MVT for holomorphic function gj we get
BR
R T2 _ —
|BR —B|2=2-2 Re(ﬁ)(O) —2-2 J[ Inl

r<|An|<R
By Blaschke condition Z log |A\n| ™! < 00, the product

n>1
IT1

n>1
converges, which implies lin% H |An| = 1. This shows that (B") is a Cauchy sequence
T
r<|[An|<R

in H? C L? for every r = r;, — 1. So we deduce the existence of B = lirr% B". Moreover,
r—

|B| = 1 a.e. on T because |B"| = 1 on T, and B € H?. As the point evaluation is

continuous linear functional on H?, the limit lim,_,; B"(\) = B()) exists uniformly on

compact subsets of I, and hence [B(A)| < 1, A € D. Using &= — 1 in H? (easy to see),
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we get % — 1 uniformly on compact subsets of D as r — 1 and

(3.6) lim (;) (\) = 1.

This shows that B(A) = 0, |A\| < 1 if and only if A = X, for some n > 1 (counting
multiplicity). If A # A\, and B(\) = 0, then (3.6]) will fail.
In order to prove convergence on compact subsets of C N clos{s-},>1, the following

observation is enough.
o =MD+ [Aalz) (1= A3+ J2]) L[}
‘bA 1| - \ 1 S C— ’
A1 = Az) Anl|z — & dist(z, N)
where N = clos{ﬁ :n > 1} O

IN

n

Corollary 3.15. Let f € HP(D), p > 0 with corresponding zero sequence (Ap)n>1. Then
there exists g € HP(D) with g(§) # 0, V€ € D such that f = Bg and || f]|, = |lg]l, on
LP(T).

This may be thought as the Blaschke filtering of the holomorphic functions.

Proof. Take B" = [] ba., 0 < r < 1. Clearly, 4= €Hol(D) and for p — 1, we get
[An|<r
|B"(p€)| — 1 uniformly on T. Hence,

51l =t [ o amie = st

And thus by definition of H?(D),

(/jT é(oﬁ)\pdm(g)); < 11, for every 0 < p < 1.

Fix p, set g = %, and letting r — 1, we obtain

(/ 909)|"dm(©))” < 1

and hence ||g||, < || f]|p- The other inequality follows from g = %. O

Question 3.16. * Is it possible to replace log | - | in Jensen’s inequality with some suitable

increasing function?

Remark 3.17. It is useful to introduce the notion of the zero divisor (or multiplicity

function) of a holomorphic function. For f € Hol(Q2), Q C C, f £ 0, A € Q, set
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0 iff(\) #£0

m iff(\) = - = fD(X) = 0 andf™(\) # 0.
The value of df()) is called zero multiplicity of \. We can redefine the Blaschke condition.

dp(A) =

The zero divisor of f € Hol(ID) verifies the Blaschke condition if and only if

S (1= A < oo
AeD
The corresponding Blaschke product is given by

o™ = T .

AebD n>1
Corollary 3.18. Let f € HP,p > 0 then there exists fr € HP; k = 1,2 such that

f= i+ fo lfilly < I fllps and fi(z) #0 for z € D
Indeed, we have f = Bg, and set f; = %(1 — B)g, fo = %(1 + B)g.

3.9. Non-tangential boundary limits. Recall that we have identified boundary limit
f of f € H?(D) via
;iiqufr—fupzo, feHP, 1<p<oo.
We shall see another convergence of f(z) to its boundary values, namely the so-called
non-tangential convergence a.e. on T for f € H?(D) with 0 < p < oc.
Let © be a complex valued Borel measure on T and u € M(T). Let du = hdm + ds,
h € L'(m) be Lebesgue decomposition of y with respect to m. Then the derivative of u

with respect to m exists at almost every point £ € T, in the following sense.

n(A) — du(§)
G
A—g,cea m(A) dm
where A is an arc on T tending to £. Such a point will be called Lebesgue point of .

_ 1—r2
Note that the Poisson kernel satisfies P(re) = ﬁ For f € LP(T) (1 < p < o0),
—re
we have
it 1—1? is is
P.x f(e") = —————f(e")dm(e")

- ’1 _ Tei(tfs)IQ
—_|~|2 . )
B /Tygif@dm(o (putz = re®, (= ¢")

=[x P(z) (write).
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That is, P, x f(e") = f x P(z), where z = re®. We see one of the most important result

about non-tangential limit.

Theorem 3.19. (P. Fatou’s, 1996) Let u € M(T) and & € T be a Lebesgue point of p,

f(z) = P ulz /‘C Gl

has a non-tangential limit at £, and equal to —T‘r‘l( ). ]n other words, if S¢ is an angular

then Poisson integral of

sector centered at & with bisector [0,&] and opening angle less than 7, then
. du
z—}gl,znésg f(z) = %(f) a.e. onT.

d
In particular, lin} f(ré) = d—”(&) on T. S¢ is so-called Stolz angle at &.
r— m

Proof. We know that Se = {z € D : |z — | < ¢(1 — |z|)}. Without loss of generality,

we may suppose that u(T) = 0 (just replace p by pu — ¢m), and by rotation, assume

¢ = 1. Then there exists a left continuous function F' on [—m, 7] of the bounded variation

such that ple®, e??) = F(8) — F(a), and F(—7) = F(n) (because u(T) = 0). Writing
f P(ze7™)dF(t), = € D and integrating by parts, we get

F(t)dt = - /W kz(t)@dt = /7r k(py2r T = F(=0) dt

2t o’

(37

— -7 -

where k, ( )= —tdp( ). Then the family {k.}.cs, is a good kernel.
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(i) Set z =re'™, |r| <7, 0 <r < 1. Then we have
T dP(ze
il = / (ET)

dt
THT dP(ze™")
[t ish|

o ds
o, +02+/

IN

ds,(puts =7 —t)

SdP(re_is)
1—r . ds

s P —1i8
= l —I—Cg—/ swds
1—7r ds

IN

ds

1 - 4 ,
< 1‘i|r + Cy — Py [sP(re_“)L7T +/ sP(re"*)ds

—T

< const,

as the quantity % is uniformly bounded in Sj.

(ii) Again by partial integration, we get

: " dt : T
zﬁlll,znéSl B kz(t)% = zalll,zlnesl(l — P(—re'")) = 1.
(iii) By straightforward calculation, we get
i t ‘
k() = 2rt——S00 20 pie-ny g

1 —2rcos(t —t) + r?
uniformly on § < |t| < 7w, whenever 6 > 0.

From and (i7), for fixed § > 0, as 2 — 1, 2 € S,
16 = Ly [ (RIS B &

dm t dm o

_ 5—:2(1)—1—/_;64—/;4—/:—1—0(1),

where the latter integral is arbitrarily small for small § (in view of (i) and
F(t)—F(—t) du
A() =2 =270 Sy — (g
(1) = 2O Ay oy,
and the two former tend to zero as z — 1 in Sy, for every fixed § > 0 (in view of (i4i) and

boundedness of A(t).) O

Corollary 3.20. If f € HP(D), 0 < p < 00, then the non-tangential boundary limits of f

exist a.e. on T. That 1s,

lim  f(2) = f(&) for a.ef eT.

z—€,2€8¢
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The boundary function & — f(&) is in LP(T), and for p > 1, f(§) = f(f) a.e. onT.

Proof. For p > 1, the claim follows from (3.7) and the identification theorem (because

radial limit exists). Note that for f € LP (1 < p < oo) and du = fdm, we have

Pap(z) = /|< 'Z’ dm ()

= P x f(e”) (letz = r&)

= fiy(e") = f(r&) — f(§asr — 1
in LP(T). Hence, there exists () such that P % pu(z) — f(€) as 1, — 1 for a.e. € € T.

And by Fatou’s theorem, lim, ¢ .cs, f(2) = f(&) for a.e.é € T. Hence f(&) = f(€) for
a.e. £ €T.
For general case, we know that f = Bg = B(g"/?)?, where g € H?(D). This implies

g'/? € H'(D). The result follows from the previous reasoning. O

Notation: From now onward, we identify the functions f € H?(ID) with their boundary
values on T, and write H?(D) = H?(T), 0 < p < oo, where HP(T) is the collection of
boundary functions of H?(D).

3.10. The Riesz - Smirnov canonical factorization. Here we see the main result
of the Hardy space theory - a parametric representation of f € HP as a product of
Blaschke product, a singular inner function, an outer (maximal) function. The last two

functions are exponential of integral depending on the holomorphic Schwarz - Herglotz

C+z
=%

kernel z — whose real part is the Poisson kernel.

Theorem 3.21. Let f € LP, 0 < p < oo be such that log|f| € L', and define

1) = ([ 52 bogl(@am() ). a1 < 1

Then
(i) [f] € H*(D) and |[f]| = || a.e. onT.
(i) If 0 £ g € HI(D), ¢ > 1, and |g| < |f| a.e. on T, then |g| < |[f]| on D (and hence
g € H'(D)).
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(iii) [£] = & and [[f)) = /).

Proof. (i) Clearly, [f] is a holomorphic function (D). Recall that for a finite Borel mea-
sure u and a convex function 1, we have the Jensen-Young geometric mean inequality

(3.8) M > w(f Fdﬂ>.

