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7.7. An example 64

8. Transfer to the upper half-plane 65
8.1. A unitary mapping from Lp(T) to Lp(R) 65
8.2. Cauchy kernel and Fourier transform 65
8.3. The Hardy space Hp

+ = Hp(C+) 66
8.4. Canonical factorization and other properties 69
8.5. Invariant subspaces 73
8.6. Duality between translation and multiplication by characters 73
8.7. Cauchy kernels and Lp- decomposition 76
8.8. Exercises 77
9. Problem Sets 79
9.1. Problem Set I 79
9.2. Problem Set II 80
9.3. Problem Set III 83
9.4. Problem Set IV 84
References 85



HARDY SPACES 3

1. Introduction

The origins of Hardy spaces can be traced to the year 1915 at Cambridge University, in
the work of the British mathematician G. H. Hardy (1877–1947). Hardy’s contribution,
at first glance, appeared modest: within a short nine-page article in the Proceedings of the
London Mathematical Society, he introduced a family of function spaces of holomorphic
functions—what we now call Hardy spaces.

At the time, this definition received little recognition. The year 1915, though produc-
tive for Hardy—he published nearly a dozen papers—yielded no apparent breakthroughs,
apart from this conceptual seed. The mathematical community, like the world at large,
was preoccupied: the First World War was under way, while Einstein’s general theory of
relativity and Wegener’s bold hypothesis on continental drift (Pangaea) captured much
of the intellectual landscape. Even within mathematics, the birth of Hardy spaces drew
scant attention.

Yet this seemingly auxiliary construct concealed profound significance. Hardy spaces
would ultimately provide a unifying framework connecting diverse areas of mathematics.
They proved central to the development of complex analysis, harmonic analysis, and
later found deep applications in signal processing. In addition, they anticipated whole
domains of modern mathematical thought, including operator theory, optimal control
theory, diffusion theory, and the theory of stochastic processes.

Hardy himself later recognized the broader implications of his original idea and returned
to refine the theory. However, the transformation of Hardy spaces into a fundamental an-
alytical tool was the result of collective effort. The so-called “Golden Generation” of
analysts—including Schur, Marcel Riesz, Frigyes Riesz, Szegő, Nevanlinna, Luzin, Pri-
valov, Smirnov, Kolmogorov, Paley, Wiener, and Zygmund—played an essential role in
expanding and deepening the theory. Their work established Hardy spaces as indispens-
able to modern analysis.

This legacy was then carried forward by a distinguished line of successors who broad-
ened the scope and deepened the applications of Hardy space theory: Beurling, Stein,
Fefferman, de Branges, Helson, Carleson, Kahane, Garnett, Gamelin, Sarason, Havin,
Douglas, Sz.-Nagy, Foias, Fuhrmann, Lax, and Phillips. Through their efforts, Hardy
spaces have become not only a central subject in complex and harmonic analysis but also
a cornerstone of modern mathematical analysis with far-reaching influence across both
pure and applied mathematics.
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2. Preliminary

Let us denote the unit circle in the complex plane by T = {z ∈ C : |z| = 1}. Write
z = eiθ; 0 ≤ θ < 2π. Then T = {eiθ : 0 ≤ θ < 2π}. Consider φ : R → T defined by
φ(x) = eix. Then φ is a group homomorphism with ker(φ) = 2πZ. Hence T ∼= R/2πZ. If
f : T → C, then f can be identified on R by f̃ : R → C via the relations

f̃(x) = f̃(x̃+ 2πk) = f(x̃),
where k ∈ Z and x̃ ∈ [0, 2π). That is, the function on T can be identified with 2π
periodic functions on R, which allow understanding the notions of continuity, Lebesgue
integrability, etc. on the unit circle T. Further, the arch length measure on T can be
identified with the restriction of Lebesgue measure on [0, 2π) in the following way.

Denote dm = dθ
2π
, where m can be realized by m{eiθ : θ1 ≤ θ ≤ θ2} = θ2−θ1

2π
with

0 ≤ θ2 − θ1 < 2π. Here m is known as the normalized Lebesgue measure on T ∼= [0, 2π).
Hence if f is continuous on T, then

(2.1)

∫
T
f(z)dz =

∫ 2π

0

f̃(t)dm(t).

Now onwards, we shall identify function f̃ on R by f itself and dm(t) = dt. Moreover, m
is translation invariant on [0, 2π) and∫ 2π

0

f(t− to)dt =

∫ 2π

0

f(t)dt,

where to ∈ [0, 2π).
Complex Borel measure: The Borel σ-algebra B(T) is the smallest σ-algebra

generated by all open subsets (open arches) in T, where every member of B(T) is known
as a Borel set. For simplicity, we write B for B(T).

A function f : T → Ĉ = C∪{∞} is called Borel measurable if f−1(U) ∈ B(T) for every
open set U of one point compactification space Ĉ. Typically, U is either an open subset
of C in its usual topology or U = Ĉ ∖K, where K is a compact subset of C.

A complex Borel measure on T is a set function µ : B(T) → C satisfying µ(∅) = 0 and

(2.2) µ(E) =
∞∑
j=1

µ(Bj)

for every countable partition {Bj}∞n=1 of E ∈ B(T). It follows that the series in the right-
side of (2.2) must be absolutely convergence unless µ is a non-negative measure. Thus,
|µ(T)| < ∞ necessarily satisfied if µ is not a non-negative measure. Consequently, µ
satisfies

µ(
∞⋃
j=1

Bj

)
=

∞∑
j=1

µ(Bj)

for every disjoint sequence {Bj}∞n=1 in B(T). We denote the space of all finite complex
Borel measures by M(B). For µ ∈ M(B), define

∥µ∥ = sup
{ ∞∑

j=1

|µ(Bj)| :
∞⋃
j=1

Bj = T
}
.
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The space (M(B), ∥ ·∥) is a Banach space. Here ∥·∥ is known as the total variation norm,
and ∥µ∥ = |µ|(T).

Exercise 2.1. Show that

|µ|(T) = sup
{ ∞∑

i=1

|µ(Bi)| :
∞⋃
i=1

Bi = T
}
= sup

{ k∑
i=1

|µ(Bi)| :
k⋃

i=1

Bi = T
}
.

(Hint: If {Bi}∞i=1 is a countable cover of T, then
∞∑
i=1

|µ(Bi)| <∞.)

For µ ∈ M(B), define a linear functional Tµ on C(T) by Tµ(f) =
∫
T
fdµ. Then

∥Tµ∥ = sup{|Tµ(f)| : ∥f∥∞ ≤ 1} = ∥µ∥. Thus, every µ ∈ M(B) defines a bounded
linear functional on C(T) and vice-versa due to the following result.

Theorem 2.2. (Reisz representation theorem) Let T be a bounded linear functional on
C(T), then there exists unique µ ∈ M(B) such that T = Tµ. It is equivalent to M(T) ∼=
C(T)∗.

Let I be a finite index set and let xi ∈ V for i ∈ I. Let ϵ > 0. Then a w∗ open nbd of
f0 ∈ V ∗ can be written as:

{f ∈ V ∗ : |(f − f0)|(xi) < ϵ, i ∈ I}

Proposition 2.3. Let E be a topological vector space with dual E∗. Consider the weak-*
topology on E∗. Then every linear functional φ : (E∗, w∗) → C is continuous if and only
if there exists e ∈ E such that φ(f) = f(e) ∀f ∈ E∗. More preciously (E∗, w∗)∗ ∼= E.

Proof. ⇐ Trivial.
⇒ Since φ is continuous the inverse image of an open set is open, i.e. the set

Uϵ = {f ∈ E∗ : |φ(f)| < ϵ} = φ−1({Bϵ(0)})
is an open nbd around the point 0. Now recall the basis structure of nbds at a point in
(E∗, w∗). There exists e1, e2, . . . , en ∈ E and δ > 0 such that

Vδ =

{
f ∈ E∗ : max

i∈I={1,2,...,n}
{|f(ei)|} < δ

}
is contained in Uϵ. Let φi(f) = f(ei), i ∈ I. Then Vδ = {f ∈ E∗ : maxi∈I{|φi(f)|} < δ}.

Let f0 ∈
⋂

i∈I Kerφi =⇒ φi(f0) = 0 ∀i ∈ I =⇒ f0(ei) = 0 ∀i ∈ I =⇒ f0 ∈ Vδ ⊂
Uϵ =⇒ |φ(f0)| < ϵ, ∀ϵ > 0. Since ϵ is arbitrary chosen, f0 ∈ Kerφ. Hence⋂

i∈I

Kerφi ⊂ Kerφ =⇒ φ =
∑
i∈I

ciφi, ci ∈ C.

Now

φ(f) =
∑
i∈I

ciφi(f) =
∑
i∈I

λif(ei) = f

(
n∑

i=1

ciei

)
and we have shown that φ is evaluation at e = c1e1 + · · ·+ cnen ∈ E. □

Corollary 2.4. The dual of (M(T), w∗) is C(T).
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3. Invariant subspaces of L2(µ)
In this section, consider shift-invariant subspaces of square integrable functions on T.

Let

L2(T, µ) = {f : T → C is measurable and∥f∥22 =
∫
T
|f |2dµ <∞},

where µ is a finite complex Borel measure on T.

For f ∈ L1(T,m), we define the Fourier coefficients of f by f̂(n) =
2π∫
0

e−intf(t)dt, where

n ∈ Z, and the corresponding Fourier series is f ∼
∞∑

n=−∞
eintf̂(n). Consider an operator

S on L2(T,m) defined by
(3.1) S(f)(z) = zf(z),

where z ∈ T. Then (̂Sf)(n) = f̂(n− 1). That is, the Fourier coefficients got a right-shift
due to the action of S. The operator S is known as the shift operator. The following
question can be raised.

Question 3.1. What are the shift-invariant subspaces E of L2(T, µ)?

That is, when zE ⊆ E? We shall use the notation closE for the closure of E, and Ē,
the complex conjugate of E. We always consider E to be a closed subspace unless it is
specified.

Example 3.2. When f ∈ L2(µ), the space Ef = span{znf : n ≥ 0} is shift-invariant.

Further, what are f ∈ L2(µ) such that Ef = L2(µ)? If so, we say f is a cyclic vector.
More generally, we consider identifying f ∈ L2(µ) such that zEf = Ef .

Let E be a closed subspace of L2. Typically, we discuss the characterization of the
following two distinct cases.

We say E is simply invariant (or 1-invariant) if zE ⊂ E and zE ̸= E. On the other
hand, when zE = E, we say E is doubly invariant (or 2-invariant). Note that zE = E
if and only if z̄E = E (since zz̄ = |z|2 = 1). This means zE ⊆ E and z̄E ⊆ E, and hence
E is known as reducing space as well.

For a measurable set σ ⊂ T, the space Eσ = χσL
2(µ) = {χσf : f ∈ L2(µ)} = {f ∈

L2(µ) : f = 0 µ-a.e. on T ∖ σ} satisfies zEσ = Eσ.

Question 3.3. Does every reducing subspace look like Eσ?

Theorem 3.4. (Norbert Wiener) Let E ⊂ L2(T, µ). Then zE = E if and only if there
exists a unique (up to set of measure zero) measurable set σ ⊂ T such that E = χσL

2(µ).

Proof. Suppose zE = E. Let PE be the orthogonal projection of L2(µ) onto E. Set
χ = PE1 (the evaluation of PE at the constant function 1). Then χ ∈ E and 1 − χ =
(I − PE)1 ∈ E⊥. But znE ⊆ E, implies znχ ∈ E and hence znχ ⊥ 1 − χ, ∀n ∈ Z. That
is,

(3.2)

∫
T
znχ(1− χ̄)dµ = 0, ∀n ∈ Z.
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Let g = χ(1− χ̄), then dν = gdµ is a finite complex Borel measure because of χ ∈ L1(µ).
Thus by (3.2), Tν : L2(µ) → C defined by Tν(f) =

∫
T
fdν satisfies Tν(z

n) = 0. Since

trigonometric polynomials are dense in C(T), it follows that Tν(C(T)) = {0}. By Riesz
representation theorem, Tν = 0 and hence ν = 0. (Note that ∥Tν∥ = ∥ν∥). That is,
g = χ(1 − χ̄) = 0. This implies that χ = |χ|2. Thus, χ takes values either 0 or 1. Let
σ = {t ∈ T : χ(t) = 1}. Then σ is measurable. For simplicity, let P denotes the space of
all trigonometric polynomials on T. Since χ ∈ E, we get znχ ∈ E and hence χP ⊂ E. This
implies clos(χP) ⊆ E. On the other hand, clos(χP) = χL2(µ), as we know closP = L2(µ).
Thus, χL2(µ) ⊆ E. Therefore, it remains to show that χL2(µ) = E.
For this, let f ∈ E and f ⊥ znχ, ∀n ∈ Z (since clos(χP) = χL2(µ)). Since znf ∈ E

and 1− χ ⊥ znf, ∀n ∈ Z. It follows that
(3.3)

∫
T
fχ̄z̄ndµ =

∫
T
znf(1− χ̄)dµ = 0

∀n ∈ Z. Thus, (3.3) is satisfied by every polynomial p ∈ P, and hence for every function
g ∈ C(T) in place of p. By Theorem 2.2, we get fχ̄ = f(1 − χ̄) = 0 a.e. µ. This implies
that f = 0 a.e. µ. Thus χL2(T) = E. □

3.1. Simply invariant subspaces of L2(µ). Let B = {zn}n∈Z. Notice that the

Fourier series of f ∈ L2(T,m) with respect to the orthonormal basis B is f ∼
∑
f̂(n)zn,

where f̂(n) =
∫
T
f z̄ndm. This implies that L2(T,m) can be identified with l2(Z). Since

(̂zkf)(n) = f̂(n − k), multiplication operator f 7→ zf acts as a right-shift operator on
l2(Z). And hence it is legitimate to consider the space

H2 = span{zn : n ≥ 0} = {f ∈ L2(m) : f̂(n) = 0, n < 0},
known as Hardy space. The space H2 is a simply invariant subspace of L2(m), and
plays a prominent role in complex and harmonic analysis H2.

The following theorem says that all the simply invariant subspaces have a somewhat
similar structure.

Theorem 3.5. (A. Beurling, H. Helson) Let E be a closed subspace of L2(T) and zE ⊂
E, zE ̸= E. Then there exists a unique Θ (up to constant of modulus 1) with |Θ| = 1 a.e.
m on T such that E = ΘH2.

Notice that f 7→ Θf is an isometry on L2(m), and hence ΘH2 is closed.

Proof. Since zE ⊊ E (zE ̸= E), we consider the orthogonal complement of zE in E, and
denote it by E ⊖ zE = (zE)⊥. Then E ⊖ zE is non-trivial, and consider Θ ∈ E ⊖ zE
with ∥Θ∥2 = 1. Notice that Θ ∈ E and Θ ⊥ zE. Hence znΘ ∈ zE, ∀n ≥ 1 and
Θ ⊥ znΘ, ∀n ≥ 1. ∫ 2π

0

Θ̄Θzndm =

∫ 2π

0

|Θ|2zndm = 0, ∀n ≥ 1.

By taking complex conjugate, we have∫ 2π

0

|Θ|2z̄ndm = 0, ∀n ≥ 1.
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This implies that (̂|Θ|2)(n) = 0, ∀n ∈ Z ∖ {0}. By the uniqueness of Fourier series, it

follows that |Θ|2 = c (constant) a.e. m, and we get 1 =
2π∫
0

|Θ|2dm = c. Thus, |Θ| = 1 a.e.

m. Clearly, f 7→ Θf is an isometry. Note that Θ ∈ E. Hence znΘ ∈ E, ∀n ≥ 0, implies
linear span of {zn : n ≥ 0} has the same property. Let P+ = span{zn : n ≥ 0}. Then
ΘP+ ⊂ E and clos (ΘP+) = Θ clos(P+) = ΘH2. Thus, ΘH2 ⊆ E. It only remains to
show that ΘH2 coincides with E.

Let f ∈ E and f ⊥ ΘH2. We claim that f = 0. Since f ⊥ ΘH2, we get f ⊥ Θzn, ∀n ≥
0. Also, f ∈ E implies znf ∈ zE, ∀n ≥ 1 and hence znf ⊥ Θ, ∀n ≥ 1 since Θ ⊥ zE.
Thus, ∫

T
fΘ̄z̄ndm = 0, ∀n ≥ 0 and

∫
T
znfΘ̄dm = 0, ∀n ≥ 1.