J dp J dp
[Proof Let F': (Q,u) — I C R(I is finite or infinite interval), set v = T’é—u. Let

A={h:hz)=az+b h<¢onl} Then h( [Fdv)= [hoFdv < [oFdv. We

get the inequality since w( ) = sup{h(z) : h € A}.] By apply inequality (3.8)) to the

Borel measure du = IC Z|2 dm({), we get

|P = ex Els )P 1—|z|2
AP = e /‘C el /OPm(O) < [ 11O P = am(c).

Set z = ref’. By Fublm S theorem we get

/02”[ < [isow( /2”_';;25—;>dm<<>:ufuz.

Now, by Fatou’s theorem and its corollary there, we have

[F1©] = limlog [[f](r&)] = log [f(£)] a.e.€ on T.

The modifications in the case p = oo are obvious.

(ii) Given that 0 # g € HI(D), ¢ > 1, and |g| < |f| a.e. on T. This implies log |g| € L,

and hence by generalized Jenson’s inequality - we get
— |2

loglg(z)| < IC B log [g(¢)[dm(C)
— |2

< [ =R Q)
= log|[f](z)]-

(iii) is a direct consequence of the definition.

The following result ensures the existence of enough harmonic functions as Poisson

integrals of finite Borel measures.
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Theorem 3.22. (G. Herglotz, 1911) Let u be a non-negative harmonic function on D.

Then there exists a unique ﬁmte Borel measure > 0 such that w = P % u, that is

IZI2
)= [
Proof. By MVT we have for all in D
il Y 2|2
[ a(©am(© = [ =z

where we have set uT( ) =u(rz),0 <r < 1, and du, = urdm Then p, is a positive

measure and Var(u,) = u.(T) = u,.(0) = u(0) < oo. Thus, the family (u,)o<r<1 is

uniformly bounded in M(T), and has week* convergent subsequence p,, that converges

to u € M(T). Recall that M(T) is dual of C(T)* with the duality < f,u >= [ fdpu.

Thus, if f € C(T), f > 0, then ’
de,u—hm fuy,dm >0 = pu>0.

n—oo

Moreover, since u is continuous on I, for z € D, we have

u(z) = llm u(rn = hm/|< ’2‘2 L, ( /|C |Z‘2

Uniqueness of p: Note that Pxpu(re') = Z |”|,u( )e™. For any v such that Py = Pxv

nez
implies fi(n) = ©(n). Hence, u = v. O

Theorem 3.23. (Singular inner function): Let S € Hol(D), then the following are equiv-

alent:

(1) |S(z)| <1 and S(z) #0 on D, S(0) >0 and |S(&)] =1 a.e. onT.

(ii) there exists a unique finite Borel measure p > 0 on T with p L m such that
S(2) = exp (— ¢t deo) zeD.
76— 2

Proof. (ii) implies (i) is a corollary of Fatou’s theorem (because of S € H*(ID) by (ii)).

For (i) implies (ii), let u = log|S|™!, then by Herglotz theorem, there exists p such that

1 — 2
g S| = [ (=20

Once again by Fatou’s theorem (and [S(£)| =1 a.e. on T), we get
dp
dm
Hence p L m. O

(&) = }13% u(r§) =0 a.e. onT.
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Definition 3.24. A function S verifying (i) or (ii) of the preceding theorem is called a

singular inner function.

Theorem 3.25. (F. Riesz, V. Smirnov) Let f € HP(D), p > 0. Then there exists a
unique factorization f = ABS[f], where A € C, |\| =1, B, S and [f] are defined earlier.

Proof. Set g = %. Then |f| = |g| a.e. on T, and hence [g] = [f]. Set A = % and
S = ﬁ. Then f = Bg = BAS[g] = ABS|[f]. As B and [f] are uniquely defined for f, the

uniqueness of factorization follows. O

Next, we consider the structure of the outer functions in H?.

Theorem 3.26. (Structure of outer function) Let p,q,r > 1 and f € HP. Then the

following are equivalent.

(i) There exists A € C, |\| =1 such that f = A\[f].
(i1) for all z € D, the generalized Jensen inequality is equality:
(3.9 log |£(2) = | P(:6)1og | )ldm(e)
(111) Identity holds for at least ong z € D.
(iv) If g € H? and % € L", then § € H" (integral mazimal principle).
If p =2, then (i)-(iv) are equivalent to

(v) the function f is outer in H?(in the earlier sense i.e., E; = H?).

Proof. (i) implies (ii) is followed from the definition of [f]. The implication (iii) goes to
(ii) is trivial. For (iii) implies (i), suppose (3.9)) holds for some z, € D. By Riesz-Smirnov
factorization theorem, we have f = ABS[f], and by (3.9)), we get

£(20)] = MBS f](z0)] = [B(2)S(20)| = 1 = |B(z)] = |S(20)] = 1.
By maximum principle, B = S =constant= 1 in D, implies f = \[f].
(i) implies (iv): If g € H?, then g = A BS[g] and we get § = Azﬁf][)g = (3) BS[%} e
in view of Riesz-Smirnov theorem and by the hypothesis that g/f € L".
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(iv) = (i): Let f = ABS[f] and set g = min(|f],1). Then [¢g] € H* and {[i}]’ <1ae.
on T. By (iv) we get [i}] € H" (r arbitrary). Again, we have [i}] =\ B1S; [?] = )\13151%
(because [[g]] = [g] and [%} = %), we get 1 = A\ BB1SS] = ABSs with |\ = 1,
where By is a Blaschke product and S5 is a singular inner function. As |Bs(z)| < 1 and
|S2(2)] < 1 for all z € D, we get |By] = |Se|] = 1 and hence By = Sy = 1. Thus, we
conclude that B = S = 1, implies f = \[f].

[t remains to show that (iv) and (v) are equivalent if p = 2. As (i)-(iii) are independent

of choice of ¢ and r, we get equivalence between (iv) as well with p = 2, and arbitrary

q,r and with p = ¢ = r = 2, (iv) is just earlier characterization of the outer function on

H?. U

Definition 3.27. Let f € HP, p > 0. The function [f] is called the outer part of f, and
ABS is called the inner part of f.

Notation: We write [f] = four and ABS = finn. If f = A[f], then f is called outer.
It is clear from the above theorem that if p = 2, then definition of inner and outer

functions coincide with previous ones.

Corollary 3.28. Let w € L' (T), and p > 1. The followings are equivalent.

(i) There exists f € HP, f # 0 such that |f|P = w a.e. on T.
(ii) logw € L.

Proof. As H? C H', (i) implies (ii) follows from the boundary uniqueness theorem and
(ii) implies (i) follows by taking f = [w!/?]. Since

1) = exp ([ P8 g @) Pdm©)).
by Theorem f € H?(D) because '

1P =esp ([ PE g lwl©)lam(©)).

By Fatou’s theorem, we get |f|P = w a.e. on T. O
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3.11. Approximation by inner functions and Blaschke products. Using Fatou’s

theorem, we prove two important theorems on uniform approximation by inner functions.

Theorem 3.29. (R. Douglas and W. Rudin, 1969) Let X be the set of all inner functions.
Then

(3.10) L>®(T) = closp (@HOO GRS E) = Span e (@1@2 0 01,0, € E) )
Moreover, any unimodular function in L*(T) belongs to closy(II) (6,02 : ©1,0, € ¥).

Proof. 1t is enough to show that y, € span; (@_1@2 1 01,05 € E) for every Borel mea-

surable set o in T. Let

1
fo = [nx0+ﬁxqr\a}, n=23,...

and A, = {z € C: 2 < |z] < n}. It is clear that f,(D) C A, (by maximum principle)
and f,(T) C 0A,. Now, let ¢1(¢) = §+% for ( € C~ {0}, and w : ¢1(A,) — D be a
conformal (Riemann) mapping of the ellipse ¢1(A,) onto D. Since the boundary of ellipse

is smooth, w can be continuously extended to clos ¢1(A4,), and hence

wo¢ro fr=0
is an inner function (because 6; € H>(D), and by Fatou’s theorem |#;| = 1 a.e. on T).
Since w™! is continuous on clos(D), it can be approximated by its Fejer polynomials.
Therefore,

1
fn+f_:¢1ofn:w_loelespanlfx’(e?: TLZO)

Doing the same for the function ¢5({) = ¢ — =, we get an inner function 6, such that

1
C?
fn — fi € Span . (0% : n > 0). Hence f, € span; {0507 : k,n > 0}, implies
| ful? € SPam e (070567°65™ « kyn,l,m > 0) .
Thus,
1 _

Yo + —TXTo € Span . (010, : 01,0, € %), forn=1,2,....

Letting n — 0o, we get x, € Spal; ((:)162 1 O, 05 € E) )

Let u € L®(T), and |u| = 1 a.e. and u; € L>®(T) with |u;| =1 a.e. and u = u}. Given

€ > 0, by (3.10]) there exists ¢, ©; € ¥ such that |u; —pg| < €, where g = Zaj@j, a; € C.
j=1




38 MA650: LECTURE NOTES, JAN-MAY, 2022

Set © = [[;_, ©;, and observe that g© € H>. Since [§O] = [g] (because |gO| = |g|), the
inner-outer factorizations of g and g© are of the form g© = v[g] and g = w[g|, where
v,we X, and 1 — e < |[g]] < 1+ e Now, |u1 — ¢g| = |13 — ¢Ov[g]| < € gives

1 1 ‘ - €

. ¢Ou[g]l T 1—¢€

Since |u; —a| < € and |u; —b| < € implies that |u? — ab| < |uy — a| + |a||u; — b|, we obtain

u— dulaipor| < 1,

which completes the proof. O

Theorem 3.30. (O. Frostman, 1935) Let © be a (non-constant) inner function and
¢ € T. Then by 0 © are Blaschke products with simple zeros for a.e. t € (0,1), where
ba(z) = 1 5 A € D. In particular, © is a uniform limit of Blaschke products with simple

ZET0S.

Proof. Let ¢ = 1. Then ©; = b; 0 © is an inner function for all ¢ € [0,1) (by definition
of by and ©), and it has factorization O, = ABS [ét] Let p; be the singular measure
corresponding S. Then by Jensen formula (and expression of S and S € H* with |5 <
1), we get
pu(T) = log |S(0)| 7" = /10g [S(re)|~Hdm(€) < /10g [©:(r))|~1dm(€) = g(r,1),

for all ¢, € [0, 1). Thereforeqf it is sufficient to checthhat llir% g(r,t) =0 a.e. t € (0,1).
Note that r — [,log|f(r§)|dm(€) increases with » 7 1, hence r — g(r,t) decreases
for every t. Secondly, t — ¢(0,t) = log |©,(0))|~" is integrable on [0,1). By dominated
convergence theorem, we get

1
1 )dt =1 log |b; 0 © _1d)d .
/Orlmgrt t 1m/</ og | (r&)|dt ) dm(€)

The last limit is zero since the function
1
U w / log |by(w)|*dt
_ 0
is well defined and continuous in D and u(w) = 0 for |w| = 1 (see below). Hence p(T) = 0

for a.e. t € [0,1). The same reasoning for any other ¢ € T. The zeros of by o © are simple
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if A —0(z;) # 0, Vj, where (2;);>1 are the zeroes of ©'. Indeed, if b)(©(z)) = 0, then
A — O(z;) = 0 and hence (b, 0 O)'(2) = 1, (0(2))O'(2) # 0.

Finally, we show thar u is continuous on ID. Note that the integrals fol log |1 — tw|dt
and fol log |t — w|dt are similar and for w = = + iy, we have
/01 log |t — w|*dt = /01 log{(t — )% + y*}dt

is continuous in z and y (for instance fol log(t — x)2dt = x(0,1) * log(z?)).
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4. SZEGO INFIMUM AND GENERALIZED PHRAGMEN-LINDELOF

PRINCIPLE

In this section, we consider two applications of the canonical Riesz-Smirnov factor-
ization. Namely, the Szego infimum dist(1, HZ(u)) is expressed in terms of measure p,
the cyclic functions of L?(T) are described. The classical logarithmic integral criterion
for completeness of the polynomials, the case of incompleteness, and the closure of the
polynomials H?(u) is described in terms of the outer function related to Radon-Nikodym

derivative w = j—“. We consider outer functions, their extremal and extension proper-

m
ties, and distribution value properties. The important Smirnov subclass of Nevanlinna
functions is considered. After transferring these results to an arbitrary simply connected
domain of C, we use these techniques to get a remarkably general Phragmen-Lindelof type

principle due to Smirnov (1920) and then by Helson (1960).

4.1. Szego infimum and weighted polynomial approximation.

Theorem 4.1. (Szegd, Kolmogorov) Let du = wdm + dus be a Borel measure. Then
inf / 11— p|*du = exp (/ logwdm) .
pePS Jr T

Proof. We know that the infimum is equal to |f(0)[? if there exists an outer function f
such that |f|? = w and otherwise 0. On the other hand, (by Corollary and Theorem
3.21)) such an outer function exists if and only if logw € L'. In this case, we have
1) =exo ([ £ logutdm(o))
R r€—2
and | f(0)|* = | f(0)|* = exp(f; log wdm). O

Let f € L*(T), and write E; = span{z"f : n > 0}. If E; = L*(T), we say f is a cyclic
vector. Note that the half of the trigonometric system (2"),>¢ is far from being complete
in L?(T), but multiplying by a suitable function f one can get completeness property i.e.
span{z"f : n > 0} = L*(T). It may happen that for different halfs of (2"),cz, nothing

similar is true.
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Corollary 4.2. Let f € L. Then E; = span{z"f : n > 0} = L? if and only if f(£) # 0
a.e. on'T and [ log|f|dm = —oo.

By Wiener Theorem we have zFE; = E; if and only if E; = x,(L*(T), and by
Beurling- Helson Theorem zE; C Ey, there exists § € E; such that E; = 0H?
(6] = la.e.). Thus, E; is reducing if and only if there does not exist g € H? such that
lg| = |f] a.e. T. That is, if and only if log | f| & L'. We easily deduce the necessity of the
condition claimed.

For the sufficiency, we again use Theorem to get By = xo L*(T). As f € x,L*(T)
and f # 0 a.e. on T we get 0 = T.

Example 4.3. (a) If f(e?) = |1 —€”|*, a > —3, then E; # L*(T).
(b) If f(e) = exp (ﬁ), then E; = L*(T).

The following two theorems are final statements on weighted polynomial approximation

on the circle T.

Theorem 4.4. Let p be a positive measure on T and let w = j—::l its Radon-Nikodym

deriative. Then polynomials P, are dense in L*(p) if and only if logw ¢ L*(T).
Proof. This is immediate from Corollary 2.4 and Theorem [4.1] O

Theorem 4.5. Let i1 be a positive measure on T, let du = wdm + dus be its Lebesque
decomposition and suppose that logw € L*(T). Let ¢ € H? be the outer function defined
by ¢ = [w%]. Then closure H?(pu) = closz(nP is given by

H?(pu) = L*(ps) ® (07 H?) = L*(ns) © {f € Hol(D): fo € H?}.

Proof. Indeed, Corollary [2.1] gives H?*(1) = H?*(wdm) & L*(p,) and Lemma [2.3] and The-
orem W4.1| show that H?(wdm) is l-invariant (non-reducing) subspace of L*(wdm) ( see
also Remark [2.2). Now, Theorem [1.§| implies that H*(wdm) = ¢~ H>. O
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4.2. How to recognize an outer function. It is of practical importance to know how
to recognize an outer function. We recognize outer function in terms of its boundary

behavior.

Fact 4.6. If f € H?(D), p > 1 and 1n]£)|f(z)| > 0, then f is outer
ze
It is clear that for ¢ € H7(q > 1) we have % € HY and hence by Theorem fis

outer.
Exercise 4.7. What is an interpretation of the above fact in case of p = 2 on the circle.

Theorem 4.8. (V. Smirnov, 1928) If f € Hol(D) and Ref(z) > 0 for all z € D, then
feHP 0 <p<1, and f is outer.

Proof. By hypothesis, z — (f(z))? is analytic and we can choose arg f(z) such that
|arg f(2)?| < pm/2, z € D. Hence, if 0 < p < 1, then there exists ¢, > 0 such that
|f(2)]P < ¢, Ref(2)P. The MVT applied to the harmonic function Ref(z)? gives

2 2m

o dt ox Al
| 1seeorss < [ Re(srety) S~ 6, Relr(07),

0 T 0 2m

For 0 <r <1 and hence f € HP, 0 < p < 1. Moreover, since Re(ﬁ) > 0 in D, we have

f and % in H?, 0 < p < 1. By Fact (below), f is an outer function. O

Example 4.9. (V. Smirnov,1928) Let p € M(T) and set

_ E+2
fu(z) Tf_zdﬂ(f)-

Then

(i) fue H?>, 0 <p< 1.
(ii) If © > 0, then f, is outer.

Fact 4.10. Let f,, fo € HP. Then f; f5 is outer if and only if f;, fo are outer. In particular,
if f € HP and % € H9(p,q > 0), then f is outer.

This follows by the uniqueness of the factorization Theorem [3.25
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Example 4. 11 If a polynomial p has no zero in the open disc D, then p is outer. Consider

= ConsttH <1 - —) & > 1. As |z| < 1 and |§| > 1, we have Re(l——) > 0. By

applying Theorem 4.8 and Fact [4.10]

Fact 4.12. Let f be an outer function and let h € H? (p > 1). If |f| < |h| on D, then h
1s outer.

Obviously, % € H* and % has no zeros in D. By Theorem We get the representation
% = ASF, where I is outer. Suppose that h is not outer. Then h = A\{.S1F; with S; is
a non-trivial singular inner function and f = (AX\)(SS1)(FF1) with SS; # constt, which

contradicts the hypothesis.

Theorem 4.13. Let p > 0.

(i) Let f, € H? be a sequence of outer functions with f,(0) > 0. If |f.| Ny on T, then
f(z)= nh_)ngo fn(2), z € D exists uniformly on compact sets. Moreover, 2]‘17111_{101o fn(0) =
0, then f =0, otherwise f is an outer H? function.

(ii) Let f € HP be an outer function. Then there exists a sequence of outer functions
fn € H? and irelﬂg|fn(z)| >0,n>1,|ful \(|f| on T (and hence on D) and f(z) =
lim f,(z), z € D.

n—o0

Proof. (i) As the functions f,, are outer, we have
08 11,()] = | P(:6) og|1u(©)ldm(©)
T
To show the uniform convergence of f,, it is enough to show that f, is uniformly

Cauchy sequence. For this, we will show log | f,,(2)] is a uniformly Cauchy.