That is, (̂fΘ̄)(n) = 0, ∀n ∈ Z. This implies fΘ̄ = 0 a.e. m. Since |Θ| = 1 a.e., we get
f = 0 a.e. m.
Uniqueness: Let Θ1H

2 = Θ2H
2 and |Θ1| = |Θ2| = 1 a.e. on T. Then Θ1Θ̄2H

2 = H2

and we get Θ1Θ̄2 ∈ H2. Also, by symmetry Θ2Θ̄1 ∈ H2, or Θ1Θ̄2 ∈ H̄2. But H2 ∩ H̄2 =

constant. (Hint: If f ∈ H2, then f̂(n) = 0, n < 0 and f̄ ∈ H2, then (̂̄f)(n) = f̂(−n) =
0, n < 0. This means f̂(n) = 0,∀n ∈ Z ∖ {0}.) Hence Θ1Θ̄2 = c. Since |Θ1| ¯|Θ2| = 1, we
have Θ1 = c Θ̄2, where |c| = 1. □

Corollary 3.6. (Beurling theorem) Let E ̸= {0}, E ⊂ H2 and zE ⊂ E. Then there exists
Θ ∈ H2 with |Θ| = 1 a.e. on T such that E = ΘH2.

Proof. It is impossible that z̄E ⊂ E.On the contrary, suppose this could be the case. Then
for f ∈ E with f ̸= 0, there exists n ∈ N such that f̂(n) ̸= 0. By assumption, zn+1f ∈ E.

However, ̂(zn+1f)(−1) = f̂(n) ̸= 0 implies z̄n+1f ̸∈ H2 leads to a contradiction. This
means E is simply invariant, and in view of Theorem 3.5 (Beurling-Helson), it follows
that E = ΘH2 and Θ ∈ H2 by definition of H2. □

Definition 3.7. A function Θ ∈ H2, with |Θ| = 1 a.e. is called inner function.

3.2. Uniqueness theorem in H2.

Theorem 3.8. If f ∈ H2 and f = 0 on a set of positive measure, then f = 0 a.e. on T.

Proof. For f ̸= 0, Ef = span{znf : n ≥ 0} ⊂ H2 and zEf ⊂ Ef = ΘH2, where Θ
is an inner function. Let σ = {z ∈ T : f(z) = 0}, Then m(σ) > 0. Let us verify
that g|σ = 0, ∀ g ∈ Ef . Since g ∈ Ef , there exists sequence pn ∈ P+ (the space of all
polynomials) such that pnf → g in L2(m). Hence

0 ≤
∫
σ

|g|2dm =

∫
σ

|g − pnf |2 ≤ ||g − pnf∥22 → 0 as n→ ∞.

Implies g|σ = 0 a.e. m. In particular, for g = Θ, Θ|σ = 0, which is a contradiction. □



HARDY SPACES 9

3.3. Invariant subspaces of L2(µ). (Absolutely continuous and singular subspaces)

Let µ be a finite Borel measure on T, and E ⊂ L2(µ) with zE ⊂ E. We consider
invariant subspaces of L2(µ) which are based on Lebesgue decomposition of µ. A measure
ν is called absolutely continuous with respect to m if m(B) = 0 implies ν(B) = 0,
where B ∈ B and we write ν ≪ m. By Radon-Nikodym theorem, there exists a positive
integrable function w such that dν = wdm. That is,∫

T
fdν =

∫
T
fwdm

for each Borel measurable function f on T.
A measure ν is called singular with respect to m if it is concentrated on a set C of

Lebesgue measure zero. That is, ν ⊥ m if ν(B) = m(B ∩ C) for every B ∈ B(T). Let µ
be a finite and positive Borel measure on T, then by Lebesgue decomposition,

µ = µa + µs, where µa ≪ m and µs ⊥ m.
So, if f ∈ L2(µ), then ∫

T
|f |2dµ =

∫
T
|f |2dµa +

∫
T
|f |2dµs

By this, we can construct an orthogonal decomposition of f. Let σ be the concentration
set for µs. Then
(3.4) L2(µs) ⊂ L2(µ) and L2(µa) ⊂ L2(µ) and L2(µs) ⊥ L2(µa).
Now, f = fχT∖σ + fχσ = fa + fs. This means
(3.5) L2(µ) = L2(µa)⊕ L2(µs).
The subspaces L2(µa) and L2(µs) are invariant subspaces and are known as absolutely
continuous and singular spaces, respectively.

We need the following results in order to prove the main result about invariant subspaces
of L2(µ).

Lemma 3.9. Let µ be a finite complex Borel measure on T.

(i) If (̂dµ)(n) =
∫
T
e−intdµ(t) = 0 for all n ∈ Z, then µ = 0.

(ii) If (̂dµ)(n) = 0 for all n ∈ Z ∖ {0}, then dµ = cdm.

Proof. (i) Let f ∈ C2(T), then f is Borel measurable and we have

Tµ(f) =

∫
T
f(t)dµ(t)

=

∫
T

(∑
n∈Z

f̂(n)eint
)
dµ(t)

=
∑
n∈Z

f̂(n)

∫
T
eintdµ(t) (by Fubini’s Theorem)

= 0 (by assumption).
Hence Tµ(f) = 0 for all f ∈ C2(T). Since C2(T) is dense in C(T), by Theorem 2.2, we get
µ = 0.
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(ii) From the given condition and similar to the proof of case (i), we can write∫
T
f(t)dµ(t) = f̂(0)

∫
T
dµ = µ(T)

∫
T
f(t)dt.

Thus dµ = µ(T)dm, where dm = dt. □

Let T : H → H be an isometry (or T ∈ iso(H)) on the Hilbert space H. A subspace D
of H is called wandering if TmD ⊥ T nD for m ̸= n (m,n ≥ 0).

Lemma 3.10. (H. Wold, A. Kolmogorov) Suppose T ∈ iso(H) and TE ⊂ E. Let D =

E ⊖ TE. Then D is a wandering subspace of T, and E =
( ∑

n≥0

⊕T nD
)
⊕
( ⋂

n≥0

T nE
)
=

E0⊕E∞, where T |E∞ is unitary, and T |E0 is completely non-unitary (i.e. if E ′ ⊂ E0 and
TE ′ ⊂ E ′ implies T |E′ is not unitary).

Theorem 3.11. (H. Helson 1964) Let dµ = wdm + dµs be the Lebesgue decomposition
of a positive finite Borel measure µ and let E ⊂ L2(µ) be simply invariant. Then there
exists σ ⊆ T with m(σ) = 0 and a measurable function Θ such that

E = E0 ⊕ E∞ = ΘH2 ⊕ χσL
2(µs), where

ΘH2 ⊂ L2(µa), χσL
2(µs) ⊂ L2(µs) and

(3.6) |Θ|2w ≡ 1.
Conversely, if σ is measurable and Θ verified (3.6), then ΘH2 ⊕ χσL

2(µs) is simply in-
variant.

Proof. Set D = E ⊖ zE = (zE)⊥ ̸= {0} and let E =
( ∑

n≥0

znD
)
⊕
( ⋂

n≥0

znE
)
= E0 ⊕E∞

be the Wold-Kolmogorov decomposition of E. Let Θ ∈ D with ∥Θ∥2 = 1, then Θ ∈ E
and Θ ⊥ zE. This implies znΘ ∈ zE, ∀n ≥ 1, and hence znΘ ⊥ Θ ∀n ≥ 1. That is,∫

T
(znΘ)Θ̄dµ =

∫
T
|Θ|2zndµ = 0, ∀n ≥ 1.

And by conjugation ∫
T
|Θ|2z̄ndµ = 0, ∀n ≥ 1.

Thus ̂(|Θ|2dµ)(n) = 0, ∀n ∈ Z ∖ {0}. By Lemma 3.9 (ii), we get |Θ|2dµ = cdm. But,
1 =

∫
T
|Θ|2dµ = c

∫
T
dm = c. Thus,

dm = |Θ|2dµ
= |Θ|2dµa + |Θ|2dµs

= |Θ|2wdm+ |Θ|2dµs.(3.7)
Implies |Θ|2 = 0 a.e. µs on T (because m has no singular part) and dm = |Θ|2wdm
implies |Θ|2w = 1 a.e. m. By Wold-Kolmogorov Lemma 3.10, restriction z|E∞ is unitary,
zE∞ ⊆ E = E∞ ⊕ E0, and z|E0 is non-unitary on every section of E0, etc. Thus, we
conclude that zE∞ = E∞. By Wiener theorem, E∞ = χσL

2(µ) for some σ ⊂ T. As Θ ∈
D ⊂ E0 ⊥ E∞, implies Θ ⊥ χσL

2(µ). In particular, this implies
∫
σ

ΘΘ̄dµ =
∫
σ

|Θ|2dµ = 0.

Hence Θ|σ = 0 a.e. µ. But Θ ̸= 0 a.e. m implies m(σ) = 0 (since dm = |Θ|2dµ). Thus, in
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view of (3.5) we obtain
E∞ = χσL

2(µ) = χσL
2(µs) ⊂ L2(µs).

We have already shown that D ⊂ L2(µa), because D ⊂ E0 ⊥ E∞ = L2(µs) implies
D ⊂ L2(µa). Therefore, E0 =

∑
n≥0

⊕znD ⊂ L2(µa). Also, span{znΘ : n ≥ 0} ⊂ E0, since

Θ ∈ E0. We claim that E0 = span{znΘ : n ≥ 0}.
On the contrary, suppose there exists f ∈ E0⊖span{znΘ : n ≥ 0}. Then f ⊥ znΘ, ∀n ≥

0. Recall that Θ ⊥ zE. But f ∈ E, implies znf ∈ E and hence znf ⊥ Θ, ∀n ≥ 1. Thus,∫
fznΘdµ = 0∀n ≥ 0 and

∫
znfΘ̄dµ = 0, ∀n ≥ 1.

That is ̂(fΘ̄dµ)(n) = 0 ∀n ∈ Z. By Lemma 3.9(i), it implies that fΘ̄dµ = 0. Since Θ̄ ̸= 0
a.e. m and f ∈ E0 ⊂ L2(µa), it follows that f ≡ 0. Now, by Parseval identity, it is easy
to verify that

span{znΘ : n ≥ 0} =
{∑

n≥0

anz
nΘ :

∑
n≥0

|an|2 <∞
}
.

(Notice that {znΘ}n≥0 is an orthonormal set in L2(µa), since dµa = w dm and |Θ|2w ≡ 1.)
Further, it is easy to see that

E0 = Θ
{∑

n≥0

anz
n :
∑
n≥0

|an|2 <∞
}
= ΘH2.

Indeed, f 7→ Θf is an isometry from L2(T, dm) onto L2(dµa) = L2(wdm). That is,∫
T
|f |2dm =

∫
T
|Θf |2dµa.

□
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4. First Applications
We have seen that there is one to one correspondence between simply invariant subspace

of L2(µ) with the set of measurable unimodular functions (inner functions) due to Helson’s
theorem. This congruence opens many possibilities to apply Hilbert space geometry and
operator theory to L2(µ) and vice-versa. Here we discuss inner-outer decomposition of the
Hardy class functions, Szegö infimum, and Riesz brother’s theorem for “analytic measure”.
That is, for which positive measure µ on T, the “analytic half” P+ = span{zn : n ≥ 0} is
dense in L2(T, µ).

4.1. Some consequences of Helson’s theorem. Let µ be a positive Borel
measure on T with dµ = wdm+ dµs. Notice that if zE ⊂ E ⊂ L2(µ), then E = Ea ⊕Es,
where zEa ⊂ Ea ⊂ L2(µa), because E = ΘH2 ⊕ χσL

2(µs), where ΘH2 ⊂ L2(µa) and
χσL

2(µs) ⊂ L2(µs).
(a) If µ = µs, then zE ⊂ E ⊂ L2(µs), implies zE = E, because, by Helson’s theorem
3.11, we already have E = χσL

2(µs), which is 2-invariant.
(b) Show that for dµ = dµa = w dm, the followings are equivalent:

(i) There exists E such that zE ⊊ E ⊂ L2(µa).
(ii) There exists Θ such that |Θ|2w = 1 a.e. m.
(iii) w > 0 almost everywhere m.
(iv) m is absolutely continuous with respect to µa.

(c) If dµ = dµa = w dm and zE ⊊ E ⊂ L2(µa), then E = ΘH2 with |Θ|2w ≡ 1 a.e. m.

4.2. Reducing subspaces. Let f ∈ L2(µ) and dµ = wdm + dµs. We look for
sufficient conditions that ensure that Ef is reducing. If there exists measurable set e ⊂ T
such that m(e) > 0 and f |e = 0. Then Ef is a reducing subspace, and there exists
σ ⊂ T ∖ e such that Ef = χσL

2(µ). In fact, σ = {z ∈ T : f(z) ̸= 0}. On the contrary,
suppose zEf ⊊ Ef . Then by Theorem 3.11 we get Ef = ΘH2⊕χL2(µs), and hence f ∈ Ef

implies f = fa + fs, where fa = Θh, h ̸= 0 a.e. m (by Theorem 3.8, since h ∈ H2). This
implies fa ̸= 0 a.e. m, which is impossible because f |e = 0 and m(e) > 0 implies fa|e = 0
with m(e) > 0. Thus, Ef = zEf = χσL

2(µ) for σ ⊂ T (by Wiener theorem). Notice that
Ef = span{znχT∖ef : n ≥ 0} = χT∖eEf = χσL

2(µ) and 1 ∈ L2(µ), implies σ ⊂ T \ e.
Indeed σ = {z ∈ T : f(z) ̸= 0}, which is defined up to a set of µ measure zero.

4.3. The problem of weighted polynomial approximation. We know that the space
of trigonometric polynomials P = span{zn : n ∈ Z} is dense in Lp(µ) for every positive and
finite measure µ and 1 ≤ p <∞. Let P+ = span{zn : n ≥ 0}. One of the main problems is
describing the closure of P+ in L2(µ). Denote H2(µ) = clos P+|L2(µ). The most important
part of this problem is to distinguish between the completeness case H2(µ) = L2(µ), from
the incompleteness case H2(µ) ⊊ L2(µ).

Corollary 4.1. H2(µ) = H2(µa)⊕ L2(µs).

Proof. H2(µ) = span{zn : n ≥ 0}. By Helson decomposition H2(µ) = Ea ⊕ Es with
Ea ⊂ L2(µa) and Es ⊂ L2(µs). Since we know that zEs = Es, by Wiener theorem,
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Es = χσL
2(µs) with m(σ) = 0. Since 1 ∈ H2(µ), we have 1 = 1a + 1s with 1s ̸= 0 a.e. µs.

But 1s ∈ Es = χσL
2(µs) implies χσL

2(µs) = L2(µs), i.e., Es = L2(µs).
Further, (P+)a ⊂ Ea implies clos (P+)a = H2(µa) ⊆ Ea. But, for f ∈ Ea ⊂ H2(µ)

implies there exists pn ∈ P+ such that ∥f − pn∥L2(µ) → 0. Since ∥f − pn∥2L2(µ) = ∥f −
pn∥2L2(µa)

+ ∥f − pn∥2L2(µs)
= ∥f − pn∥2L2(µa)

+ ∥pn∥2L2(µs)
(since f = 0 µs-a.e.) and ∥f −

pn∥2L2(µa)
≤ ∥f − pn∥2L2(µa)

+ ∥pn∥2L2(µs)
= ∥f − pn∥2L2(µ) → 0 we get f ∈ H2(µa).

□

Remark 4.2. Note that for H2(µa), the closure of P+ in L2(µa) has two possibilities:

(i) zH2(µa) = H2(µa) and hence by Wiener theorem H2(µa) = χσL
2(µa) = L2(µa),

because 1a ∈ H2(µa) implies that there does not exist σ ⊂ T such thatm(T∖σ) > 0.
(ii) zH2(µa) ⊊ H2(µa)(⊂ L2(µa)), and hence H2(µa) = ΘH2 with |Θ|2w ≡ 1.

The following results help to distinguish the above two cases.

Lemma 4.3. H2(µ) is reducing (and hence H2(µ) = L2(µ)) if and only if z̄ ∈ H2(µ).

Proof. If H2(µ) is reducing, then z̄ ∈ H2(µ) is trivial. Suppose z̄ ∈ H2(µ), then exists
pn ∈ P+ such that ∥z̄ − pn∥L2(µ) → 0. Let q ∈ P+. Then∫

T
|z̄q − qpn|2dµ ≤ ∥q∥2∞

∫
T
|z̄ − pn|2 → 0 as n→ ∞.

This implies z̄ P+ ⊂ H2(µ), or P+ ⊂ zH2(µ) (closed). Hence H2(µ) ⊆ zH2(µ), i.e.
z̄H2(µ) ⊆ H2(µ). But zH2(µ) ⊂ H2(µ) implies zH2(µ) = H2(µ). Now, it is clear from
Wiener theorem and theorem 3.8 that H2(µ) = χσL

2(µ) = L2(µ). □

Corollary 4.4. H2(µ) = L2(µ) if and only if dist(1, H2
0 (µ)) = 0, where H2

0 (µ) is the
closure of span{zn : n ≥ 1} in L2(µ).

Proof. Let H2(µ) = L2(µ), then z̄ ∈ H2(µ), implies dist (1, H2
0 (µ)) = dist (z̄, H2(µ)) = 0.

On the other hand, if dist (1, H2
0 (µ)) = 0, then z̄ ∈ H2(µ), and hence H2(µ) = L2(µ). □

Note that the quantity

dist2 (1, H2
0 (µ)) = inf

p∈P0
+

∫
T
|1− p|2dµ

is known Szegö infimum, where P0
+ = span{zn : n ≥ 1}.

It can be seen that dist(1, H2
0 (µ)) depends only on the absolute part of the measure

µ. Let dµ = wdm+ dµs be the lebesgue decomposition of µ. As similar to Corollary 4.1,
it can be seen that H2

0 (µ) = H2
0 (µa) ⊕ L2(µs). We also use the fact that if M1 and M2

are subspaces of a Hilbert space H such that M1 ⊥ M2, then PM1⊕M2 = PM1 + PM2 for
M1 ⊥M2. Thus, we can write

dist2(1, H2
0 (µ)) = ∥PH2

0 (µ)
⊥ 1∥2L2(µ)

= ∥(PH2
0 (µa) ⊕ PL2(µs)) ⊥ (1a + 1s)∥L2(µ)

= ∥PH2
0 (µa) ⊥ 1a∥2L2(µa)

( since 1s ∈ L2(µs))

= inf
p∈P0

+

∫
T
|1− p|2wdm.
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The evaluation of Szegö infimum is intimately related to the multiplicative structure of
H2.

4.4. The inner-outer factorization. Recall that a function f ∈ H2 is called inner if
|f | = 1 a.e. on T. On the other hand, f ∈ H2 is called outer if Ef = H2.

Theorem 4.5. (V. Smirnov, 1928) Let f ∈ H2 and f ̸≡ 0, then there exists an inner
function finn ∈ H2 and an outer function fout ∈ H2 such that f = finnfout. Moreover,
this factorization is unique and Ef = finnH

2.

Proof. Note that Ef ⊂ H2, Ef ̸= {0}, and Ef is not reducing, else z̄ ∈ H2. Here, Ef =
span{znf : n ≥ 0} ⊂ H2. By Theorem 3.5, we have Ef = ΘH2, where |Θ| = 1 a.e.
m. Let finn = Θ, then f = Θg, where g ∈ H2. We claim Eg = H2. Let h ∈ H2. Since
Ef = ΘH2 and Θh ∈ ΘH2, there exists pn ∈ P+ such that pnΘg = pnf → Θh in L2. But,
multiplication by an inner function is an isometry, we get

∥png − h∥2 = ∥Θ(png − h)∥2 → 0.
Hence, Eg = H2. Here g = fout is desired outer function.

Uniqueness: Take f = f1f2, where f1 is inner and f2 is outer. As f1 is inner, h 7→ f1h is
an isometry, and hence as Ef2 = H2, we get

finnH
2 = Ef = span{znf1f2 : n ≥ 0} = f1span{znf2 : n ≥ 0} = f1H

2.
By the uniqueness of the representing inner function of the simply invariant space Ef

(cf. Theorem 3.5 and Corollary 3.6), we get finn = λf1 with |λ| = 1, and λf1fout = f1f2
implies fout = λ̄f2. □

4.5. Arithmetic of inner functions.

Definition 4.6. Let Θ1,Θ2 be two inner functions inH
2.We say Θ1 divides Θ2 if

Θ2

Θ1
∈ H2.

Equivalently, Θ1 divides Θ2 if and only if Θ1H
2 ⊃ Θ2H

2. For this, if Θ2 = ΘΘ1, then Θ
is necessarily inner, and Θ2H

2 = Θ1ΘH
2 ⊂ Θ1H

2, since ΘH2 ⊂ H2. On the other hand,
if Θ1H

2 ⊃ Θ2H
2, then we get Θ2 ∈ Θ1H

2 implies Θ = Θ2

Θ1
∈ H2.

We deduce the following two elementary properties:

Theorem 4.7. Let Θ = gcd{Θ1,Θ2}, the greatest common divisor of Θ1 and Θ2. Then

(i) span {Θ1H
2,Θ2H

2} = ΘH2

(ii) Θ1H
2 ∩Θ2H

2 = Θ̃H2, where Θ̃ = lcm{Θ1,Θ2}.

Proof. (i) ΘkH
2 ⊂ span{Θ1H

2,Θ2H
2} = ΘH2 ; k = 1, 2 for some inner function Θ (by

Beurling’s theorem) implies Θ divides Θk ; k = 1, 2. Let Θ′ be another divisor of Θk : k =
1, 2. Then Θ′H2 ⊃ ΘkH

2, and hence Θ′H2 ⊃ span{ΘkH
2; k = 1, 2} = ΘH2. This implies

Θ′ divides Θ and thus Θ = gcd{Θk; k = 1, 2}. The proof of (ii) is similar to (i). □

Definition 4.8. Let {Θi : i ∈ I} be a family of inner functions.

(i) Θ = gcd{Θi : i ∈ I} if Θ divides each Θi, and Θ is divisible by every other inner
function that divides each Θi.
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(ii) Θ = lcm{Θi : i ∈ I} if each Θi divides Θ and Θ divides every other inner function
that is divisible by each Θi

Convention: In case the gcd or the lcm does not exist, we write gcd{Θi : i ∈ I} = 1
and lcm{Θi : i ∈ I} = 0.

Corollary 4.9. span {Θi ∈ H2 : i ∈ I} = ΘH2, where Θ = gcd {Θi : i ∈ I} and
∩ΘiH

2 = Θ̃H2, where Θ̃ = lcm {Θi : i ∈ I}.

Corollary 4.10. Let F be a proper subset of H2. Then span{znF : n ≥ 0} = ΘH2, where
Θ = gcd{finn : f ∈ F \ {0}}, and finn stands for inner factor of f.

Proof. We have span{znF : n ≥ 0} = span{finnH2 : f ∈ F \ {0}}. (By Smirnov’s
theorem). By applying Corollary 4.9 we get the required. □

4.6. Characterization of outer functions.

Theorem 4.11. (Integral Maximum Principle) Let f ∈ H2. Then the followings are
equivalent:

(i) f is outer
(ii) f is a divisor of the space H2, i.e. if g ∈ H2 and g

f
∈ L2, then g

f
∈ H2.

Proof. (ii) =⇒ (i): Let f = finnfout be an inner-outer factorization of f. Then f̄inn =
1

finn
= fout

f
∈ L2 because of finn ∈ H2 ⊂ L2. By (ii), we get f̄inn ∈ H2. But finn ∈ H2

implies f̄inn = λ (constant) with |λ| = 1. Hence f = λ̄fout.
(i) =⇒ (ii): Given f is outer, we have Ef = H2. Since 1 ∈ H2, there exists pn ∈ P+ such
that pnf → 1 in L2. Let g ∈ H2 and h = g

f
∈ L2. Then

(4.1)

∫
T
|png − h| =

∫
T
|pnf − 1||h| ≤ ∥pnf − 1∥2∥h∥2 → 0 as n→ ∞.

But png ∈ H2, implies (̂png)(k) = 0 if k < 0. Since φ 7→ φ̂(k) is continuous linear

functional on L1(T) for each k, by (4.1) we get ˆ(h)(k) = 0, ∀ k < 0. Thus h ∈ H2. □

Corollary 4.12. If two outer functions f1 and f2 verify |f1| = |f2| a.e. on T, then
f1 = λf2 where |λ| = 1.

Proof. Since f2 is outer, f1 ∈ H2, and |f1
f2
| = 1 ∈ L2, by Theorem 4.11, we get f1

f2
∈ H2. In

the similar way f1
f2

= f2
f1

∈ H2 implies f1
f2

= λ (constant) and hence f1 = λf2 with |λ| = 1.

Thus, an outer function is completely defined by its modulus. □

Corollary 4.13. Let w ≥ 0, w ∈ L1(T). If there exists f ∈ H2 such that |f |2 = w a.e.
T, then there exists a unique outer function f0 ∈ H2 such that |f0|2 = w a.e. T.

(Hint: By Smirnov theorem, f = finnfout etc.)

Corollary 4.14. If f ∈ H2(T) is simultaneously inner and outer then f is constant.

Proof. Since f ∈ H2(T) is inner |f | = 1 and hence 1/f = f ∈ H2(T) by the Theorem
4.11. Since f, f ∈ H2(T) hence f is constant. □



16 HARDY SPACES

4.7. Szegö infimum and Riesz Brother’s theorem. Here we consider two theorems
in two different settings by using the fact that in an orthogonal complement of the analytic
polynomials P+ the absolute component of a measure is only important.

Theorem 4.15. (Szegö and Kolmogorov) Let µ be a finite Borel measure on T with
Lebesgue decomposition dµ = wdm+ dµs, where w ∈ L1

+(T). Then
(i) either there does not exist any f ∈ H2 such that |f |2 = w a.e. m, then

inf
p∈P0

+

∫
T
|1− p|2dµ = 0.

(ii) or there exists (unique) f ∈ H2 such that |f |2 = w a.e. m, and f is outer, then

inf
p∈P0

+

∫
T
|1− p|2dµ = |f̂(0)|2.

Proof. (ii)We know that the Szegö infimum I will satisfy
I2 = dist2(1, H2

0 (µ)) = dist2(1, H2
0 (µa))

= inf
p∈P0

+

∫
T
|1− p|2wdm.

Given that |f |2 = w a.e. m, and f is outer. Hence

I2 = inf
p∈P0

+

∫
T
|f − pf |2dm.

As f is an outer function, we can verify that span{znf : n ≥ 1} = zH2. Hence I =

distH2(f, zH2). Note that f =
∑
n≥0

f̂(n)zn = f̂(0) + g, where g ∈ zH2. Since f̂(0) ⊥ zH2,

it follows that I = distH2(f̂(0), zH2) = |f̂(0)|.
(i). Now, we consider the invariant space Ea = H2

0 (µa). If zEa ̸= Ea, then there exists Θ
such that Ea = ΘH2 with |Θ|2w ≡ 1. But z ∈ Ea and hence z = Θf for some f ∈ H2.
This implies that |f |2 = 1

|Θ|2 = w (since |z| = 1), and this leads to case (ii). Hence,

case (i) is possible only if zEa = Ea. But, then Ea = L2(µa) by Remark 4.2(i). Hence
dist(1, H2

0 (µ)) = 0, since 1 ∈ L2(µa) = H2
0 (µa). □

The above Theorem (Szegö and Kolmogorov) leads to the problem of computing |f̂(0)|2
in terms of w. In order to do this, we have to consider H2 as a space of analytic functions
on the unit disc, which we do later.

Riesz Brother’s result is an important consequence of Helson’s theorem. For that, we
need to recall an important result related to the Radon-Nikodym derivative.

Let |µ| be the total variation measure of a complex-valued Borel measure µ on T, i.e.
|µ|(σ) = sup

{∑
i∈I

|µ(σi)| : {σi}i∈I is a partition of σ in B(T)
}
.

Suppose µ is absolutely continuous with respect to a positive measure λ on B(T). Then
there exists φ ∈ L1(λ) (the Radon-Nikodym derivative of µ with respect to λ) such that

|µ|(σ) =
∫
σ

|φ|dλ.
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Theorem 4.16. (Riesz Brother’s, 1916) Let µ be a complex-valued Borel measure on T
such that ∫

T
zndµ = 0, ∀n ≥ 1.

Then µ≪ m and dµ = h dm, where h ∈ H1 = {f ∈ L1(T) : f̂(k) = 0, k < 0}.
Note that, a measure µ that satisfies

∫
T
z̄ndµ = 0 for n < 0 will be called analytic

measure.

Proof. It is clear that µ ≪ |µ|. Let g ∈ L1(|µ|) be the corresponding Radon-Nikodym
derivative of µ with respect to |µ|. We claim that |g| = 1 a.e. µ. For δ > 0, set σ = {t :
|g(t)| < 1− δ}. Then |µ|(σ) =

∫
σ

|g|d|µ| ≤ (1− δ)|µ|(σ). Implies |µ|(σ) = 0. Similarly, the

case σ′ = {t : |g(t)| > 1 − δ}. This proves the claim. As a consequence of the Corollary
4.1, we get
(4.2) H2

0 (|µ|) = H2(|µ|a)⊕ L2(|µ|s).
But |g| = 1 a.e. |µ| implies ḡ ∈ L2(|µ|), and

⟨zn, ḡ⟩L2(|µ|) =

∫
T
zngd|µ| =

∫
T
zndµ = 0, n ≥ 1.

In other words, ḡ ⊥ zn, n ≥ 1 in the Hilbert space L2(|µ|), and hence ḡ ⊥ H2
0 (|µ|). In view

of (4.2), we obtain ḡ ⊥ H2
0 (|µ|s). Now, by construction, |g| = 1 a.e. |µ|, which implies

|g| = 1 a.e. |µ|s. This is impossible ( since ḡ ⊥ H2
0 (|µ|s) ), unless |µ|s = 0. Finally, µ≪ |µ|

implies

µ(σ) =

∫
σ

gd|µ| =
∫
σ

gd|µ|a =
∫
σ

gwdm

for each σ ∈ B(T). That is µ≪ m with Radon-Nikodym derivative h = gw ∈ L1(T), and

ĥ(k) =

∫
T
z̄khdm =

∫
T
z̄kgwdm =

∫
T
z̄kdµ = 0 if k ≤ −1.

Hence h ∈ H1. □

Question 4.17. *
For g ∈ L1(T), define gf = span{zng : n ≥ 0}|L1(T). Characterize all possible g ∈ L1(T)
such that inf

p∈P 0
+

∥1− p g∥1 = 0.

4.8. Exercises.

Example 4.18. bλ = λ−z
1−λz

where λ ∈ D is an inner.

Proof. bλ = λ− z
∑

n≥0 λ
n
zn(|z| = 1) and clearly b̂λ(k) = 0 for k < 0, and

∑
k≥0 |̂bλ(k)|2 <

∞; hence bλ ∈ H2(T). Moreover, for |z| = 1 we have |λ − z| = |λ − z| = |1 − λz|, thus
|bλ(z)| = 1. □

Example 4.19. f = ΠN
k=1bλk

is an inner.

Proof. For f, g ∈ H∞ we have ∥fg∥∞ ≤ ∥f∥∞∥g∥∞ hence H∞.H∞ ⊂ H∞, a product of
inner function is inner. □

Example 4.20. Sζ,α = exp(−a(ζ+z)
ζ−z

) where a > 0, ζ ∈ T.
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Proof. As Re
(

ζ+z
ζ−z

)
= 1−|z|2

|ζ−z|2 ≥ 0 for any ζ ∈ T, |z| ≤ 1, z ̸= T, we obtain that |Sζ,a| = 1 on

T. Moreover for every n > 0 we have Ŝζ,a(−n) =
∫
T z

nSζ,a(z)dm = limr→1

∫
T fr(z)dm = 0

where f(z) = znSζ,a(z) and fr(z) = f(rz), 0 ≤ r < 1 (f̂r(0) = 0 since fr is analytic in
|z| < 1/r and fr(0) = 0.) □

Example 4.21. f =
∏N

k=1 Sζk,ak where ak > 0 ζk ∈ T.

Proof. See the proof of (ii). □

Examples related to the outer functions you will get in Chapter 6, Subsection 6.2.

Exercise 4.22. For every f ∈ L2 prove that f ·H∞(T) ⊂ Ef = span{f, zf, z2f, . . . }.