108 £,(2)| =Ygl fusp(2N| = | [ P61 108 1S <s>\

|fa(§)
’fn+p

= Cons O ’fn( )’ m
= const | 1g|fn+p(£)\d ©

= const ([ Tog |1 (€)ldm() ~ [ 108 fusp(€)ldm(©)).

< sup |P(2€) \/’10g

‘dm
|2|<R )|
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The conclusion is followed by monotone convergence theorem.

Suppose that 1r>1f1 fn(0) = 0, then

lim /10g|fn\dm = lim log f, = —o0.
n—oo T n—oo

For a point zy € D, we have P(z¢) < =l — . Hence,

I—|zo|
log |fu(z0)] < Co [ logf,dm.
T
We conclude that lim log|f,(20)| = —oo and similarly for all z € D and we get
n—oo

f=0.
If II;E fn(0) > 0 and |f,| \ h on T, then

/loghdm = lim /1og|fn|dm > —00,
T n—oo T
and hence log h € L. Now, it is obvious that lim f,(z) = f(z) with f = [h].
n—oo
(il) Without loss of generality, we may assume that f(0) > 0. Set f, = [|f| + J,], where
d, > 0 an appropriate sequence with lim 6, = 0 and [} log(|f| 4 6,)dm < oo. Then
n—oo
fn satisfies the desired properties.

O

4.3. The Smirnov class D. We know that Nevanlinna class can be represented as

Nev = {f € Hol(D) : there exist fi, fo € U H? such that f = f1/f2}

p>0
and let

D= {f € Hol(D) : there exist fi, fo € U HP? such that f = f1/f, and fs is outer}
p>0
be the Smirnov class (sometimes denoted by Nev_).

Lemma 4.14. We have

Nev={f € Hol(D): there exist f1, f» € H* such that f = fi/f>} and
D ={f€ HolD): there exist fi, f» € H® such that f = f1/f> and fs is outer}.

Proof. Let f €Nev, f # 0 and f = %, where fi, fo € H! have canonical factorizations
f1 == /\[fl]Blsl and fg == )\[fQ]SQ Set F1 == /\[mln(l, |f|)]B181 and F2 == [min(|f|’1, 1)]82

Clearly Fy, Fy € H*® and since | f|. min(]f]7!,1) = min(1, | f]), we also get f = %
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4.4. The Smirnov class D. We know that Nevanlinna class can be represented as

Nev = {f € Hol(D) : there exist fi, fo € U H? such that f = f1/f2}

p>0
and let

D= {f € Hol(D) : there exist fi, fo € U HP? such that f = f1/fs and f; is outer}
p>0
be the Smirnov class (sometimes denoted by Nev,).

Lemma 4.15. We have
Nev={f € Hol(D): there exist f1, f» € H* such that f = fi/f>} and

D= {f€ HolD): there exist fi, f» € H® such that f = fi/f> and fs is outer}.
Proof. Let f €Nev, f # 0 and f = %, where fi, fo € H' have canonical factorizations
fl = )\[fl]Blsl and f2 = )\[fQ]SQ Set F1 = )\[Hllﬂ(l, \f|)]3151 and FQ = [min(]f]_l, 1)]52
Clearly Fy, Fy, € H*® and since | f|. min(]f|7!, 1) = min(1, | f]), we also get f = %

O

Definition 4.16. A function f € Nev is called outer if there exist two outer functions

f1, fo such that f = %

Properties 4.17. (of the class D and Nevanlinna outer functions)

(a) If f is outer, then f € D.
(

b) If fi and f5 is outer, then so is fi fo.

(d If fl, f2 € D, then flfg eD.

)
)

(c) If fifs are outer, and fi, fo € D, then fy, fo are outer.
)

(e) If F € Hol(D), G € D and |F| < |G| in D, then F' € D.

To verify (c), just let G = g—; with G, Gy € H*®, and G, outer. By hypothesis |GoF| <

|G4| in D, and hence GoF € H>*. We conclude that F' = %f €D
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Theorem 4.18. (Generalized Maximum Principle) Let f € D and g be an outer function
in Nev. If |f| < lg| on T, then |f| < |g| on D.

Proof. Let f = % and g = g—; where f5, g1 and g, are outer functions in H*> and f; € H*.

By assumption [fig2| < [f2g1| on T and hence |figa| < [[f1g2]| < |[f201]| = [fog:| in D. O
Remark 4.19. This result is not true in general if f € Nev\D and/or if g is not outer.

4.5. A conformably invariant framework. Here we consider the classes Nev(2) and
D(R2), where 2 is a simply connected domain (# C), that is, domains that are conformably

equivalent to the open unit .

Definition 4.20. Define
H>(Q) ={f € Hol(Q) : [ fl|a= = sgg\f(z)\ < oo}
and

Nev(2) = {f € Hol(2) : there exist fi, fo € H*(Q2) such that f = fi/fa}.

For w : D — € be an onto conformal map. A function f € Nev(2) is called outer if
fow is an outer in Nev(ID). With this definition, we get
D(Q) = {f € Hol(Q) : there exist fi, fo € H*(Q) such that f = f1/f, and f5 is outer}.
The following two results are simple factorization to €2 of the corresponding well known
facts in D. Note if w : 2 — D extends to a homeomorphism of clos (2) onto clos (D), then

we say {2 is Jordan domain.

Lemma 4.21. (Generalized Mazimum Principle) Let Q be a Jordan domain. Let \ €
0Q, f € DYNC( clos(Q)\{\}) and let g be an outer function such that g € C( clos(€2)\
{A}) and |f] < gl on 92\ {A}. Then |f] < |g| on Q.

Lemma 4.22. Let f € H*(Q2). Then f is outer if and only if there exists a sequence of

outer functions (fy)n>1 € H*(Q2) such that
nf |£,()] > 0.0 > 1, Tim £,(2) = £(2), ()] N IFE)2 € 0.
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Corollary 4.23. Let 0y C Qy be two simply connected domains and f € Nev(Qs).

(i) If f is outer on s, then flq, is outer on ).
(ii) If f € D(), then flo, € D(2).

4.6. The generalized Fragmen-Lindlof principle. The result of Theorem |4.18 and
Lemma are, in fact, the versions of the Fragmen-Lindlof principle. The difference is

that, in general, the mejorants are not given by analytic functions.

Let Q2 be a Jardon Domain, let M and M, be two non-negative functions on €2, and let
w € C(00 ~ {\}), where A € Jw, Q > 0. Then M, is called Fragmen-Lindléf majorant
for M and w if for every f € Hol(2) U C(clos(2) ~ {A}) with |f| < M on 9Q ~ {\} we
have |f| < M..

Theorem 4.24. (Generalized Fragmen-Lindlof principle) Let f € D(Q2) and G € Nev(2)N
C(clos(2) ~ {A}) be such that M < |F| on Q, w < |G| on 0Q ~ {A}. Then either there
exists an outer function [w o w| (and then M, = |[w o w| o w™!| is a Fragmen-Lindlof
magjorant for M and w) or f =0 for all f € Hol(Q2)UC(clos(2) ~{A}) such that |f| < M
on Q and |f| <w on IQ{A} (and then M, =0).

Proof. In view of (e) of Properties[d.17] the inequalities |F| < M < |F| show that f € (Q).
If there exists f # 0, f € Nev(Q) such that

fouwl Swow< [Goul
on T\ w™'({\}), then we can define the outer function |[w o w]. Applying Lemma we
get |fow| <|wow]| on T\ w™({A\}) and hence the desired result. O
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5. HARMONIC ANALYSIS IN L*(T, 1)

The main result of this section is the Helson- Szego theorem characterizing those
L3(T,p) in which the Fourier series of every function f € L2(T,u) converges in the
norm topology. This is one of the main results of harmonic analysis on the circle group
T. It is closely related to generalized Fourier series with respect to a minimal sequence;
harmonic conjugates, the Riesz projections, and weighted estimates for Hilbert singular

integrals.

Definition 5.1. A sequence (z,),>1 in Banach Space X is called minimal if z,, ¢ M,, =

span{ay : k # n}, and is called uniformly minimal if inf dist<H””—”H, Mn> > 0.
n> Tp

Lemma 5.2. (i) A sequence (x,),>1 C X is minimal if and only if there exists f, € X*
such that (Tg, fn) = Ogn. Such a pair ((x,)n>1, (fr)k>1) will be called biorthonormal
and f,, n > 1 coordinate functionals.