Proof. Clearly fPa ⊂ Ef , where Pa is the space of analytic polynomials. It only remains to
show (fPa)

⊥ ⊂ (fH∞)⊥ (orthogonal complement in L2). Let g ∈ (fPa)
⊥, i.e.

∫
T gfpdm =

0 for any polynomial p ∈ Pa. Thus for any h ∈ H∞,
∫
T gfhdm = 0 because gf ∈ L1 and

h is a weak limit σ(L∞, L1) of its Fejer’s polynomials. () □

Example 4.23. If f ∈ H2(T) such that 1/f ∈ H∞(T), then f is an outer.

Proof. By the exercise 4.22, 1 = f · 1/f ∈ Ef hence Ef = H2(T). □

Exercise 4.24. Let f, g ∈ L2(T) (thus fg ∈ L1(T)). Show that for every n ∈ Z, fg(n) =∑
k∈Z g(k)f(n− k); the series converges absolutely.

Proof. By Cauchy Schwarz’s inequality ∥f(g − g′)∥ ≤ ∥f∥2∥g − g′∥2, the multiplication
Mgf = fg is continuous L2(T) → L1(T). Moreover the Fourier series g =

∑
k∈Z ĝ(k)z

k

converges for the norm of L2(T). Hence fg =
∑

k∈Z ĝ(k)z
kf converges in L1(T), wich

implies f̂ g(n) =
∑

k∈Z ĝ(k)(̂z
kf)(n). The calculation follows from (̂zkf)(n) = f̂(n−k). □

Exercise 4.25. Let f = finfout ∈ H2(T). Show that sup{|ĝ(0)| : g ∈ H2(T), |g| ≤
|f | a.e. on T} = |f̂out(0)|

Proof. From the previous exercise φ̂ψ(0) = φ̂(0)ψ̂(0) for all φ, ψ ∈ H2(T). Moreover for

every inner function h, we have |ĥ(0)| ≤ ∥h∥1 = 1. Given g ∈ H2(T, )|g| ≤ |f |, which
implies |ĝ(0) = |ĝin(0)ĝout(0)| ≤ |ĝout(0)|. Then by Theorem 4.15

|ĝ(0)|2 ≤ |ĝout(0)|2 = inf
p∈Pa

∫
T
|1− p|2|g|2dm ≤ inf

p∈Pa

∫
T
|1− p|2|f |2dm = |f̂out(0)|2

□
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5. Canonical factorization of Hp-spaces on disc
In this section, we discuss the canonical factorization of functions in Hp- spaces on the

open unit disc as a product of three factors, namely a Blaschke product, a singular inner
function, and an outer function in its Schwarz-Herglotz representation. This will help us
analyze the questions raised earlier. In particular, Szegö infimum etc.

Definition 5.1. Let D = {z ∈ C : |z| < 1} and Hol(D) denotes the space of analytic
functions on D. For p > 0, set

Hp(D) =
{
f ∈ Hol(D) : ∥f∥pHp = sup

0≤r<1

∫ 2π

0

|f(reit)|pdt <∞
}
,

and H∞(D) = {f ∈ Hol(D) : ∥f∥H∞ = sup
z∈D

|f(z)| < ∞}. Here dt is the normalized

measure on T.
For p ≥ 1, set Lp = Lp[0, 2π] = (Lp[0, 2π], dt) and Hp = {f ∈ Lp : f̂(k) = 0, k < 0}.
The space Hp(D) and Hp are called Hardy spaces of the disc and Hardy space

respectively. Later on we canonically identify these two spaces as same.

5.1. Properties of Hp spaces.

(i) Hp(D) is a linear space.
(ii) f 7−→ ∥f∥Hp is a norm if p ≥ 1.
(iii) Hp(D) ⊂ Hq(D) if p > q.
(iv) For p = 2, let f ∈ Hol(D), and

f(z) =
∑
n≥0

f̂(n)zn, f̂(n) ∈ C.

By Parseval’s identity∫ 2π

0

|f(reit)|2dt =
∑
n≥0

|f̂(n)|2r2n, 0 ≤ r < 1

and we have

sup
0≤r<1

∫ 2π

0

|f(reit)|2dt =
∑
n≥0

|f̂(n)|2.

Thus for f ∈ Hol(D), we have f ∈ H2(D) if and only if
∑
n≥0

|f̂(n)|2 <∞.

(v) If 1 ≤ p ≤ ∞, Hp is a Banach space, and 0 < p < 1, Hp is a complete metric space
[12](p. 37). If p < 1, then ∥.∥p is not a true norm, in fact Hp is not normable.
However the expression d(f, g) = ∥f − g∥pp defines a metric on Hp if p < 1.

Example 5.2. The function f(z)= 1
1−z

is analytic on D but is not in H2(D).

Proof. Since 1
1−z

=
∑∞

n=0 z
n, the coefficients of f are not square-summable. □

For f ∈ H∞, ∥f∥2 = sup0<r<1

∫
T |f(rζ)|

2dm(ζ) ≤ ∥f∥2∞ < ∞ =⇒ f ∈ H2, hence
H∞ ⊂ H2.
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Example 5.3. The inclusion H∞(D) ⊂ H2(D) is strict since the function f(z)=log 1
1−z

is

an unbounded analytic function on D but it is member of H2(D), because it has a Taylor
series:

log
1

1− z
=
∑
n≥1

zn

n

has square summable coefficients.

5.2. A Revisit to Fourier Series. The functions in Lp[0, 2π] can be thought of as
functions on (0, 2π), which can be extended periodically to real line R.

Lemma 5.4. Let f ∈ L1[0, 2π], g ∈ Lp[0, 2π], 1 ≤ p ≤ ∞. Then

(i) for almost every x ∈ (0, 2π), y 7−→ f(x− y)g(y) is integrable on (0, 2π).

(ii) f ∗ g(x) =
∫ 2π

0
f(x− y)g(y)dy is well defined and belongs to Lp[0, 2π].

(iii) ∥f ∗ g∥p ≤ ∥f∥1∥g∥p.

Proof. Note that (x, y) 7−→ f(x − y)g(y) is measurable, and by Fubini’s theorem |f ∗
g(x)| ≤

∫
|f(x− y)||g(y)|dy <∞ a.e. x. By Minkowski integral inequality,∣∣∣∣∣∣ ∫ f(x− y)g(y)dy

∣∣∣∣∣∣
p
≤
∫

∥f(x− y)g(y)∥pdy = ∥g∥p∥f1∥.

Further, if f ∈ L1(0, 2π) and f̂(n) =
∫ 2π

0
f(t)e−intdt, then (̂f ∗ g)(n) = f̂(n)ĝ(n), when-

ever g ∈ Lp and 1 ≤ p ≤ ∞ (using Fubini’s theorem). □

5.3. Approximation identity (or good kernel).
(i) If a family (Eα) ⊂ L1 satisfies

(a) sup
α

∥Eα∥1 <∞

(b) lim
α
Êα(n) = 1,

then lim
α

∥f − f ∗ Eα∥p = 0 for f ∈ Lp(1 ≤ p < ∞). This is still true for p = ∞, if

f ∈ C(T) (called approximate identity of Lp.)
(ii) If (Eα) ⊂ L1 satisfies

(a) sup
α

∥Eα∥1 <∞

(b) lim
α

∫ 2π

0

Eαdx = 1

(c) lim
α

sup
δ<|x|<π

|Eα(x)| = 0, ∀ δ > 0.

then conditions of (a) and (b) of (i) is satisfied and we get lim
α

∥f − f ∗ Eα∥p = 0.

5.4. Dirichlet, Fejer and Poisson Kernels. (i) Dirichlet kernel

Dm =
m∑

k=−m

eikt =
sin(m+ 1

2
)t

sin(t/2)
.

(ii) Fejer kernel

Φn(t) =
1

n+ 1

n∑
m=0

Dm =
n∑

k=−n

(
1− |k|

n+ 1

)
eikt =

1

n+ 1

( sin n+1
2
t

sin(t/2)

)2
.
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(iii) Poisson kernel

Pr(t) = P (reit) =
1− r2

|1− reit|2
=
∑
k∈Z

r|k|eikt, 0 ≤ r < 1.

Result: If f ∈ L1, then

(1) f ∗Dm(t) =
m∑

k=−m

f̂(k)eikt = Sm(f ; t) (Partial Fourier series sums of f)

(2) f ∗ Φn(t) =
∑

f̂(j)
(
1 − |j|

n+ 1

)
eijt =

1

n+ 1

n∑
m=0

Sm(f ; t) (Arithmetic mean of

partial sum of Fourier series of f)

(3) f ∗ Pr(t) =
∑
k∈Z

f̂(k)r|k|eikt, 0 ≤ r < 1.

(4) (Φn)n≥1 and (Pr)0≤r<1 are good kernels, and ∥Pr∥1 = ∥Φn∥1 = 1.
(5) Pr ∗ Pr′ = Prr′ for 0 ≤ r, r′ < 1 (semi group property).

Corollary 5.5. If f ∈ Lp, 1 ≤ p <∞, then lim
n→∞

∥f − f ∗Φn∥p = 0. Hence trigonometric

polynomials are dense in Lp. (Hint: This follows from the property of the good kernel.)

The same is true for p = ∞, if f ∈ C(T).

Corollary 5.6. If f ∈ L1, f̂(n) = 0, ∀n ∈ Z, then f = 0.

Notations: For f ∈ L1, set fr = f ∗ Pr, 0 ≤ r < 1.
For f ∈ Hol(D), we set f(r)(z) = f(rz), if |z| < 1

r
, 0 ≤ r < 1. Clearly f(r) is analytic in

bigger domain: |z| < 1
r
< 1 + ϵ.

Corollary 5.7. If 0 ≤ r < ρ < 1 and f ∈ Lp, 1 ≤ p < ∞, then lim
r→1

∥fr − f∥p = 0.

Moreover, ∥fr∥p ≤ ∥fρ∥p ≤ ∥f∥p(using maximum modulus principle).
If f ∈ Hol(D), then ∥f(r)∥p ≤ ∥f(ρ)∥p and the limit (possible infinite) lim

r→1
∥f(r)∥p ≤ ∞,

exists. In fact, lim
r→1

∥f(r)∥p = ∥f∥Hp(D) if f ∈ Hp(D). (It follows due to Pr is a good kernel.)

5.5. Identification of Hp(D) with Hp(T).

Theorem 5.8. Let 1 ≤ p ≤ ∞.

(i) If f ∈ Hp(D), then lim
r→1

f(r) = f̃ exists in Lp(T) and f̃ ∈ Hp(T). (For p = ∞, the

limit holds in the weak* topology of L∞(T) i.e. in σ(L∞, L1).)

(ii) f 7−→ f̃ is an isometry.

(iii) f and f̃ are related by f(r) = (f̃)r = f̃ ∗ Pr.

The function f̃ is called the boundary limit of function f.

Proof. Let f =
∞∑
n=0

anz
n ∈ Hp(D), then

(5.1) M = sup
0≤r<1

∥f(r)∥p <∞.
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(i) For 1 < p < ∞, by Banach Alaoglu theorem (5.1) implies that (f(r))0≤r<1 is weakly

relatively compact in Lp(T). Since Lp = (Lp′)∗, 1
p
+ 1

p′
= 1 and f(r) ∈ Lp; M =

sup
0≤r<1

∥Λf(r)∥ < ∞, where Λf(r) ∈ (Lp′)∗. This gives a limit point f̃ ∈ Lp(T) of

(f(rk))rk→1 in the weak topology of Lp. We claim that the convergence takes place

in Lp. As the functional ϕ 7−→ ϕ̂(n) is continuous on Lp ( since |φ̂(n)| ≤ ∥φ∥Lp ) for

ϵ > 0, 0 < r < 1, ∃ rk with r < rk < 1 such that |f̂(r)(n)− ˆ̃f(n)| < ϵ. Note that

∥f(r) − f̃∥p ≤ ∥f(r) − f(rk)∥p + ∥f(rk) − f̃∥p → 0 as r → 1,

if we suppose f(rk) → f̃ in Lp. But then as r → 1, f̂(r)(n) = anr
n → an, n ∈ Z with

an = 0 if n < 0. Hence an = (̂f̃)(n), which implies f̃ ∈ Hp(T).
We deduce that f̃ does not depends on (rk)k≥1 and for ξ ∈ T,

(5.2) (f̃ ∗ Pr)(ξ) =
∑

anr
kξn =

∑
(̂f̃)(n)r|n|ξn = f(r)(ξ).

Now, by property of good kernel Pr we get
∥f(r) − f̃∥p = ∥(f̃)r − f̃∥p → 0 as r → 1.

That is f(r) → f̃ in Lp.

For p = ∞, the similar reasoning gives the convergence f(r) = (f̃)r → f̃ in weak*
topology of L∞.
Case p = 1 : The space L1(T) can be regarded as a subspace of M(T), the space

of all complex measures on T. As M(T) = C(T)∗, by Banach Alaoglu theorem, the
balls of M(T) are weak∗ relatively compact.

We again get the existence of limit f̃ ∈ M(T) as lim
r→1

f(r) = f̃ , but this is weak*

limit in M(T). That is,
∫
f(r)g →

∫
f̃ g, g ∈ C(T). As before take g(t) = e−int, then

(̂f̃)(n) = µ̂(n) = lim
r→1

f̂(r)(n), n ∈ Z, and hence µ̂(n) = 0 if n < 0. By Riesz Brother’s

theorem we get µ << m, and the corresponding Radon Nikodym derivative of µ
with respect to m is equal to f̃ ∈ H1. Using the same argument as in the beginning

of the proof, we get (̂f̃)(n) = an, n ≥ 0, fr = (f̃)r. Hence

lim
r→1

∥f̃ − f(r)∥1 = ∥f̃ − (f̃)r∥1 → 0

because fr → f in Lp for 1 ≤ p <∞ by Corollary 5.7.
(ii) Let us first consider the case p <∞. Since f̃ = lim

r→1
f(r), we get using Corollary 5.7,

∥f̃∥p = lim
r→1

∥f(r)∥p = ∥f∥Hp(D).

For p = ∞, observe that as f̃ is weak* limit of f(r), we get

∥f̃∥∞ ≤ lim inf
r→1

∥f(r)∥∞ = ∥f∥H∞(D).

On the other hand f(r) = f̃ ∗ Pr, we get

lim sup
r→1

∥f(r)∥∞ ≤ ∥f̃∥∞.

Hence, we conclude that ∥f∥H∞(D) = ∥f̃∥H∞(T) = ∥f̃∥∞.
(iii) has been given in (5.2).

□
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Convention: Thus in view of Theorem 5.8, for p ≥ 1 we can identify f ∈ Hp(D) and its

boundary limit f̃ by

f(r) = fr = f ∗ Pr and f =
∑
n≥0

f̂(n)zn.

Now f̂(n) represents Fourier coefficient of f̃ at n and Taylor’s coefficient as well. Note

that if f ∈ Hp(D) then f(0) = f̂(0) always.

Corollary 5.9. For every ξ ∈ D, the point wise evaluation map φξ : H
1(D) → C, defined

by φξ(f) = f(ξ), f ∈ H1(D), is a continuous linear functional on H1 (and hence on
Hp, 1 ≤ p <∞).

Proof. Let f̃ be the boundary limit of f ∈ H1(D). Write ξ = reit, 0 ≤ r < 1. Then

f̃ ∗ Pr(e
it) =

∑ ˆ̃f(n)eintr|n| =
∑

ane
intrn = f(r)(e

int) = f(reint) = f(ξ).

Thus |f(ξ)| ≤ ∥f̃∥1∥Pr∥∞ ≤ ∥f̃∥1
1 + |ξ|
1− |ξ|

. □

Remark 5.10. If f̃n → f̃ in Hp, 1 ≤ p <∞, then fn → f uniformity on compact sets in
D.

Proof. For |Λ| ≤ r < 1, |fn(λ) − f(λ)| ≤ ∥f̃n − f̃∥1+|λ|
1−|λ| = ∥f̃n − f̃∥1+|r|

1−|r| → 0 as n → ∞,

since ∥f̃n − f̃∥ → 0. Any arbitrary compact set K ⊆ {|λ| ≤ r}, hence fn → f uniformly
on K. □

5.6. Jensen’s formula and Jensen’s inequality.

Lemma 5.11. Let f ∈ H1 with f̂(0) ̸= 0 (because f(0) = f̂(0)) and let λn be the sequence
of zeroes of f in D counted with multiplicity. Then

log |f(0)|+
∑
n≥1

log
1

|λn|
≤
∫
T
log |f(t)|dm(t).