(11) (xp)n>1 C X is uniformly minimal if and only if there exists a sequence (fy)n>1 of

coordinate functionals such that sup ||z, || || f.] < oo.
n>1

Proof. (i) By Hahn-Banach theorem, if x,, ¢ M, then there exists a sequence f, € X*
with [|full = 1. fu@a) = 2l fulz) = 1, fo = o,
(ii) Moreover for any subspace E C X,

dist(z, E) = sup{|f(z)| : f € X", fle =0, [[f]l < 1}.
For this, if x € E then both sides are equal. So firstly we will show ”<”. When
z ¢ E, by Hahn- Banach theorem there exists f € X* such that f(z) = dist(z, E),
and f(E) = 0 with ||f|| < 1. Implies

dist(z, E) = | f(2)] <sup{|f(2)| : fe€ X", fle=0, |fl <1}.
For the other inequality, let y € E, then we have
[f (@) = [f(z =yl < [Flllz =yl < lle =yl
and hence |f(z)| < in}fz |z — y|| = dist(z, E). This implies
ye
sup{|f(z): f€ X", fle =0, | fI| <1} < dist(z, E).
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Thus,

sup{[f(z)[: f € X", fle =0, ||fl| <1} = dist(z, E).
Now, replacing f by f/f(x), it follows that

1

wt {1 £ € X, fle=0, fmy =1y = b

e {1171 £ € X7 fle =0, 5(0) = 1) = s
Apply this to z = z,, E = M, and let f,, € X* be the corresponding coordinate
functionals with minimal norm. Then,

1
(2 08) = o, 00
T

) n
[l

11
lnl 11£all

Thus,

inf dist (x—n, Mn) > 0 if and only ifsup ||z, || fn]] < oo.
n21 [l n>1

Definition 5.3. To a minimal sequence (z,) we associate the (formal) Fourier series

x ~ Z(m, fn)Tn, v € X.
n>1
The operator x — P,z = (z, f,)z, is called the projection on the n'* Fourier compo-

nent (or the co-ordinate projection with respect to the biorthogonal pair ((z,)n>1, (fi)e>1)-
Remark 5.4. We have || P,|| = || fullllzx| (because f,(x,) =1).

Definition 5.5. A sequence (z,,) in Banach space X is called a basis of X if forall z € X

there exists a unique sequence (a,) C C such that x = Z arxy. Note that a, = a,(x) A
k>1
sequence 1, is called a basis sequence if it is basis in Spany{z, : n > 1}.

Theorem 5.6. (S. Banach, 1932) Let (xx) be a basis of the Banach space X. Then (xy)

is uniformly minimal and fi(x) = ax(z), © € X are the coordinate functionals.

Definition 5.7. Let X be a Banach space and let (z,),ecz be a family in X. Then it is

called symmetric basis if for all x € X, there exists a unique (ag(z))rez C C such that

x = lim Z ar(x)zk. It is called non-symmetric if z = lim Z ar ().
n—00 P n,m—»00 —
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Lemma 5.8. Let x = (zx)rez and (fx)rez be a biorthogonal pair in a Banach space X.

Set Ppp = Z (., fu)xk, m,n € Z. Then

k=—m
(1) x is a symmetric (respectively non-symmetric) basis if and only if sup || P_, || < oo
(respectively sup || P,,|| < 00) and x is complete. =
(i1) If x is a (at l;ncgt symmetric) basis, then (fx)rez 1s total, i.e. fr(x) =0 for allk € Z
implies © = 0.

(i1i) For o C Z, define xo = Span{xy : k € o} and x° = span{z € X : fy(z) =
0 for allk & o}. If x is a basis, then for all o C Z, we have x, = X°.

Proof. (i) is followed from the Banach-Steinhaus theorem, and the fact that gr{ll Pppr =
x for all x € Lin{zy : k € Z}. |
(ii) If fx(z) =0 for all k € Z, then P_, ,,x = 0 for all n > 1. Hence z = 0.
(iii) The inclusion x, C x? is clear (even for minimal families). On the other hand, if

x € X7, then z = lim P_, o with P_, ,x € X,. Hence z € X,.

n—oo

5.1. Skew projections. Let L, M be two subspaces of a vector space X such that L N
M = {0}. Define P: L+ M — X by P(z+y) = x, then P> = P, P|; =id and Py = 0.

Then P is called skew projection onto L parallel to M and denoted as P := Pp .

Lemma 5.9. Let L, M be two subspaces of a Banach space X wverifying L N M = {0}.
Then

(i) Ppyn is continuous if and only if Ppyy is well defined and continuous (here L =
clos L and M = clos M ).
(ii) If L, M are closed, then Pp is continuous if and only if L+ M = clos (L 4+ M).

Proof. (i) is clear from the definition, and (ii) follows from the closed graph theorem. O
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Definition 5.10. Let L, M be two subspaces of a Hilbert space H. Define angle a € [0, 7]
(or minimal angle) between L and M by
cosa = sup [z, )|

veryen [lz[ [yl
NOTATION: We write oo = (L, M).
Remark 5.11. L L M if and only if a = 7.

Lemma 5.12. With the above notations we have

cos(L, M) = cos(L, M) = || Py; Py ||
and

sin(L, M) = sin(L, M) = || Prar| ™",

where the symbols have obvious meaning.

P_
Proof. Clearly, sup M = || Py;z||. Moreover, (z,y) = (Pyx,y) for y € M and
yeM\{0} [yl
hence
P_
COS<L,M>: sup |(x,y)] = sup H MxH
oteer, 02y 21Ul oreer ]
But
Py Py Pr Py Pr
sup H M:CH = sup H M LxH — su H M LxH :HPMPZ”
oteer |12l ogaer |zl otcer |||
Next,
2 2 2
S I N - B

veLyeM [T +yl? wer infyenr |2+ yll>  ogaer (1 — Pyl
This now gives

Pyal? 1 — Py)a|f? 1
sin?(L, M) = 1 — cos*(L, M) =1~ su 1P| MIQH = i It ]\24)1:” = 5
ozcr l|? oFwer |zl [ Pryiael?-

O

Corollary 5.13. The projection Pp is continuous if and only if ||PpPy|| < 1 (and
hence if and only if (L, M) >0). Moreover, || Pl = || Par|l-

5.2. Bases of exponentials in L*(T,u). Now, let X = L*(T,u), where p is a finite

Borel measure, and xz = ¢* k € Z (or z = 2%, k € Z).
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Lemma 5.14. If (e*"),c is a basis of L*(1) (at least in the sense of symmetric sums),

then s = 0.

Proof. Let 0, = {k : k > mn}, let L2 =5§pan;z){z* : k > n}, and let f; be coordinate

functionals associated to (e™*')icz, then

() L2, ={z € L*(n) : fi(x) = 0 for allk € Z} = {0}

n>1
(by Banach theorem [5.6). Clearly, L2 is an invariant subspace, and 2" € L2 and 2" # 0
on T. So it can be deduced (as in Corollary that L2 = L2 (pa)+L*(ps) for all n € Z.

But then also, (| L2, D L*(u,), implies L?(y,) = 0. O

n>1

Remark 5.15. For studying exponential basis in L?(T, u) one can restrict to measure

which is absolutely continuous with respect to the Lebesgue measure m, dy = wdm, w €

LY (T, m).

Lemma 5.16. (Kolmogorov, 1941) Let w > 0, w € LY. Then (2")nez s a minimal

sequence in L*(wdm) if and only if + € L*(T).

Proof. Due to biorthogonality, we have

(sn,k = (Zn, fk)LQ(M) = / andem, n,k € 7.
T
So we deduce that f,w = ZF, k € Z, that is f, = %, k € Z (if the coordinate functional
exists) Hence,

1
fr € L*(wdm) if and only if/ Ewdm < 00.
T
U

5.3. A fundamental reduction. Let P,[P, be as earlier and P_ = span{e® : k < 0}.

Define the Riesz projection P, by
Pif=) fl)e™ feP.

k>0

Then
Pr=Ppp.
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Let also .
Ponf = Z f(k;)eikt, ferP, mmnezZ m<n.
The following result gives the kp:rTnciple link between the problem of bases and the norm

estimation of the Riesz projection.

Lemma 5.17. Let w € LY. Then the followings are equivalent.

(i) (2¥)rez is a nonsymmetric basis of L*(wdm).
(11) sup || Punl < oco.
nme”L
(iii) (2%)rez is a symmetric basis of L*(wdm).
(1v) sup || P_p.n|| < oo.
nez

(v) The Riesz projection P, is continuous on L*(wdm).

(vi) (Py,P_) >0 (or (H,H?) > 0, where H3 closy2(ydm)Px-

Proof. In view of Lemma we get (i) < (i) and (iii) < (iv). It is also clear that
(i) implies (iv). Using Lemma and Corollary we obtain (v) < (vi). Next,
we verify that (iv) implies (v). Pick f € P, then for n = n(f) sufficiently large, we get
Pof = P 50 [Pl = Pz < Pl s |24 < s -
It remains to show that (v) implies (ii). Note that
Ponf =2""(1 = Pz (mtmtDp omy o f P,
But, then
[Panfll = (1= PL)s @m0 pam il < | PP £ < PRI

for all f € P. Since ||1 — P.|| = ||P4]|, (by Corollary the result follows. O

5.4. Harmonic conjugates. In order to get the desired characterization of exponential
type bases in L?*(u), we need a result of analytic type, namely, the so-called harmonic

conjugation on T(or D).



54 MA650: LECTURE NOTES, JAN-MAY, 2022
Theorem 5.18. Let u € L*(T) be a real valued function. Then there exist a unique real
valued function v € L*(T) such that 9(0) = 0 and u + v € H?. The mapping u — v s

linear and continuous with ||v]| < ||u]|.

Proof. Let u = Z a(n)e™ € L*. Then @ = Z a(n)e ™. Since u is real valued, i = u <
neZ nez

@(n) = a(—n), n € Z. Define

Then f € H? and
Ref = (f+f =a(0 +Zu mt—l—Zﬁ(n)e’mt:u

n>1 n>1
This means that v = Im f will satisfy the conclusion of the theorem. Next, we show that v

is unique. If u+iv = u+1iv; € H?, then v —v; € H?. As v —w; is real valued v — v; € H>.