In particular

log |f(0)| ≤
∫
T
log |f(t)|dm(t).

If f ∈ Hol(D1+ϵ), then

log |f(0)|+
∑
n≥1

log
1

|λn|
=

∫
T
log |f(t)|dm(t).

Proof. First we consider f ∈ Hol(D1+ϵ). Let us assume that Z(f) ∩ T = ∅, i.e.
f has no zeroes on T. Then Z(f) ∩ D=finite={λ1, λ2, . . . , λn}. Set B(z) =

n∏
j=1

|λj |
λj

(λj−z)

(1−λ̄jz)
.

For Bλ(z) =
|λ|
λ

(λ−z)

(1−λ̄z)
, it is easy to see that

|Bλ(z)|2 = 1− (1− |λ|2)(1− |z|2)
|1− λ̄z|2

.

Thus we set |B| = 1 on T, and f/B is a zero free holomorphic function on D1+δ for some
δ > 0. Hence, log |f/B| is a harmonic function on D1+δ and allow to apply MVT (because
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log g(z) = log |g(z)|+ i arg(g(z)), if g(z) ̸= 0) and we get

log |(f/B)(0)| =
∫
T
log |f/B|dm =

∫
T
log |f |dm.

As log |(f/B)(0)| = log |(f)(0)|+
∞∑
j=1

log |λj|−1, we get the desired formula.

For f having zero on T, we consider fr, 0 ≤ r < 1, where fr(z) = f(rz). Note that fr
is analytic in |z| < 1/r < 1+ ϵ. Choose r such that fr has no zero on T. If for all r fr has
zeros on T, then f has uncountably many zeroes on T hence zero set has a limit point in
T and f is identically zero. (Note that if λ is a zero of f if and only if λ/r is a zero of
fr.) For such an r, apply the previous case:

(5.3) log |f(0)|+
∑

|λn|≤r

log
r

|λn|
=

∫
T
log |fr|dm(t)

Now f is analytic in D1+ϵ, so f has finite number of zeros on T. Let Z(f)∩T = {ξi : i =
1, 2, . . . , k}. Hence f = pg with p = Πk

i=1(z− ξi) and g is a holomorfic functions such that
g and 1

g
are bounded on T. However for every r, 0 < r < 1 and z ∈ D
|ξi − z| ≤ |ξi − rz|+ |z(1− r)| ≤ |ξi − rz|+ |1− r| ≤ 2|ξi − rz| ≤ 2

=⇒ 1

2
|ξi − z| ≤ |ξi − rz| ≤ 2(5.4)

We will calculate for one zero ξi ∈ T. fr(ξ) := f(rξ) = |rξ − ξj|ng(rξ) =⇒ log |f(rξ)| =
n log |rξ − ξj|+ log |g(rξ)|

Now from (5.4)
1

2
|ξj − ξ| ≤ |rξ − ξj|

=⇒ 1

|rξ − ξj|
≤ 2

|ξj − ξ|

log |f(rξ)| = −
(
n log

1

|rξ − ξj|
+ log |g(rξ)|

)
≤ −2n

log |ξj − ξ|
+ log |g(rξ)|

= 2n log |ξ − ξj|+ log |g(rξ)| := h(ξ) say

To apply DCT and take lim
r→1

inside the integration in (5.3), we need to show:
∫
T |h(ξ)|dξ <

∞. This holds since
∫
T log |ξ− ξj|dξ is integrable (in fact it is zero, See [7] P. 307, Lemma

15.17).
The general case: Let f ∈ H1 and f(0) ̸= 0. In order to pass limit in (5.3), note that

| log x− log y| ≤ Cϵ|x− y|, if x, y > ϵ. Hence
| log(|fr|+ ϵ)− log(|f |+ ϵ)| ≤ Cϵ||fr| − |f || on T and

log(|fr|+ ϵ) → log(|f |+ ϵ) in L1(T) as r → 1.
But from (5.3)

(5.5) log |f(0)|+
∑

|λn|≤r

log
r

|λn|
=

∫
T
log |fr|dm ≤

∫
T
log(|fr|+ ϵ)dm(t).
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As LHS in (5.5) is increasing in r and RHS is convergent, we obtain

log |f(0)|+
∑
n≥1

log
1

|λn|
≤
∫
T
log(|f |+ ϵ)dm

for each ϵ > 0. This completes the proof.
Since |λn| < 1 for all n ∈ N hence the “in particular” case follows. □

Corollary 5.12. (Generalized Jensen’s inequality)
Let g ∈ H1, g ̸≡ 0, and |ξ| < 1. Then

(5.6) log |g(ξ)| ≤
∫

1− |ξ|2

|ξ − t|2
log |g(t)|dm(t).

Indeed, to begin with, we may assume that g ∈ Hol(D1+ϵ). Apply the previous result
to the function

f(z) = g
( ξ − z

1− ξ̄z

)
,

and remark that Jacobian of this change of variable is 1−|ξ|2
|ξ−z| . (Hint: Put s =

ξ−t
1−ξ̄t

etc.)

Remark 5.13. (Confrontation of two Jensen inequalities) Curiously, Jensen’s inequality
of Lemma 5.11 and Corollary 5.12 for the holomorphic functions is, in a way, the opposite
of the fundamental inequality of convexity in real analysis, which also bears the name of
Johan Jensen. In fact, the Jensen convexity inequality states that:

φ

∫
T
gdm ≤

∫
T
φgdm

for any real integrable function g and any convex function φ(φ′′ > 0). Setting g = log |f |
and φ(x) = ex we obtain the following:∫

T
log |f |dm ≤ log

∫
T
|f |dm = log |̂f |(0)

5.7. The boundary uniqueness theorem.

Corollary 5.14. If g ∈ H1, g ̸≡ 0, then log |g| ∈ L1(T). In particular, if g ∈ H1 and
m{t ∈ T : g(t) = 0} > 0, then g ≡ 0.

Proof. Indeed, g ∈ H1 may be expanded in its Taylor’s series (when realized on disc D)
as g =

∑
k≥n ĝ(k)z

k, where ĝ(n) ̸= 0, and n ≥ 0 is the multiplicity of the zero at z = 0.
By applying Jensen’s inequality to function f = g/zn, we get∫

T
log |g|dm =

∫
T
log |f |dm > −∞.

Since, log x < x if x > 0, we also have∫
T
log |g|dm ≤

∫
T
|g|dm <∞.

Hence log |g| ∈ L1(T). It is clear that ifm{t ∈ T : g(t) = 0} > 0, then
∫
T log |g|dm = −∞,

which is possible only if g ≡ 0. □

Remark 5.15. The corollary is true for all p > 0. Proof for this using the MVT for
harmonic function is done in the proof of Theorem 5.32.

Remark 5.16. Recall that we have seen the second statement of the above corollary for
f ∈ H2 using a completely different approach.
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5.8. Blaschke Product.

Lemma 5.17. (Blaschke condition, interior uniqueness theorem) Suppose f ∈ Hol(D), f ̸≡
0, and let (λn)n≥1 be the zero sequence of f in D, where each zero is repeated according to
its multiplicity. Suppose that

lim inf
r→1

∫
T
log |fr|dm <∞,

then
∑

n≥1(1− |λn|) <∞. In particular, this holds whenever f ∈ Hp(D), p > 0.

Remark 5.18. The condition
∑
n≥1

(1− |λn|) <∞ is called Blaschke condition.

Proof. Without loss of generality, we can assume that f(0) ̸= 0. But then Jensen’s formula
gives ∑

n≥1

log
1

|λn|
= lim inf

r→1

∑
|λn|≤r

log
r

|λn|
<∞

As |λn| → 1, we have log
(

1
|λn|

)
∼ (1 − |λn|), and hence the desired conclusion followed.

The Hp(D) case is a consequence of the obvious estimate log x < Cpx
p for x > 0, p > 0,

because

lim inf
r→1

∫
T
log |fr| ≤ lim inf

r→1

∫
T
Cp|fr|p <∞.

□

For λ ∈ D, we define Blaschke factor by

bλ(z) =
|λ|
λ

(λ− z)

(1− λ̄z)
.

(i) If we assume the normalization bλ
(
− λ

|λ|

)
= 1, then for λ = 0, we can define b0(z) = z.

(ii) Zero set Z(bλ) = {λ}, bλ ∈ Hol(C \ { 1
λ̄
}), |bλ| ≤ 1 on D and |bλ| = 1 on T.

Lemma 5.19. (Blaschke, 1915) If (λn)n≥1 ∈ D satisfies the Blaschke condition
∑
n≥1

(1 −

|λn|) <∞, then the infinite product

B =
∏
n≥1

bλn = lim
r→1

∏
|λn|<r

bλn

converges uniformly on compact subsets of D and even on compact subsets of C\clos{ 1
λ̄n
}n≥1.

Moreover, |B| ≤ 1 in D, |B| = 1 a.e. on T, and Z(B) = (λn)n≥1 (counting multiplicity).

Proof. Set Br =
∏

|λn|<r

bλn . Then for 0 ≤ r < R < 1, we have

∥BR −Br∥22 = 2− 2Re(BR, Br)

= 2− 2Re

∫
BRB̄rdm

= 2− 2Re

∫
BR

Br
dm (because |Br| = 1 on T).
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So by MVT for holomorphic function BR

Br we get

∥BR −Br∥22 = 2− 2Re
(BR

Br

)
(0) = 2− 2

∏
r≤|λn|<R

|λn|.

By Blaschke condition
∑
n≥1

log |λn|−1 <∞, the product∏
n≥1

|λn|

converges, which implies lim
r→1

∏
r≤|λn|<R

|λn| = 1. This shows that (Br) is a Cauchy sequence

in H2 ⊂ L2 for every r = rk → 1. So we deduce the existence of B = lim
r→1

Br. Moreover,

|B| = 1 a.e. on T because |Br| = 1 on T, and B ∈ H2. As the point evaluation is
continuous linear functional on H2, the limit limr→1B

r(λ) = B(λ) exists uniformly on
compact subsets of D, and hence |B(λ)| ≤ 1, λ ∈ D. Using B

Br → 1 in H2 (easy to see),

we get B
Br → 1 uniformly on compact subsets of D as r → 1 and

(5.7) lim
r→1

( B
Br

)
(λ) = 1.

This shows that B(λ) = 0, |λ| < 1 if and only if λ = λn for some n ≥ 1 (counting
multiplicity). If λ ̸= λn and B(λ) = 0, then (5.7) will fail.

In order to prove convergence on compact subsets of C ∖ clos{ 1
λ̄n
}n≥1, the following

observation is enough.

|bλn − 1| = (|1− |λn|)(λn + |λn|z)
λ(1− λ̄z)

≤ (1− |λn|)(1 + |z|)
|λn|

∣∣z − 1
λ̄n

∣∣ ≤ c
1− |λ|

dist(z,N)
,

where N = clos{ 1
λ̄n

: n ≥ 1}. □

Corollary 5.20. (Frigyes Riesz, 1923) Let f ∈ Hp(D), p > 0 with corresponding zero
sequence (λn)n≥1. Then there exists g ∈ Hp(D) with g(ξ) ̸= 0, ∀ ξ ∈ D such that f = Bg
and ∥f∥p = ∥g∥p on Lp(T).

This may be thought as the Blaschke filtering of the holomorphic functions.

Proof. Take Br =
∏

|λn|<r

bλn , 0 < r < 1. Clearly, f
Br ∈ Hol(D) and for ρ → 1, we get

|Br(ρξ)| → 1 uniformly on T. Hence,

(5.8)
∣∣∣∣∣∣ f
Br

∣∣∣∣∣∣p
p
= lim

ρ→1

∫
T

∣∣∣ f
Br

(ρξ)
∣∣∣pdm(ξ) = ∥f∥pp

And thus by definition of Hp(D),(∫
T

∣∣∣ f
Br

(ρξ)
∣∣∣pdm(ξ)

) 1
p ≤ ∥f∥p for every 0 ≤ ρ < 1.

Fix ρ, set g = f
B
, and letting r → 1, we obtain(∫

T

∣∣∣g(ρξ)∣∣∣pdm(ξ)
) 1

p ≤ ∥f∥p,

and hence ∥g∥p ≤ ∥f∥p. The other inequality follows from g = f
B
. □
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Note: In the proof of equation (5.8) we use the fact if fρ → f in Hp-norm and
gρ → 1 uniformly as ρ → 1 then fρgρ → f in Hp-norm. To prove this use: |fρgρ − f | =
|fρgρ−fρ+fρ−f | and to apply the DCT use Minkowski’s inequalities and gρ is uniformly
bounded by M.

Question 5.21. * Is it possible to replace log | · | in Jensen’s inequality with some suitable
increasing function?

Remark 5.22. It is useful to introduce the notion of the zero divisor (or multiplicity
function) of a holomorphic function. For f ∈ Hol(Ω), Ω ⊂ C, f ̸≡ 0, λ ∈ Ω, set

df (λ) =

{
0 if f(λ) ̸= 0

m if f(λ) = · · · = f (m−1)(λ) = 0 and fm(λ) ̸= 0.

The value of df (λ) is called zero multiplicity of λ.We can redefine the Blaschke condition.
The zero divisor of f ∈ Hol(D) verifies the Blaschke condition if and only if∑

λ∈D

df (λ)(1− |λ|) <∞.

The corresponding Blaschke product is given by∏
λ∈D

b
df (λ)

λ =
∏
n≥1

b
df (λn)

λn
.

Corollary 5.23. Let f ∈ Hp, p > 0 then there exists fk ∈ Hp ; k = 1, 2 such that
f = f1 + f2, ∥fk∥p ≤ ∥f∥p, and fk(z) ̸= 0 for z ∈ D

Proof. If f(z) ̸= 0, we may take f1 = f2 = 1
2
f. If f has zeros, we have f = Bg, with

g ∈ Hp has no zeros. Thus f(z) = [B(z)− 1]g(z) + g(z). □

5.9. Non-tangential boundary limits and Fatou’s Theorem. Recall that we have
identified boundary limit f̃ of f ∈ Hp(D) via

lim
r→1

∥fr − f̃∥p = 0, f̃ ∈ Hp, 1 ≤ p <∞.

We shall see another convergence of f(z) to its boundary values, namely the so-called
non-tangential convergence a.e. on T for f ∈ Hp(D) with 0 < p ≤ ∞.

Let µ be a complex valued Borel measure on T and µ ∈ M(T). Let dµ = hdm + dµs,
h ∈ L1(m) be Lebesgue decomposition of µ with respect to m. Then the derivative of µ
with respect to m exists at almost every point ξ ∈ T, in the following sense.

lim
∆→ξ, ξ∈∆

µ(∆)

m(∆)
=
dµ(ξ)

dm
(= h(ξ)),

where ∆ is an arc on T tending to ξ. Such a point will be called Lebesgue point of µ.

Definition 5.24. A Stolz angle at the point ζ ∈ T is the set
Sζ = conv{ζ, sin(θ)D : 0 < θ < π/2}

where “conv” represents convex hull of sets.
A limit along a Stolz angle, lim

z∈Sζ ,z→ζ
f(z) is called a non-tangential limit at a point

ζ.
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;

Figure 1. Fig1

Since the Poisson kernel satisfies P (reiθ) =
1− r2

|1− reiθ|2
, for f ∈ Lp(T) (1 ≤ p < ∞), we

have

Pr ∗ f(eiθ) =
∫
T

1− r2

|1− rei(θ−s)|2
f(eis)dm(eis)

=

∫
T

1− |z|2

|ζ − z|2
f(ζ)dm(ζ), put (z = reiθ, ζ = eis)

= f ∗ P (z)( write ).

That is Pr ∗ f(eiθ) = f ∗ P (z), where z = reiθ ∈ D. Sometimes it is called the Poisson
integral of f.

Now we see one of the most important result about non-tangential limit of the Poisson
integral.

Theorem 5.25. (P. Fatou’s, 1996) Let µ ∈ M(T) and ζ ∈ T be a Lebesgue point of µ,
then the Poisson integral of µ

P(z) = P ∗ µ(z) =
∫

1− |z|2

|ζ − z|2
dµ(ζ), z ∈ D

has a non-tangential limit at the point ζ, which is equal to dµ
dm

(ζ) i.e.,

lim
z→ζ,z∈Sζ

P(z) =
du

dm
(ζ) a.e. on T.