But this is possible only if v —v; = ¢. Also ¢ = 9(0) — ©,(0) = 0. Finally, we have

f — f 1 ~ int ~ —int 1 ~ int ~ int
v= Imf = 5 :Z<Zu(n)e —Zu(n)e >:Z<Zu(n)e —Zu(n)e )
n>1 n>1 n>0 n<0
The process u — v is linear and

ol =) la(k) > < [lul?,

k£0
and if 4(0) = 0, then [ju|| = ||v]|. O

Definition 5.19. The function v is called Harmonic conjugate of u. Let v = 4. The

mapping H : L?(T) — L*(T), u + @ is called the Hilbert transform.

5.5. Different formula for .

(a) We can translate the above formula for @ in terms of Riesz projections
U= %(PJFU — P u) — %ﬂ(O)
In particular, if @4(0) = 0, then @ = }(Pyu — P_u). Also, we have f = u + i1 =
2P, u — u(0).
(b) If u verify the conditions of the theorem, then f = u +iv € H? and u = Re f. As f

extends to D so Ref does as well. For z € D, u(z) = Ref x P, = u x P,. Since the
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Poisson kernel verify P,(¢) = Re (%), we get u(z) = Refi(z), where
hia) = [ Euan(c)

Note that f; € Hol(D) and Re f; = u, f1(0) = [udm € R. By uniqueness, we have
J=/1and
uw= Imf = Imflz/

T

(52 )utQam(0) = [ @i - ey

—Z ™

where z = re® and

C+z 2rsint
@-(t) o (—z 1 —2rcost+ r?
sint
Remark 5.20. Forr — 1, @, ~ T—cost cot(t/2). In fact, one can show that

— o8

2 dt

(r) = (u* cot(./2))(r) = / u(r — ) ot (1/2) 5

0 T

in the sense of Cauchy principle valued integral.
5.6. The Helson-Szeg6 theorem.

Theorem 5.21. Let u be a finite Borel measure on T. Then the followings are equivalent.
(i) The family (2™)nez s a (symmetric or nonsymmetric) basis of L*(p).

(ii) The Riesz projection P, is bounded on L*(p).

(111) The angle satisfies sin(Py, P_) > 0. B

(iv) du = |h|*dm, where h € H? is an outer function such that dist(%, H‘X’) <1

(v) dp = wdm, where w = €** and u, v are real valued bounded functions and ||v||o < 5

(condition (HS)).
The proof of the theorem will be given in several steps based on the following lemmas.

Lemma 5.22. The mapping j : H?> x H?> — H', (¢,%) — ¢t is continuous and sym-
metric. Moreover, j(B? x B?) = B!, where BP is the unit ball in HP.

Proof. The continuity follows from the Cauchy Schwarz inequality ||¢u]l1 < ||d]]a]|?]|2.

For surjectively, let f € H', then f = ABS[f]. Write ¢ = )\BS[f]% and ¢ = [f]2 then
&) € H. O
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Lemma 5.23. Let E be a subspace of the Banach space X, and ® € X*. Then
[@E] =i x: ¥ =0 onE} =

x+: a € X" anda|p = 0}

Proof. The inequality ”<” is clear. For ”>" apply Hahn-Banach theorem. Let V' = ®|g.

Then
[[|x- = sup [W(z)[ = [|¥]x- = sup [¥'(x)| = |||z
rzeX zeX
By Hahn-Banach theorem, there exists U € X* such that ||®|g| = ||¥'||x+, and hence
the result follows. 0

Lemma 5.24. Let f € H' and suppose that f(T) C A C C. Then f(D) C conv(A) (the
closed convex hull of A).

Proof. Observe that for z € D, we have f(z) = P, x f = f |1€ |Z}2 ¢)d¢ € conv(A). O

Lemma 5.25. (V. Smirnov, A. Kolmogorov) Let v € L*(T) be a real valued function

then X € LY(T) if M|v]e <

Proof. 1t is sufficient to show that [|ul|. < I implies e” € L'. Set f = e~"(“* which is

" 1—
well defined in D, since u + i € H?. Clearly |f| = ¢ and |arg f| = |u| < % for
some € > 0 (on T and hence on D in view of Lemma [5.24). The same reasoning as in
(Theorem 4.8) now gives f € H' and hence |f| = e* € L'(T). O

Proof. Implication (i) < (ii) < (iii) < (iv) of Helson-Szego theorem.

Recall that we may restrict to du = wdm, w € L% (T). By Lemma we get the
equivalence of (i),(ii) and (iii).

Next we show (i) and (ii) are equivalent to (iv). Note that if the sequence (2"),¢z is
a basis, then we can see from Banach’s (Theorem and Kolmogorov’s (Lemma
that - € L' and hence logw € L' (this can be justified without using Banach theorem
as z € H?(u) we get logw € L'). In view of the later observation, we suppose that there

exists an outer function h € H? such that ]h|2 = w. Thus,

(f 9)r200 /fgwdm /fhgh dm = /fh (ah) m /m i
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for all f € P, and g € P_ and therefore,
sy = [ 170dm = 1 ey Toliag = NG,
Clearly F' = fh € H?, since g € P, we get G € Hj. By definition of outer function, it
follows that span{F = fh: f € P,} = H? and also A :={F = fh: f € P, ||F] < 1}
is dense in the unit ball B? of H2. For the same reason, we see that B := {G =gh: g €
P_,||G|| < 1} is dense in B? N HZ. We deduce that
cos(Py,P_) 2y = sup{|(f. 9)| - f€Pr,geP_|fl7(n) <1, |lgll7(p) <1}
:sup{‘/TFG%dm‘ cFeA Ge B}.

Set ®(k) = [k(L)dm, k € L*(T). As h/h € L®(T), we get ® € (L'(T))*. By (Lemma
, we seeTthat the angle (P, P_) = [[®[4]|, and by means of (Lemma , we can

express it in terms of h:

cos(Py, P_) 120 = [ @] || = distren (% (H)*) = distzeem) (%,HOO>.
The last equality is the consequence of the relation
(H)t={geL>: /gfdm =0 for allf € Hy} = H™.

Now, we conclude that cos(Py,P_) <T1 if and only if logw € L', w = |h|* for an outer
function h € H? satisfying dist Loo(’[[‘)(%, H*) < 1, that is (i) and (ii) are equivalent to (iv).
Proof of implication (iv) = (v):

Suppose distLoo(T)(%,Hoo) < 1, where h is a outer and |h|?> = w. Then there exists
g € H* such that H% — g|leo < 1. That is, for € > 0, we have ]% —gl<1l—e€cae onT,
and hence ||h|? — gh?| < (1 — €)|h|* a.e. on T. Setting a = |h(£)]* > 0, for £ € T, we see
that |a — gh?| < (1 — €)a.

Geometrically, it means that if a € (0, %) is such that sina = 1 —¢, and A = {2 :
|arg z| < a}, then we get gh?(T) C A (cf. Figure 1).

From (Lemma we get gh?(D) C A, so loggh? is analytic in D. We set v = —
Im log gh? = —arggh? and get |v| = Re loggh® + ¢ = log|gh|* + ¢, where ¢ has to be

chosen such that 9(0) = 0. We obtain log gh? = © — iv — ¢ and gh? = €*~® ¢ on T, we
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have |% — g| <1 —¢, which implies that |1 — |g|| < 1 — ¢, hence € < |g| < 2 — e. Finally,

|h|? = €|_| = """, where u = —log |g| — ¢ € L=(T) and ||v < Z.
g
Proof of implication (v) implies (iv):

v—C

Let wdm = e**'dm, where u,v € L®(T) are real valued and |[v]. < %. Clearly
logw =u+ v € L' and by (lemma [5.25) we have w € L'(T). Hence there exists an outer
function h € H? such that |h|*> = w. Thus log |h|* = u+0 and log h* = u+0+i(u+0)~ =

u+ 7+ i(i — v + ¢) for some constant ¢ € R. Setting g = e~ (@~ we obtain, in view

of |g| = e*, a bounded holomorphic function g € H*. Moreover,
= g = exp(i v+ )~ — i — ic) = exp(—u — i)
—g=—=g=-exp(i(t—v+c)—u—iu—ic) = exp(—u—iv),
79 = Y = o p

where ||v|s < 5. This gives the following estimates on T.

(-

T ‘ﬁg‘ < clulles
=R = 2

h
arg(7)g| = v] <

(cf. Figure 2). The value of (£)g thus belongs to

D= {z € C: e lule < 2] <ellvll> | arg 2| < 7r<1 ; ) }
For )\ sufficiently big and some § > 0 we have B(), (1 — d)A\) D closD or A™'B(), (1 —
§)A) = B(1,1 —48) D A7 closD. Then A*%g € B(1,1 —0) a.e. on T. In other words,
A (E)g—1 <1—4dae onT, and [A'g — (M) <1—dae T.As g€ H>, this gives
dist peo(m) (2, H®) < 1. O

5.7. An example. Let w(e") = [¢{|*,t € (—m,7), « € R. Then for « > 1 we have
1/w ¢ LY(T) and (¢™),cz cannot be uniformly minimal in view of Lemma [5.16] For

a < —1, w & L'. Thus, the only interesting case is o < 1.

First note that if the quotient w; /wy and wy /wy are bounded, then the sequence (€),cz

is a basis of L?(wy) if and only if it is one of L?(w,). Indeed, the identity map f — f is
an isomorphism from L*(w;) to L?(ws).

Next, let w; = w and wy = (1 — ™). Then
¢it|e

logwy = log |1 — = aRearg(l — ) := .
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Necessarily, we get

a(t) = aarg(l —e") = aarg(e/?(e7/? — /2
— aarg(e/?(—2isint/2).

a(t/2 —m/2), ift > 0;
a(r/2 —1t/2), ift <O.

59
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6. TRANSFER TO THE HALF-PLANE

In this section, we give an outline of the Hardy-space theory in the half-plane and
on the line. We restrict ourselves to the key results only: an isometric correspondence
between Hardy-space in the disc and in the half-plane, the canonical factorization, the
Fourier transform representation (Paley-Wiener theorem), and invariant subspaces.

6.1. A unitary mapping from L?(T) to LP(R). Let w : D — C, w(z) = 12, be the

1-27

usual conformal mapping of the disc D to the upper half-plane C, = {¢ € C : Im & > 0}.

The restriction to the boundary w|r is a one to one correspondence between T ~ {1}

and R. The inverse w™!, w™!(z) = i _T_Z has Jacobian |J(z)| = ——, x € R. Hence the
T+ i

2
1+ a2’
mapping U = U,,

Uy f(x) = (m)wﬂw—%x», reR

is an isomorphic isomorphism (unitary for p = 2) of the space LP(T) onto LP(R).

First, we give three descriptions of the image under U of the Hardy-space H*(T) C
L*(T), then pass to arbitrary p, 1 < p < oo. Clearly, U,H?(T) is a closed subspace of
LP(R).

6.2. Cauchy kernel and Fourier transform. The first description of UyH?*(T) is

straightforward.

Lemma 6.1.

1
U, H*(T) = spaan(R){xTﬂ s Imp > O}.

Proof. Since

H*(T) = spanLg(T){ — |\ < 1},
1—-Az
and U, is an isometry, we have
- C
H*(T) = spaan(T){Ug(l —A2)7 = —2 )¢ ]D}.
r — w(\)

Clearly, 1+ = w(A) runs over the entire upper half-plane C, . O



ADVANCED COURSE ON HARDY SPACES 61

Now, we recall that Fourier transform F and its inverse F !,
1 )
F(f)(z) = —/ x)e "Fdr,
19 = 7 [ 1
Fi z) = —/ z)e®*dx
(N == [ 1)
are unitary mapping of L?(R) onto itself.

Lemma 6.2. Uy H?> = F'L*(R), where L*(R.) ={f € L*(R) : f =0 on (—00,0)}.

Proof. Compute the inverse Fourier transform of the function xg,e* € L*(R;), where

ImA > 0:

. 1 N 1 1 o0
ffl(XR_Fez/\x) — _/RXR_,_GMxemzda: - - - [ZQZ(Z + )\)]120 — -

2 V2ri(z + A) Vorz = (A)

where —\ = p runs, again, over the entire half-plane C,.. Since F~! is an isometry, Lemma

1

[6.2 reduces to the proof of the following identity:

L*(R,) = span{xg, e ImA > 0}.
The equality follows from the injectivity (classical Fourier uniqueness theorem) of the
Fourier transform F. Namely, let f € L*(R;) and suppose that fLyg, e for all \ with
ImXA > 0. Taking A = i +y, y € R, we get F(f xr e “(y) = 0 for all y € R. Hence
fxr.e®=0ae. onRandso f=0. U

6.3. The Hardy space H = H?(C+). Here we see from real line R to the half-plane
C,. We identify the subspace U,H? C L*(R) with the space of boundary values of a

certain holomorphic space in the half-plane C;. Note that w™!(2) = z—jrz is a conformal

mapping from C, to . Hence the same formula as above,

0 = (=5 i))l/pfwl(z))? >0

defines a holomorphic function in C, for all f € HP(C, ). Moreover, w™! is still conformal

at the boundary points r € R and transfers a Stolz angle in C, {z + iy : |z —r| < cy},
into a Stolz angle in D. Now, Fatou’s theorem implies that the functions U, f, f € H?(D),
have non-tangential boundary limits (U,(f))r a.e. on R, U,(fr) = (U, f)r. Hence in order

to get another characterization of U,HP?(T), it remains to describe U,H?(D) in intrinsic
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terms as a subset of Hol(C ). This is done in the next theorem. But, first we define Hardy

classes on C, .

Definition 6.3. Hardy space HY = H?(C,),0 < p < oo, is the class of functions
g € Hol(C, ) such that
lollar =sup ([ lota+i)Pdz)” <.
y>0 R
with the usual modification for p = co. In order to compare H?(C,) with U,H?(D), we

need the following simple result.

Lemma 6.4. (i) Let v be an arbitrary circle in D. Then
[1scrie <2 [ 17epla
¥ T
for all f € H?(D), 1 < p < oo, here |dz| stands for the arc length measure.
(11) Let g € HP(C,), 1 < p < oo and z € C,, then

9 < (=2 gl

wlmz

Proof. (i) First let p = 1. For z € L?(u), denote by u, be the harmonic extension of u in

the unit disc,
1— |27

w@) = [ o=

We show that u — w.|, is a bounded operator from L'(w) to L'(7) of norm at most 4.

[t < [ @i pm©l
— /|u /IC Z|2|dz| )am(¢)
= 2 [ u(© "'2 m(©),

where v = (¢, 7). In the last inequality, we have used the MVT for harmonic functions

sdm((), z € D.

Indeed,

applied to the Poisson kernel P.(¢) = Re (Z+§) Since 2rdm(z) = |dz| on T, r < 1 — |¢|

1 |c|? 1+|c]
\2_1\0\—1||’

and we get the desired inequality. For an arbitrary p, 1 < p < o0,

we have |us|P < (|u|P)s, from Holder’s inequality, and the result follows.
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(i) Using the MVT in the disc, D = {z+iy : |]A— (z+1iy)| < ImA}, Holder’s inequality,

and what is sometimes called the “rolling a disk” trick:

1 1 1—% 5
N = —— dedy| < (———— Pdad
lg(N)] (m /\2/ lg dxdy| < ((ﬂm)g /Igl T y)
2ImA
p
ImA / dy/\gxﬂyldy)

< (ﬁ) Iz

IA

The following theorem is one of the main result of this section.
Theorem 6.5. Let 1 < p < oco. Then U,H?(D) = HP(C,).

Proof. 1f g € Hol (C,), y > 0, and Uf = g, then

[ ot impar = 5 [ 15

Where C), is the circle in D having the interval | y — 1/y + 1,1] as diameter and being

tangent to the unit circle T at the point 1. So it remains to verify that

sup / FEPIde] < 00 e sup | [fIPldz] < oo,
y>0 JCy

o<r<1 JT

for every f € Hol (D).
The implication = is a straightforward implication of Lemma [6.4] (i).
To prove the converse, let ¢ € HY. By Lemma (ii), g is bounded on every half-plane

Im >y > 0. Hence g o w is bounded on the disc int(C,). Since the function (1 — z)~*

is outer on the int(C,) and f = 7T<( 2 )2>;(gow) e LP(Cy), we get f € HP(C,) by

1—2

the integral maximum principle [3.26[iv). (We use the previous theory for the following
classes H?(D) over disc D = int (C,), instead of the unit disc D; the corresponding
modifications, including the very definition of H?(D), do not cause any difficulties and
can be obtained by a linear change of variable). Now, applying Lemmal6.4(i) to the circle
Y(r)={z€C: |z| =r} Cint(C,), we get

[ ez <o [ 5P
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In fact, the Poisson representation (Corollary [6.7)) implies that for g € HY, the norms
1
([ lota+imypaz)”
R
are monotonically increasing in y > 0 and tend to ||g|r||z» as y — 0 (to see this, use

approximate identity properties of the Poisson kernel). This shows that | g[z|zr = [|g]| s -

O

Theorem 6.6. (R. Paley and N. Wiener, 1934)
HP(Cy) = F'L(Ry)

Proof. This is immediate from Lemma [6.2] and Theorem [6.5] O

6.4. Canonical factorization and other properties: The following properties are
straightforward consequences of the change of variables from Section [6.1], Theorem [6.5]

and the corresponding facts from H? theory in the disc D.

Corollary 6.7. (Poisson formula) If f € HP(C,), 1 < p < oo, then

1
f(33 + ig) = ; /R mf(t)dt, y > 0.