In particular

lim
r→1

P(rζ) =
dµ

dm
(ζ) m-a.e. on T.

Proof. Since P ∗ m(z) = 1 for every z (see Rudin, Real and Complex analysis, 11.5, p.
233) the result is correct for µ = m.With a replacement of µ if necessary by µ−cm(c ∈ C)
and with the use of a rotation, it suffices to examine the case µ(T) = µ̂(0) = 0 and ζ = 1.
Let F be a premitive of µ, i.e. a function on [−π, π], left continuous and with a bounded
variation, such that µ[eiα, eiβ) = F (β) − F (α), F (−π) = F (π). As F is defined upto a
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constant, we can assume F (0) = 0. Integration by parts in the integral

P ∗ µ(z) =
∫ π

−π

P (ze−is)dF (s), z ∈ D.

gives

P ∗ µ(z) = −
∫ π

−π

dP (z−is)

ds
F (s)ds =

∫ π

−π

Ez(s)
F (s)

s
ds,

where Ez(s) = −sdP (ze−is)
ds

. We denote z = reiθ where |θ| ≤ π, 0 ≤ r < 1, and calculate
Ez :

Ez(s) = −s d
ds

1− r2

|1− rei(θ−s)|2
= −s d

ds

1− r2

1 + r2 − 2r cos(θ − s)
= −(1− r2)s sin(θ − s)

|1− rei(θ−s)|4

= − s sin(θ − s)

(1− r2) + 4r sin2(θ − s)/2
P (ze−is).

Let us show that the family {Ez : z ∈ S1 stolz angle} satisfies the conditions (i)-(iii) for
an approximate identity, given in 5.3 (ii).

(i) For every z ∈ S1,

∥Ez∥1 =
∫ π

−π

∣∣∣∣sdP (ze−is)

ds

∣∣∣∣ ds2π ≤ A

∫ π

−π

P (z−is)
ds

2π
= A,

where, A = sup
{

|s sin(θ−s)|
(1−r2)+4 sin2(θ−s)/2

: s ∈ [−π, π], z ∈ S1

}
. It remains to show that

A <∞. Let C > 0 be such that |θ| ≤ C(1−r) for any z = reiθ ∈ S1 (the existence
of such a C can be verified as an exercise).

(a) If |s| ≤ 2C(1− r), then |s sin(θ−s)|
(1−r)2+r sin2(θ−s)/2

≤ 4C(1−r)| sin(θ−s)/2|
(1−r2)+4 sin2(θ−s)/2

≤ C.

(b) If |s| > 2C(1− r) then |s| > 2|θ|, and we have
|s sin(θ − s)|

(1− r2) + 4 sin2(θ − s)/2
≤ |s|.(|s|+ |θ|)

4 sin2(θ − s)/2
≤ |s|(|s|+ |θ|)

4(|θ − s|/π)2

≤ |s|(|s|+ |s/2|)
4(|s| − |θ|/π)2

≤ |s|2.(3/2)
4(|s| − |θ|/π)2

= (3/2)π2.

Therefore A ≤ max(C, 3π2

2
).

(ii) Integration by parts gives:

lim
z→1,z∈S1

∫ π

−π

Ez(s)
ds

2π
= lim

z→1,z∈S1

(1− P (−z)) = 1.(
Since P is the real part of an analytic function it is harmonic hence continuous

,then take the limit inside and P (−1) = 0
)

(iii) Let δ ≤ |s| ≤ π. Then for z ∈ S1 sufficiently close to 1 we have: |θ| < C(1− r) <
δ/2 and hence

|Ez(s)| = |(1− r2)s sin(θ − s)

|1− rei(θ−s)|4
| ≤ (1− r2)π

|1− reiδ/2|4
,

which tends to 0 as z → 1, z ∈ S1
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These properties of Ez and the evident relation:

lim
s→0

F (s)

s
=

1

2π

dµ

dm
(1),(

dµ(1)
dm

= 1
2π

lims→0
µ(ei0,eis)

s
= 1

2π
lims→0

F (s)−F (0)
s

= 1
2π

lims→0
F (s)
s

)
as well as (ii) above, imply, when z → 1, z ∈ S1

P ∗ µ(z)− dµ

dm
(1) =

∫ π

−π

Ez(s)

(
F (s)

s
− 1

2π

dµ

dm
(1)

)
ds+ o(1)

=

∫ δ

−δ

+

∫
δ≤|s|≤π

+o(1),

which tends to 0. Indeed by (i), for any ϵ > 0 there exists δ > 0 such that∣∣∣∣∫ δ

−δ

∣∣∣∣ ≤ max
|s|≤δ

∣∣∣∣F (s)s − 1

2π

dµ

dm
(1)

∣∣∣∣ ∫ π

−π

|Ez(s)|ds < ϵ2πA,

and thus, given (iii) and above,

limz→1,z∈S1

∣∣∣∣P ∗ µ(z)− dµ

dm
(1)

∣∣∣∣ ≤ ϵ2πA

and the results follows. □

Corollary 5.26. If f ∈ Hp(D), 0 < p ≤ ∞, then the non-tangential boundary limits of f
exist a.e. on T. That is,

lim
z→ξ,z∈Sξ

f(z) = f̃(ξ) for a.e. ξ ∈ T.

The boundary function ξ 7→ f̃(ξ) is in Lp(T), and for p ≥ 1, f(ξ) = f̃(ξ) a.e. on T (f̃ is
defined in Theorem 5.8).

Proof. For p ≥ 1, the claim follows from Fatou’s Theorem (5.25) and the Identification
Theorem 5.8 (because radial limit exists).

Note that for f ∈ Lp(T) (1 ≤ p <∞) and dµ = fdm, we have

P ∗ µ(z) =

∫
T

1− |z|2

|ζ − z|2
f(ζ)dm(ζ)

= Pr ∗ f(ξ)( let z = rξ)

= fr(ξ) = f(r)(ξ) = f(rξ) → dµ

dm
(ξ) = f(ξ) as r → 1(Fatou’s Theorem.)

Now by identification Theorem 5.8 (i) fr → f̃ in Lp, as r → 1. Since convergence in Lp,

there exists a subsequence (rk) such that P ∗µ(ξ) → f̃(ξ) as rk → 1 for a.e. ξ ∈ T ( since
convergence in Lp implies there exists a subsequence which is pt-wise a.e. convergence).

Hence f(ξ) = f̃(ξ) for a.e. ξ ∈ T.
■ For general case p > 0, we know that f = Bg = B(g1/p)p, where g ∈ Hp(D). This

implies g1/p ∈ H1(D). The result follows from the previous reasoning. □

Notation: From now onward, we identify the functions f ∈ Hp(D) with their boundary
values on T, and write Hp(D) = Hp(T), 0 < p ≤ ∞, where Hp(T) is the collection of
boundary functions of Hp(D).
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5.10. The Riesz - Smirnov canonical factorization. Here we see the main result
of the Hardy space theory - a parametric representation of f ∈ Hp as a product of
Blaschke product, a singular inner function, an outer (maximal) function. The last two
functions are exponential of integral depending on the holomorphic Schwarz - Herglotz
kernel z → ζ+z

ζ−z
, whose real part is the Poisson kernel.

Theorem 5.27. Let f ∈ Lp, 0 < p ≤ ∞ be such that log |f | ∈ L1, and define

[f ](z) = exp

(∫
T

ζ + z

ζ − z
log |f(ζ)|dm(ζ)

)
, |z| < 1.

Then

(i) [f ] ∈ Hp(D) and |[f ]| = |f | a.e. on T.
(ii) If 0 ̸≡ g ∈ Hq(D), q ≥ 1, and |g| ≤ |f | a.e. on T, then |g| ≤ |[f ]| on D (and hence

g ∈ Hp(D)).
(iii)

[
f
g

]
= [f ]

[g]
and [[f ]] = [f ].

(iv) [f ](z) ̸= 0 in D and for any α > 0, [|f |α] = [f ]α.

Proof. (i) For fixed z, | ζ+z
ζ−z

| <∞∗1 and log |f | ∈ L1 hence [f ](z) is well defined. Clearly,

[f ] is a holomorphic function on D. Recall that for a finite Borel measure µ and a
convex function ψ, we have the Jensen-Young geometric mean inequality

(5.9)

∫
ψ ◦ F dµ∫

dµ
≥ ψ

(∫ Fdµ∫
dµ

)
.

[ Proof Let F : (Ω, µ) → I ⊂ R (I is finite or infinite interval), set ν = µ∫
dµ
. Let

A = {h : h(x) = ax + b; h ≤ ψ on I}. Then h
( ∫

Fdν
)
=
∫
h ◦ Fdν ≤

∫
ψ ◦ Fdν.

We get the inequality since ψ(x) = sup{h(x) : h ∈ A}. ] By apply inequality (5.9)

to the Borel measure dµ = 1−|z|2
|ζ−z|2 dm(ζ), we get

|[f ]|p = exp
(∫

T

1− |z|2

|ζ − z|2
log |f(ζ)|pdm(ζ)

)
≤
∫
T
|f(ζ)|p 1− |z|2

|ζ − z|2
dm(ζ).

Set z = reit. By Fubini’s theorem, we get∫ 2π

0

∣∣∣[f ](reit)∣∣∣p dt
2π

≤
∫
T
|f(ζ)|p

(∫ 2π

0

1− |z|2

|ζ − z|2
dt

2π

)
dm(ζ) = ||f ||pp.

Now, by Fatou’s theorem and its corollary there, we have
log |[f ](ξ)| = lim

r→1
log |[f ](rξ)| = log |f(ξ)| a.e. ξ on T.

The modifications in the case p = ∞ are obvious.
(ii) Given that 0 ̸≡ g ∈ Hq(D), q ≥ 1, and |g| ≤ |f | a.e. on T. This implies log |g| ∈ L1,

and hence by generalized Jenson’s inequality (5.6), we get

log |g(z)| ≤
∫
T

1− |z|2

|ζ − z|2
log |g(ζ)|dm(ζ)

≤
∫
T

1− |z|2

|ζ − z|2
log |f(ζ)|dm(ζ)

= log |[f ](z)|.
(iii) is a direct consequence of the definition.
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(iv) It is a direct consequence of the definition. But here we only consider the fact
log |f |α ∈ L1, whereas fα ∈ Lp is not considered.

□

Note: ∗1
[

ξ + z

ξ − z
= 1 + 2

∞∑
n=1

zn

ξn
since |z

ξ
| < 1.

Since z ∈ D, z = rξ, ξ ∈ T∣∣∣∣ξ + z

ξ − z

∣∣∣∣ ≤ 1 + 2
∞∑
n=1

rn = 1 + 2(
1

1− r
− 1) =

1 + r

1− r
<∞

Since r fixed for fixed z.
]

Note that from Theorem 5.27 to define [f ] the condition log |f | ∈ L1 is sufficient, but
the extra condition f ∈ Lp ensures that [f ] ∈ Hp(D).

The following result ensures the existence of enough harmonic functions as Poisson
integrals of finite Borel measures.

Theorem 5.28. (G. Herglotz, 1911 ) Let u be a non-negative harmonic function on D.
Then there exists a unique finite Borel measure µ ≥ 0 such that u = P ∗ µ, that is

u(z) =

∫
T

1− |z|2

|ζ − z|2
dµ(ζ).

Proof. By MVT we have for all z in D

ur(z) =

∫
T

1− |z|2

|ζ − z|2
ur(ζ)dm(ζ) =

∫
T

1− |z|2

|ζ − z|2
dµr(ζ),

where we have set ur(z) = u(rz), 0 ≤ r < 1, and dµr = urdm. Then µr is a positive
measure and Var(µr) = µr(T) = ur(0) = u(0) <∞. Thus the family (ur)0≤r<1 is uniformly
bounded in M(T), and has week∗ convergent subsequence µrn that converges to µ ∈
M(T). Recall that M(T) is dual of C(T)∗ with the duality < f, µ >=

∫
T
fdµ. Thus, if

f ∈ C(T), f ≥ 0, then ∫
T
fdµ = lim

n→∞

∫
T
furndm ≥ 0 =⇒ µ ≥ 0.

■Moreover, since u is continuous on D, for z ∈ D, we have

u(z) = lim
n→∞

u(rnz) = lim
n→∞

∫
1− |z|2

|ζ − z|2
dµrn(ζ) =

∫
T

1− |z|2

|ζ − z|2
dµ(ζ).

■Uniqueness of µ: Note that P ∗µ(reit) =
∑
n∈Z

r|n|µ̂(n)eint. For any ν such that P ∗µ = P ∗ν

implies µ̂(n) = ν̂(n). Hence µ = ν. □

Theorem 5.29. (Singular inner function): Let S ∈ Hol(D), then the following are equiv-
alent:

(i) |S(z)| ≤ 1 and S(z) ̸= 0 on D, S(0) > 0 and |S(ξ)| = 1 a.e. on T.
(ii) there exists a unique finite Borel measure µ ≥ 0 on T with µ ⊥ m such that

S(z) = exp

(
−
∫
T

ζ + z

ζ − z
dµ(ζ)

)
, z ∈ D.
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Proof. (⇐=) (ii) implies (i) is a corollary of Fatou’s theorem (because of S ∈ H∞(D) by
(ii)).

|S(z)| = exp
(
−
∫
T

1−|z|2
|ζ−z|2dµ(ζ)

)
, z ∈ D and µ ⊥ m. By Fatou’s theorem on − log |S(z)| =

f(z), lim
r→1

f(rξ) = du
dm

(ξ) = 0 since µ ⊥ m. lim
r→1

log |S(rξ)| = 0 =⇒ S̃(ξ) = 1 a.e. on T.

Also |S(z)| = |S(reiθ)| ≤ |S̃(ξ)| = 1.
(=⇒)For (i) implies (ii), let u = log |S|−1, then by Herglotz theorem, there exists µ

such that

log |S(z)|−1 =

∫
T

1− |z|2

|ζ − z|2
dµ(ζ).

Once again by Fatou’s theorem (and |S(ξ)| = 1 a.e. on T), we get
dµ

dm
(ξ) = lim

r→1
u(rξ) = 0 a.e. on T.

Hence µ ⊥ m.
■|S(z)| = |Sµ(z)| in D. S(z) = λ(z)Sµ(z) with |λ(z)| = 1 for all z ∈ D, but S(0) > 0

and Sµ(0) > 0 which implies that λ = 1 and which further implies that S = Sµ. □

Definition 5.30. A nonconstant inner function that has no zero in D is called a singular
inner function. A function S verifying (i) or (ii) of the preceding theorem is called a
singular inner function.f The word “singular” is used because of the representation of such
functions by singular measures.

Notation 5.31. log+ x =

{
log x, x ≥ 1

0, 0 < x < 1
and log− x =

{
− log x, 0 < x ≤ 1

0, x > 1

Then log = log+− log−; | log | = log++ log− and log+ x ≤ x when x > 0. Also | log+ x−
log+ y| ≤ |x− y| for x, y > 0.

Theorem 5.32. (Smirnov, 1928: Canonical Factorization Theorem) Let f ∈ Hp(D), p >
0. Then there exists a unique factorization f = λBS[f ], where λ ∈ C, |λ| = 1, B, S and
[f ] are defined earlier.

Proof. First set
g = f

B
.

We will show that any zero free function g satisfies
∫
T log |g|dm > −∞. We may assume

g(0) = 1. Since g has no zeroes in D, log |g(z)| is harmonic in D. The MVT for the
harmonic function says that any for any r ∈ (0, 1)

0 = log |g(0)| =
∫
T
log |g(rξ)|dm(ξ)

=

∫
T
log+ |g(rξ)|dm(ξ)−

∫
T
log− |g(rξ)|dm(ξ)

Thus
∫
T log

+ |g(rξ)|dm(ξ) =
∫
T log

− |g(rξ)|dm(ξ) ≤
∫
T |g(rξ)|dm(ξ)dm(ξ) ≤ ∥g∥ (Cauchy

Schwartz). Since g ∈ Hp(D), g along with the functions log+ |g| and log− |g| have radial
limits a.e. on T. By Fatou’s lemma∫

T
log− |g|dm ≤ lim

r→1

∫
T
log− |g(rξ)|dm(ξ) ≤ ∥g∥
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which implies that log−1 |g| is integrable on T. Simillary log+ |g| and log g is integrable.