Corollary 6.8. (Boundary uniqueness theorem) If f € HP(C,), 1 < p < oo and f # 0,

then

|log [ f ()]

dr < 0.
R 1"—.1:2

Corollary 6.9. (Blaschke condition and Blaschke product) If f € HP(Cy.), 1 < p < oo,
and f # 0, then

L[>
where N\, are the zero of f in C, (counting multiplicities). The corresponding Blaschke

product (having similar properties as in D) is

Z— An
B(Z) = ]JEnm, z € C+,

where €, = |§’§ﬁ| (by definition, €, = 1 for A\, =1i).
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Theorem 6.10. Fach function f € HP(C,); 1 < p < oo, has a unique factorization of
the form f = ABV[f], where A € T, B is the Blaschke product constructed from the zeroes
of f, V is a singular inner function (an H™ function having no zeroes in Cy and with

unimodular boundary values on R) of the form

V() = €9V, (2) = ¢ oxp <z /R 1+t2dv(t)),

t— =z

where a > 0, and v is a finite positive singular measure on R, [f] is the Schwarz-Herglotz

outer factor of the form

116 = e (5 [ - oglrol S

Rt +t2

), zeCy

Proof. Just a change variable in the Riesz Smirnov Theorem [3.25] The only new detail
concerns the factor €*. Namely, changing variables in the integral for the singular inner
factor S of Theorem [3.25] We have to take care of the exceptional point 1 € T, since it
may carry a positive mass, say a > 0. To do this, it is natural to extend the mapping w ™!
to a bijection of RU{co} to T by simple setting w~!(c0) = 1. Now, the point mass ad, of
the measure p at 1 turns into the point mass ad,, of v at 0o, and replacing the measure

z

w on T by its preimage v = w™ 'y on R U {oo}, we get ¢"* as a part of the integral for

V = Sow . We prefer to separate the point mass at infinity and write V' = e@*V,. [

Remark 6.11. It is clear from the previous computations that other facts of the Hardy
Nevanlinna theory of Sections 3 and 4 in the disc can be transferred to the half-plane.
In particular, the properties of the inner outer factorization from subsections
still hold with corresponding modifications caused by the change of variables. For in-
stance, a function f € HP(C, ) having an analytic continuation across a point x € R has
singular representing measure zero in a neighborhood of this point. To find the point
mass of the singular measure, the logarithmic residues of Section 4 (to be added) can

be redefined and computed and so on and so on. In particular, the point mass at oo is

1
a=— lim —log|f(iy)|.
y—00 Y
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6.5. Invariant subspaces. Here we consider translation invariant subspaces of L?*(R)

and their Fourier dual objects - character invariant subspaces.

6.6. Duality between translation and multiplication by characters. Define the
translation operator 7, by

(1sf)(x) = f(x —s), z € R, for s € R.
This is a group of unitary operators on L?(R). A subspace E C L?(R) (closed, as always)
is said to be (translation) 2-invariant and if 7,£ C E for all s € R, and (translation)
l-invariant if 7,& C E for all s > 0 but not for (all) s < 0. The Fourier image of the
translation operator 7, is the multiplication operator by the corresponding character e***
of the group R:

T(Ff) = F(e*f), for all f € L*(R).
Without any risk of confusion, we write e** both for the function = — €%* and for the
multiplication operator by this function, f —— e**f. Hence, we have

o= FelFL

that is, the groups (7,)ser and (e%?) g are unitarily equivalent (conjugate) via the Fourier
transform.

We use the same terminology as above for e*® -invariant subspaces. A subspace E C
L*(R) is (character) 2-invariant if e**E C E for all s € R, and (character) 1-invariant if
¢*F C E for s > 0 but for (all) s < 0. Hence, F is an 1- or 2- character invariant if and
only if its Fourier image FF is a 1- or 2- translation invariant subspace.

Clearly, the Hardy space H*(C, ) is a character l-invariant subspace, and FH?(C,) =
L?(R,) is translation 1-invariant.

Below, we will derive analogue of the Wiener theorem [1.4] and Beurling Helson theorem

for character invariant subspaces. First, we prepare the transfer of these results to

L*(R) by means of the operator Us.
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Lemma 6.12. Let u, = exp (s2t}) s € R, and let E be a (closed) subspace of L*(R). The
E is a 2-invariant subspace (with respect to the shift operator f —— zf) if and only if
usE C E, for all s € R, and E is 1-invariant subspace if and only if usE& C E, for all

s >0, but not for (all) s <O.

Proof. If b € H®, and E is a z-invariant subspace of L*(T), then bE C E. Indeed, by
DCT, we have
}g% |bf —b,.flla =0, forall f e E,
where b,.(z) = b(rz).
On the other hand, 2" f € F, for n > 0 and therefore, b,f € E, since Taylor series of
b, is absolutely convergent on T. Hence bf € E. The same holds true for b € H* and
Z—invariant subspace E. These prove the “only if” part of the lemma.

By analogous reasoning, to prove the converse, it suffices to show that the function
us — (1 —s)
us — (1 +s)
Re(1 — us(¢)) > 0, and hence |¢5(¢)| < 1, for ¢ € T. On the other hand, using the

z is the bounded pointwise limit of functions ¢, = as s — 0,. We have

standard formula

e’ =14 sw+o(s) as s — 04, we easily get lir%gbs(g) =(for (e T\ {1}. d
S—r

Theorem 6.13. (P. Laz, 1959) Let E be a subspace of L*(R).

(i) E is a (character) 2-invariant subspace if and only if E = x=L*(R) for a measurable
subset ¥ C R.
(ii) E is a (character) 1-invariant subspace if and only if E = F,H?*(C,) for a measur-

able function q on R with |q| =1 a.e.

Proof. Lemma shows that E is 2 or l-invariant if and only if its preimage U, 'E C

L?(T) has the same property with respect to the shift operator on L?(R). The results thus
follow by applying theorems and Theorem [6.5] O

Corollary 6.14. Let E be a subspace of L*(R).
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(1) E is translation 2-invariant if and only if E = Fx=L*(R) for a measurable subset
Y CR.

(2) E is translation 1-invariant if and only if E = FqH?*(C,) for a measurable func-

tion q¢ on R with |q| =1 a.e.
Indeed, it suffices to use Theorem [6.13] and duality of Subsection [6.6]

Corollary 6.15. (i) If F' C H?*(C,), then spang: {e"**F : s > 0} = ©OH*(Cy), where
O is the g.c.d of the inner factors of f € F.
(i) If F C L*(Ry), then 5pan s {7.F : s > 0} = F(OH?*(C,)), where © is the g.c.d
of the inner factors of F~1f, f € F.

(iii) If f € L*(R), then 5pansgy{e”*f : s € R} = L*(R) if and only if f # 0 a.e. on R.
() If f € L*(R), then 5pan sgy{e™ f : s > 0} = L*(R) if and only if f # 0 a.e. and
/(1 + %) log | f|dz = —o0
(v) If f € L*(R), then WLQ(S{TSf 15 >0} = L*(R) if and only if Ff #0 a.e. on R
(vi) If f € L*(R), then 5pansmy{7sf : s > 0} = L*(R) if and only if Ff # 0 a.e. and
/R(l + %) log | F f|dx = —oo.

Indeed, it suffices to use Theorem and Corollary and the corresponding prop-

erties of z-invariant subspaces of L*(R).

6.7. Cauchy kernels and L”- decomposition.
1
(a) Show that HP(C,) = spaan(R){m : Imp > O} for 1 < p < o0.
(Hint: Use HP(C4) = U,HP and solve U, f = ﬁ)

(b) Let 1 < p < oo. Show that LP(R) = HP?(C,) & HP(C_), where & stands for the
orthogonal sum for p = 2 and direct sum for p # 2.
(c) Let
Cf) =5 [ 1Y

o Jpt— 2
be the Cauchy integral of f € LP(R), 1 < p < oo, then the followings are equivalent.

dt, ze€C\R
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(a) f e HP(Cy).
(b) C'f = f., where f, stands for the Poisson integral extension.
(c) Cf(z) =0 for Imz < 0.

Theorem 6.16. (The Paley Wiener theorem) An entire function E is called of exponential

type if
— log |E(z
hm|zﬁoo% < 00;

the limit itself is the type of E. Let £, = set of all entire functions of exponential type

< a. For a > 0, show that the followings are equivalent.

(i) E € &, and E|g € L*(R).
(ii) There exists f € L*(R) such that Ff = E and supp f € [—a, al.

(Hint: For (ii) = (i), estimate the exponential type of E applying the Cauchy inequality
to the Fourier transform of f :
2a| Imz| __ 1 L
BEI=| [ e ] < 1 (S ) < @apter

e Imz

Moreover, ||E||2 = ||f|l2 by Plancherel’s theorem:
(i) = (ii): First suppose that Elg € L*(R) N L>(R). Then by Phragmén-Lindelif
theorem |E(2)| < || E||ooe® ™, for z € C, implies
N
|Ex(2)] = —2 "= E(z) € H(C,), A > 0.

Z2 4 1A
The Paley Wiener theorem |6.6] entails that F(E)) = 0 a.e. on (—00,0) and hence

F(e"E) = 0 on (—o0,a) (because )}erolo||EA — €™ E|12®) = 0). Therefore, F(E) =
7. F(e*E) =0 a.e on (—o0, —a). Similarly ]:(E) =0 a.e. on (a,00.) and we get (ii).

In general case, replace E by E*(z) = [ E( c(t)dt, where ¢ (t) = e 'p(L), ¢ >0
is compactly supported in R. It is easy to see that E€ € &,,. and supp (E€) C [—a—¢€, a+¢],
and we have 11_{% |E = El|r2®) = 0.

Question 6.17. (a) Show that f € H?(C,) if and only if f € L*(R) and F(f) =

0 a.e. on R.
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(b) Find f € L'(R) N L*(R) such that L*(R) = Span;zp(7.f : s € R) and L'(R) #
span gy {7sf : s € R} (Hint: Consider f = X(ap))

(c) Riesz Brother’s theorem for R: Let u be a complex Borel measure on R such that

etdu(t) = 0 for all s > 0. Show that u << m.
R
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