Then |f | = |g| a.e. on T, and hence [g] = [f ]. Set λ = g(0)
[g](0)

and S = g
λ[g]
. Then

f = Bg = BλS[g] = λBS[f ]. As B and [f ] are uniquely defined for f, the uniqueness of
factorization follows. □

Next, we consider the structure of the outer functions in Hp.

Theorem 5.33. (Structure of outer function) Let p, q, r ≥ 1 and f ∈ Hp. Then the
following are equivalent.

(i) There exists λ ∈ C, |λ| = 1 such that f = λ[f ].
(ii) for all z ∈ D, the generalized Jensen inequality is equality:

(5.10) log |f(z)| =
∫
T
P (zξ̄) log |f(ξ)|dm(ξ).

(iii) Identity (5.10) holds for at least one z ∈ D.
(iv) If g ∈ Hq and g

f
∈ Lr, then g

f
∈ Hr (Integral Maximal principle).

If p = 2, then (i)-(iv) are equivalent to
(v) the function f is outer in H2(In the earlier sense i.e., Ef = H2).

Proof. (i) implies (ii) is followed from the definition of [f ]. The implication (iii) goes to
(ii) is trivial. For (iii) implies (i), suppose (5.10) holds for some zo ∈ D. By Riesz-Smirnov
factorization theorem, we have f = λBS[f ], and by (5.10), we get

|f(zo)| = |λB(zo)S(zo)[f ](zo)| =⇒ |B(zo)S(zo)| = 1 =⇒ |B(zo)| = |S(zo)| = 1.
By maximum principle, B = S =constant= 1 in D, implies f = λ[f ].

(i) implies (iv): If g ∈ Hq, then g = λ1BS[g] and we get g
f
= λ1BS[g]

(λ[f ])
=
(
λ1

λ

)
BS
[
g
f

]
∈ Hr

in view of Riesz-Smirnov theorem and by the hypothesis that g/f ∈ Lr.

(iv) =⇒ (i): Let f = λBS[f ] and set g = min(|f |, 1). Then [g] ∈ H∞ and
∣∣ [g]
f

∣∣ ≤ 1 a.e.

on T. By (iv) we get [g]
f
∈ Hr (r arbitrary). Again, we have [g]

f
= λ1B1S1

[
g
f

]
= λ1B1S1

[g]
[f ]

(because [[g]] = [g] and
[
g
f

]
= [g]

[f ]
), we get 1 ≡ λλ1BB1SS1 = λ2B2S2 with |λ2| = 1,

where B2 is a Blaschke product and S2 is a singular inner function. As |B2(z)| ≤ 1 and
|S2(z)| ≤ 1 for all z ∈ D, we get |B2| = |S2| ≡ 1 and hence B2 ≡ S2 ≡ 1. Thus, we
conclude that B = S = 1, implies f = λ[f ].

It remains to show that (iv) and (v) are equivalent if p = 2. As (i)-(iii) are independent
of choice of q and r, we get equivalence between (iv) as well with p = 2, and arbitrary
q, r and with p = q = r = 2, (iv) is just earlier characterization of the outer function on
H2. □

Remark 5.34. In the family of Hardy spaces, dividing by an analytic function, even if
it does not have any zero, is a delicate process and the result could be a function that
does not belong to any Hardy space. For example, if S is a singular inner function, then
1/S does not belong to any Hardy space (easily check!). However, at the same time,
its boundary values are unimodular and one is (wrongly) tempted to say that 1/S is an
inner function. The above result (Theorem 5.33 (iv), IMP) says that dividing by an outer
function is legitimate as long as the boundary values remain in a Lebesgue space.
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Definition 5.35. (Outer in Hp) Let f ∈ Hp, p > 0 and f = λBS[f ]. The function [f ] is
called the outer part of f, and λBS is called the inner part of f. We write [f ] = fout and
λBS = finn. If f = λ[f ], then f is called outer.

It is clear from the above theorem that if p = 2, then definition of inner and outer
functions coincide with previous ones.

Corollary 5.36. Let w ∈ L1
+(T), and p ≥ 1. The followings are equivalent.

(i) There exists f ∈ Hp, f ̸≡ 0 such that |f |p = w a.e. on T.
(ii) logw ∈ L1.

Proof. As Hp ⊂ H1, and p ≥ 1 (i) implies (ii) follows from the boundary uniqueness
theorem Corollary 5.14.

Now (ii) implies (i) follows by taking f = [w1/p]. Since if

f(z) := [w1/p](z) = exp

(∫
T
P (zξ̄) log |w(ξ)|1/pdm(ξ)

)
,

then by Theorem 5.27 (i), f ∈ Hp(D).
Since

|f(z)|p = exp

(∫
T
P (zξ̄) log |w(ξ)|dm(ξ)

)
by Fatou’s theorem 5.25, we get |f |p = w a.e. on T. □

5.11. Approximation by inner functions and Blaschke products. Using Fatou’s
theorem, we prove two important theorems on uniform approximation by inner functions.

Theorem 5.37. (R. Douglas and W. Rudin, 1969 ) Let Σ be the set of all inner functions.
Then
(5.11) L∞(T) = clos

L∞

(
Θ̄H∞ : Θ ∈ Σ

)
= spanL∞

(
Θ̄1Θ2 : Θ1,Θ2 ∈ Σ

)
.

Moreover, any unimodular function in L∞(T) belongs to

clos
L∞

(Π)
(
Θ̄1Θ2 : Θ1,Θ2 ∈ Σ

)
.

Proof. It is enough to show that χσ ∈ spanL∞

(
Θ̄1Θ2 : Θ1,Θ2 ∈ Σ

)
for every Borel mea-

surable set σ in T. Let
fn =

[
nχσ +

1

n
χT∖σ

]
, n = 2, 3, . . .

and An = {z ∈ C : 1
n
< |z| < n}. It is clear that fn(D) ⊂ An (by maximum principle)

and fn(T) ⊂ ∂An. Now let ϕ1(ζ) = ζ + 1
ζ
for ζ ∈ C ∖ {0}, and w : ϕ1(An) → D be a

conformal (Riemann) mapping of the ellipse ϕ1(An) onto D. Since the boundary of ellipse
is smooth, w can be continuously extended to clos ϕ1(An), and hence

w ◦ ϕ1 ◦ fn = θ1
is an inner function (because θ1 ∈ H∞(D), and by Fatou’s theorem |θ1| = 1 a.e. on T).
Since w−1 is continuous on clos(D), it can be approximated by its Fejer polynomials.
Therefore,

fn +
1

fn
= ϕ1 ◦ fn = w−1 ◦ θ1 ∈ span

L∞
(θn1 : n ≥ 0) .
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Doing the same for the function ϕ2(ζ) = ζ − 1
ζ
, we get an inner function θ2 such that

fn − 1
fn

∈ spanL∞ (θn2 : n ≥ 0) . Hence fn ∈ spanL∞{θk1θn2 : k, n ≥ 0}, implies

|fn|2 ∈ spanL∞

(
θk1θ

n
2 θ

−l
1 θ

−m
2 : k, n, l,m ≥ 0

)
.

Thus,

χσ +
1

n4
χT∖σ ∈ spanL∞

(
Θ̄1Θ2 : Θ1,Θ2 ∈ Σ

)
, forn = 1, 2, . . . .

Letting n→ ∞, we get χσ ∈ spanL∞

(
Θ̄1Θ2 : Θ1, Θ2 ∈ Σ

)
.

Let u ∈ L∞(T), and |u| = 1 a.e. and u1 ∈ L∞(T) with |u1| = 1 a.e. and u = u21. Given

ϵ > 0, by (5.11) there exists φ,Θj ∈ Σ such that |u1−φ̄g| < ϵ, where g =
n∑

j=1

ajΘj, aj ∈ C.

Set Θ =
∏n

j=1Θj, and observe that ḡΘ ∈ H∞. Since [ḡΘ] = [g] (because |ḡΘ| = |ḡ|), the
inner-outer factorizations of g and ḡΘ are of the form ḡΘ = v[g] and g = w[g], where
v, w ∈ Σ, and 1− ϵ < |[g]| < 1 + ϵ. Now, |ū1 − φḡ| = |ū1 − φΘ̄v[g]| < ϵ gives∣∣∣ 1

ū1
− 1

ϕΘ̄v[g]

∣∣∣ < ϵ

1− ϵ
.

Since |u1 − a| < ϵ and |u1 − b| < ϵ implies that |u21 − ab| ≤ |u1 − a|+ |a||u1 − b|, we obtain∣∣∣u− ϕ̄w[g]ϕ̄Θv̄
1

[g]

∣∣∣ < 2ϵ

1− ϵ
,

which completes the proof. □

Theorem 5.38. (O. Frostman, 1935 ) Let Θ be a (non-constant) inner function and
ζ ∈ T. Then btζ ◦ Θ are Blaschke products with simple zeros for a.e. t ∈ (0, 1), where
bλ(z) =

λ−z
1−λz

, λ ∈ D. In particular, Θ is a uniform limit of Blaschke products with simple
zeros.

Proof. Let ζ = 1. Then we need to show that Ht(z) := bt ◦ Θ(z) = t−Θ(z)
1−tΘ(z)

, z ∈ D is

Blaschke product with simple zeros for all t ∈ [0, 1). Let ξ ∈ T, then the boundary function

|H̃t(ξ)| =
∣∣∣ t−θ̃(ξ)

1−tθ̃(ξ)

∣∣∣ = ∣∣∣∣ t−θ̃(ξ)

θ̃(ξ)−t

∣∣∣∣ = ∣∣∣∣ t−θ̃(ξ)

t−θ̃(ξ)

∣∣∣∣ = 1 =⇒ H̃t ∈ H∞(T). Hence Ht ∈ H∞(D).

By the unique canonical factorization of Ht(z), Ht(z) = λBS[Ht](z) where

[Ht](z) = exp

∫
T

ξ + z

ξ − z
log |H̃t(ξ)|dm(ξ) = exp(0) = 1

since |H̃t(ξ)| = 1. Hence Ht(z) = λBS. Our claim is to show: S = 1, where

S(z) = exp

(
−
∫
T

ξ + z

ξ − z
dµt(ξ)

)
, µt ⊥ m,µt ≥ 0.

To show S = 1 we will show µt(T) = 0.
Then by Jensen’s formula (5.11) (and expression of S and S ∈ H∞ with ∥S∥∞ ≤ 1),

and the fact |Ht(rξ) ≤ |S(rξ)| =⇒ |S(rξ)|−1 ≤ |Ht(rξ)|−1, we get the following:

µt(T) = log |S(0)|−1 =

∫
T
log |S(rξ)|−1dm(ξ) ≤

∫
T
log |H̃t(rξ))|−1dm(ξ) = g(r, t),

for all t, r ∈ [0, 1). Therefore, it is sufficient to check that lim
r→1

g(r, t) = 0 a.e. t ∈ (0, 1). Now

µ(T) ≤ g(r, t) =⇒
∫ 1

0
limr→1 µt(T) ≤

∫ 1

0
limr→1 g(r, t)dt =⇒ µ(T) ≤

∫ 1

0
limr→1 g(r, t)dt.
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We will show the right hand side is zero. For this we will show that∫ 1

0

lim
r→1

g(r, t)dt = lim
r→1

∫ 1

0

g(r, t)dt

This happens due to DCT: |g(r, t)| = |
∫
T log |Ht(rξ)|−1|dξ ≤

∫
T log |Ht(0)|−1dξ = log |Ht(0)|−1 ∈

L1(0, 1). So by DCT we can interchange the limit:∫ 1

0

lim
r→1

g(r, t)dt = lim
r→1

∫ 1

0

∫
T
log |Ht(rξ)|dm(ξ)dt

= lim
r→1

∫
T

∫ 1

0

log |Ht(rξ)|dtdm(ξ) = 0

since
∫ 1

0
log |Ht(rξ)|−1dt = 0. Let u : D → R, by u(w) =

∫ 1

0
log |bt(w)|−1dt = −

∫ 1

0
log |bt(w)|dt.

u is continuous then

u(T) = −
∫ 1

0

log |bt(eiφ)|dt

= −
∫ 1

0

log | t− eiφ

1− teiφ
|dt

= −
∫ 1

0

{log |t− eiφ| − log |t− eiφ|}dt

= 0.

Therefore
∫ 1

0
log |H̃t(ξ)|−1dt = 0 =⇒ µ(T) = 0.

■ The zeros of bλ ◦Θ are simple if λ−Θ(zj) ̸= 0, ∀ j, where (zj)j≥1 are the zeroes of Θ
′.

Indeed, if bλ(Θ(z)) = 0, then λ−Θ(zj) = 0 and hence (bλ ◦Θ)′(z) = b′λ(Θ(z))Θ′(z) ̸= 0.

Finally, we show thar u is continuous on D̄. Note that the integrals
∫ 1

0
log |1 − tw|dt

and
∫ 1

0
log |t− w|dt are similar and for w = x+ iy, we have∫ 1

0

log |t− w|2dt =
∫ 1

0

log{(t− x)2 + y2}dt

is continuous in x and y ( for instance
∫ 1

0
log(t− x)2dt = χ(0,1) ∗ log(x2) ). □

5.12. Exercises.

Exercise 5.39. Show that H2(D)H2(D) = H1(D).

Proof. If f, g ∈ H2, then ∥fg∥1 ≤ ∥f1∥2∥g1∥2∥ < ∞ which implies H2H2 ⊆ H1. For the
converse, let f ∈ H1 consider G = f

B
then G ̸= 0 in D. Hence G = g2 for some function g.

Also we have ∥G∥ = ∥f∥ =⇒ G ∈ H1 =⇒ g ∈ H2. Take h = Bg. Since B ∈ H1(D)
and g ∈ H2(D) ⊂ H1(D) =⇒ h = Bg ∈ H2(D) and f = GB = g2B = g(Bg) = gh □

Exercise 5.40. f ∈ H1, f(T) ⊆ R then f is a constant.

Proof. Since f ∈ H1 for z ∈ D,

f(z) =

∫
T

1− |z|2

|ζ − z|2
f̃(ζ)dm(ζ)(= Pf(z))

If f̃(T) ⊆ R and the Poison kernal Pz(ζ) is always real then f(z) is real from the above
integration. But the only analytic function which is real must be constant. □
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Exercise 5.41. Let f ∈ H1/2. Assume that f ≥ 0 a.e. on T. Then f is a constant.

Proof. Assume f ̸≡ 0. By the canonical factorization theorem we have: f = Bg where B
is the Blaschke product associated with f and g belongs to H1/2 and has no zeros on D.
That is why we can define h = g1/2, and the function h belongs to H1 with ∥h∥1 = ∥g∥ 1

2
.

Clearly, f = Bh2.
The condition f ≥ 0 ensures that f = |f | a.e. on T. Hence, since B is unimodular on

T, we have Bh2 = h̄ a.e. on T.
Now on one hand we have, Bh ∈ H1, and on the other hand h̄ ∈ H̄1. We know that

H1∩H1
contains only the constant functions. Therefore Bh is a constant function. By the

uniqueness of the canonical factorization this happens precisely when B is a unimodular
constant and h is a constant. Thus eventually h is a constant. □

Example 5.42. If f(z) = exp( z+1
z−1

) then f is a singular inner function.

Proof. Recall that |ew| = |eRew+i Imw| = |eRew| = eRew. Hence |f(z)| = exp
(
Re( z+1

z−1
)
)
=

|z|2−1
|z−1|2 < 0 for z ∈ D. It follows that |f(z)| < 1∀z ∈ D. Thus f ∈ H∞. Moreover for |z| = 1

and z ̸= 1 implies Re z+1
z−1

= 0 and therefore |f̃(eiθ)| = 1 for all θ ̸= 0. Since ew is never
zero for any complex number w, it follows that f is an inner function with no zeros on D.

□

Remark 5.43. The function f(z) = exp(1+z
1−z

) is not an inner. This function is the

reciprocal of the function in earlier example hence |f(eiθ)| = 1 for θ ∈ (0, 2π). However
for 0 < r < 1

|f(r)| = exp

(
1 + r

1− r

)
→ ∞, uadr → 1−

Although f has unimodular boundary value almost everywhere on T, it is unbounded
on D and hence is not an inner function. Thus when checking to see whether or not an
analytic function is inner one must be careful to check at first that it is actually bounded
on D.

Exercise 5.44. Let r > 0, s > 0, t > 0 be such that 1
r
= 1

s
+ 1

t
. Show that Hr = Hs ·H t

and moreover ∥fr∥ = min {∥g∥s∥h∥t : g ∈ Hs, h ∈ H t s.t. f = gh}

Proof. By Holders inequality, if g ∈ Hs(D), h ∈ H1(D) then f = gh ∈ Hol(D) and
for every ρ, 0 < ρ < 1, we have ∥fρ∥ ≤ ∥gρ∥s∥hρ∥t, which implies f ∈ Hr(D) and
∥f∥r ≤ ∥g∥s∥h∥t. Conversely, if f ∈ Hr(D), with f = λBV [f ] its Canonical factorization,
then by g = λBV [f ]r/s, h = [f ]r/t, we obtain f = gh and ∥f∥r = ∥g∥s∥h∥t. □

Exercise 5.45. Let λ ∈ D and φλ be an evaluating functional on Hp, 1 ≤ p ≤ ∞, i.e.
φλ(f) = f(λ), f ∈ Hp.

Show that ∥φλ∥ = (1− |λ|2)−1/p.

Proof. When p = 2, φλ(f) = f(λ) =
∑

k≥0 f̂(k)λ
k = (f, kλ)H2 , where

kλ(z) =
∑
k≥0

λ
k
zk, z ∈ D,
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is the Szego reproducing kernal of H2, hence ∥φλ∥ = ∥kλ∥2 = (1 − |λ|2)−1/2. When p-is

arbitrary, recall that for every function f, |f(λ)| ≤ |[f ]λ| and ∥f∥p = ∥[f ]p/2∥2/p2 which
leads to:

∥φλ∥ = sup{|f(λ)| : f ∈ Hp, ∥f∥p ≤ 1} = sup{|[f ]p/2(λ)|2/p : ∥[f ]p/2∥ ≤ 1}

=
(
(1− |λ|2)−1/2

)2/p
.

□

Exercise 5.46. ( Neuwirth and Newman, 1967 ) Let f ∈ Hp(D), p > 0. Show that
f = constant if and only if the following hypothesis is verified:

(i) p ≥ 1 and f(ζ) is real a.e. ζ ∈ T.
(ii) p ≥ 1/2 and f(ζ) ≥ 0 a.e. ζ ∈ T.

Show that the conclusion no longer holds if p < 1.

Proof. Case (i) is evident, because in this case f, f ∈ H1(T), which implies f=constant.
For (ii) see Exercise 5.41.
For the last assertion, consider the function f1 = i1+z

1−z
respectively f2 = f 2

1 . It is easy
to see that f1 ∈ Hp(D) for any p < 1 and f2 ∈ Hp(D) for any p < 1/2. □

Exercise 5.47. Let f, g ∈ H2 and h = fg. Show that |ĥ(n)| ≤
∑

k+j=n |f̂(k)| · |ĝ(j)|.

Proof. The Fourier series g =
∑

j∈Z ĝ(z)z
j converges in L2(T) hence by Cauchy Schwartz’s

inequality the series h = fg =
∑

j∈Z ĝ(z)fz
j converges in L1(T) and by continuity of

h 7→ ĥ(n), we obtain ĥ(n) =
∑

j∈Z f̂(n− j)ĝ(j); the result follows. □

Exercise 5.48. Let φ(eit) = i(t− π) for 0 < t < 2π. Find the Fourier coefficients of φ.

Proof. φ̂(0) = 0 and for k ̸= 0,

φ̂(k) =

∫ 2π

0

i(t− π)e−iktdt/2π

=
[
−(t− π)e−ikt/2πk

]2π
t=0

+

∫ 2π

0

e−iktdt/2πk

= −1/k
□

Exercise 5.49. (The Hilbert Inequality, 1908) Let f, g ∈ H2. Show that∣∣∣∣∣∑
k,j≥0

f̂(k)ĝ(k)

k + j + 1

∣∣∣∣∣ ≤ π∥f∥2∥g∥2.

Proof. For F,G ∈ L2(T) and Φ ∈ L∞(T) just as in (a) above, we have (ΦF,G) =∑
i+j+k=0 φ̂(i)F̂ (k)Ĝ(j), which gives

(φf, zg) = −
∑
k,j≥0

f̂(k)ĝ(j)

k + j + 1
.

Then the result follows from
|(φf, zg)| ≤ ∥φf∥2∥zg∥2 ≤ ∥φ∥∞∥f∥2∥g∥2 = π∥f∥2∥g∥2.
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□

Exercise 5.50. (The Hardy Inequality, 1926): For every function h ∈ H1,
∑

k≥0
|ĥ(k)|
k+1

≤
π∥h∥1.

Proof. By Exercise 5.44, h = fg with f, g ∈ H2 and ∥f∥22 = ∥g∥22 = ∥h∥1 and by Exercises
5.47 and 5.49 ∑

k≥0

|ĥ(k)|
k + 1

≤
∑
k≥0

∑
i+j=k |f̂(i)||ĝ(j)|

k + 1
≤ π∥f∥2∥g∥2 = π∥h∥1.

□

We have seen that every Hp function f(reiθ) converges almost everywhere to an Lp

boundary function f(eiθ). It is important to know that whether f(reiθ) always tends to
f(eiθ) in the sense of the Lp mean or not.

Exercise 5.51. (Mean convergence theorem) If f ∈ Hp(0 < p <∞) then

(5.12) lim
r→1

∫ 2π

0

|f(reiθ)|p =
∫ 2π

0

|f(eiθ)|p

and

(5.13) lim
r→1

∫ 2π

0

∣∣f(reiθ)− f(eiθ)
∣∣p dθ = 0

Proof. First let us prove 5.13 for p = 2. If f(z) =
∑
anz

n is in H2, then
∑

|an|2 < ∞.
But by Fatou’s Lemma∫ 2π

0

|f(reiθ)− f(eiθ)|2dθ ≤ lim inf
ρ→1

∫ 2π

0

|f(reiθ)− f(ρeiθ)|2dθ

=2π
∞∑
n=1

|an|2(1− rn)2,

which tends to 0 ar r → 1. This proves (5.13) and hence (5.12) for p = 2.
■ If f ∈ Hp(0 < p < ∞), we use the factorization f = Bg. Since [g(z)]p/2 ∈ H2, it

follows from what we have just proved that∫ 2π

0

|f(reiθ)|pdθ ≤
∫ 2π

0

|g(reiθ)|pdθ →
∫ 2π

0

|g(eiθ)|pdθ =
∫ 2π

0

|f(eiθ)|pdθ

This together with the Fatou’s Lemma proves (5.12)
The following lemma can now be applied to deduce (5.13) from (5.12).

□

Lemma 5.52. [12][p. 21] Let Ω be a measurable subset of R and let φn ∈ Lp(ω), 0 < p <
∞;n = 1, 2, . . . As n→ ∞, suppose φn(x) → φ(x) a.e. on Ω and∫

Ω

|φn(x)|pdx→
∫
Ω

|φ(x)|pdx <∞
then ∫

Ω

|φn(x)− φ(x)|pdx→ 0.
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Corollary 5.53. If f ∈ Hp for some p > 0, then

lim
r→1

∫ 2π

0

∣∣log+ |f(reiθ)| − log+ |f(eiθ)|
∣∣ dθ = 0

Proof. Immediately follows from Mean convergence theorem 5.51 and the following in-
equality:

| log+ a− log+ b| ≤ 1

p
|a− b|p, a ≥ 0, b ≥ 0, 0 < p ≤ 1

For the proof the inequality see [12][p. 22] □

Exercise 5.54. [12][p. 34] A function f analytic in D is representable in the form f(z) =
Pφ(z) i.e.

f(z) :=
1

2π

∫ 2π

0

Pr(θ − t)f(eit)dt

as a Poisson-integral φ ∈ L1 if and only if f ∈ H1. In this case φ(t) = f(eit) a.e.

Proof. If an analytic funcition f(z) has the form f(z) = Pφ(z) then∫ 2π

0

|f(reiθ)|dθ ≤
∫ 2π

0

|φ(t)|dt

so that f ∈ H1.
Conversely, suppose f ∈ H1, and write

Φ(z) :=
1

2π

∫ 2π

0

Pr(θ − t)f(eit)dt

For any fixed ρ, 0 < ρ < 1

f(ρz) =
1

2π

∫ 2π

0

Pr(θ − t)f(ρeit)dt

But by the Exercise 5.51
∫ 2π

0
|f(ρeit) − f(eit)|dt → 0 as ρ → 1, so f(ρz) → Φ(z). Hence

Φ(z) = f(z). □

Corollary 5.55. A function f(z) is analytic in |z| < 1 is the Poisson integral of a
function φ ∈ Lp(1 ≤ p ≤ ∞) if and only if f ∈ Hp.
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6. Szegö infimum and generalized
Phragmen-Lindelöf principle

In this section, we consider two applications of the canonical Riesz-Smirnov factor-
ization. Namely, the Szegö infimum dist(1, H2

0 (µ)) is expressed in terms of measure µ,
the cyclic functions of L2(T) are described. The classical logarithmic integral criterion
for completeness of the polynomials, the case of incompleteness, and the closure of the
polynomials H2(µ) is described in terms of the outer function related to Radon-Nikodym
derivative w = dµ

dm
. We consider outer functions, their extremal and extension proper-

ties, and distribution value properties. The important Smirnov subclass of Nevanlinna
functions is considered. After transferring these results to an arbitrary simply connected
domain of C, we use these techniques to get a remarkably general Phragmen-Lindelöf type
principle due to Smirnov (1920) and then by Helson (1960).

6.1. Szegö infimum and weighted polynomial approximation.

Theorem 6.1. (Szegö, Kolmogorov) Let dµ = wdm+ dµs be a Borel measure. Then

inf
p∈P0

+

∫
T
|1− p|2dµ = exp

(∫
T
logw dm

)
.

Proof. By the Theorem 4.15 two cases are possible

(i) If there exists f ∈ H2 such that |f |2 = w a.e. m then dist2 = 0; otherwise

(ii) dist2 = |f̂(0)|2

By the Corollary 5.36, Case (ii) ⇔ logw ∈ L1 holds if and only if logw ∈ L1 and in this
case:

f(z) = exp

∫
T

ξ + z

ξ − z
logw

1
2 (ξ)dm(ξ)

Since f ∈ H2, f̂(0) = f(0) and |f̂(0)|2 = |f(0)|2 = exp
∫
T logwdm.

□

Let f ∈ L2(T), and write Ef = span{znf : n ≥ 0}. If Ef = L2(T), we say f is a cyclic
vector. Note that the half of the trigonometric system (zn)n≥0 is far from being complete
in L2(T), but multiplying by a suitable function f one can get completeness property i.e.
span{znf : n ≥ 0} = L2(T). It may happen that for different halfs of (zn)n∈Z, nothing
similar is true.

Corollary 6.2. Let f ∈ L2. Then Ef = span{znf : n ≥ 0} = L2 if and only if f(ξ) ̸= 0
a.e. on T and

∫
T log |f |dm = −∞.

Proof. Two cases may possible: Either zEf = Ef or, zEf ⊊ Ef . In the first case by
N-Weiner Theorem 3.4 there exists σ ⊂ T such that Eσ = χσL

2(µ). If the second case
holds: zEf ⊊ Ef . ⇔ there exists θ such that |θ| = 1 and Ef = θH2. Since Ef =
L2 =⇒ zEf = L2 again, hence only the first case is possible, so second case does not
possible, i.e., ∀θ such that |θ| = 1, Ef ̸= θH2 ⇔ there does not exists g ∈ H2 such that
znf = θg ∀n⇔ 1.|f | = 1.|g| ⇔ |f | = |g| ⇔ log |f | ∈ L1 by Corollary 5.36.
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( ⇐= ) there exists σ ∈ T such that Ef = χσL
2(T). As f ∈ χσL

2(T) and f ̸= 0 a.e. on
T we get σ = T, and then Ef = L2(T). □

Example 6.3. (a) If f(eiθ) = |1− eiθ|α, α > −1
2
, then Ef ̸= L2(T).

(b) If f(eiθ) = exp
(

−1
1−eiθ

)
, then Ef = L2(T).

The following two theorems are final statements on weighted polynomial approximation
on the circle T.

Theorem 6.4. Let µ be a positive measure on T and let w = dµ
dm

its Radon-Nikodym
derivative. Then polynomials P+ are dense in L2(µ) if and only if logw ̸∈ L1(T).

Proof. Polynomials are dense in L2(µ) if and only if the Szego distance is zero follows
from Corollary 4.4. This holds if and only if there does not exists an outer such that
|f |2 = w ( using Theorem 4.15), which is immediate from Corollary 5.36. □

Theorem 6.5. Let µ be a positive measure on T, let dµ = wdm + dµs be its Lebesgue
decomposition and suppose that logw ∈ L1(T). Let ϕ ∈ H2 be the outer function defined

by ϕ = [w
1
2 ]. Then closure H2(µ) = closL2(µ) P+ is given by

H2(µ) = L2(µs)⊕ (ϕ−1H2) = L2(µs)⊕ {f ∈ Hol(D) : fϕ ∈ H2}.

Proof. Indeed, Corollary 4.1 gives H2(µ) = H2(wdm)⊕L2(µs) and Lemma 4.3 and Theo-
rem 6.1 show that H2(wdm) is 1-invariant (non-reducing) subspace of L2(wdm) ( see also
Remark 4.2). ⇔ H2(wdm) = θH2 for some θ such that |θ|2w = 1 by the Helson Theorem

3.11 =⇒ θ = [w
1
2 ]−1 = 1

w
1
2
. Hence H2(wdm) = 1

w1/2H
2 = φ−1H2 since φ = [w1/2]. □

6.2. Properties of Outer functions. Note that from Theorem 5.27 to define [f ] the
condition log |f | ∈ L1 is sufficient, but the extra condition f ∈ Lp ensures that [f ] ∈
Hp(D). In general, the definition of the outer function is defined as follows:

Definition 6.6 ( Outer functions ). Let h be a measurable function on T with log |h| ∈
L1(T). An outer function ( of absolute value |h| ) is a function f = λ[h] with |λ| = 1 and,
as in Theorem 5.27:

[h](z) = exp

(∫
T

ζ + z

ζ − z
log |h(ζ)|dm(ζ)

)
, |z| < 1.

Below we are discussing few properties of outer functions:

Properties 6.7. (i) An outer function f admits non-tangential boundary limits f̃ .

Moreover, f ∈ Hp(D) ⇔ f̃ ∈ Lp(T)

Proof. By Fatou’s theorem limr→1 log |[f ]|(rξ) = limr→1

∫
T Prξ(ζ) log |f |(ζ)dm(ζ) =

log |f̃ |(ξ) exists non-tangentially a.e. on T. Hence |[f ](ξ)| = |f̃(ξ)| =⇒ |[f ]| = |f̃ |.
If f̃ ∈ Lp(T) then [f ] ∈ Hp(D) follows from the Theorem 5.27 (i). If [f ] ∈ Hp(D)

then f̃ ∈ Lp since |[f ]| = |f̃ |. □

(ii) Let f ∈ Hp, p ≥ 1. Then f is outer if and only if Ef = closHp(fPa) = Hp(⇔
f is cyclic in Hp)
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(iii) If f ∈ Hp and 1
f
∈ Hq (p > 0, q > 0), then f is outer.

Proof. f = λ1B1S1[f ] and
1
f
= λ2B2S2[

1
f
] =⇒ 1

λ1B1S1[f ]
= λ2B2S2[

1
f
] =⇒ 1 =

λBS[f
f
] = λBS =⇒ B = 1, S = 1( since |B| < 1, |S| < 1 on T) Similarly, B1 =

B2 = 1 and S1 = S2 = 1. Hence f is an outer ( 1
f
is also an outer.) □

(iv)

Theorem 6.8. (Smirnov, 1928)
(a) If f ∈ Hol(D) and Re f(z) ≥ 0 for all z ∈ D, then f ∈ Hp, 0 < p < 1 (but

perhaps f /∈ H1(D)) . Moreover, f is an outer.

Proof. Note that Re f(z) ≥ 0, ∀z ∈ D =⇒ Re f(z) > 0,∀z ∈ D. Indeed if
there exists a point z0 ∈ D such that Re f(z0) = 0 then by maximal/minimum
principle for harmonic functions Re f = 0 on D, so f is constant, identically
equal to 0, a contradiction [see [11] p.150.]
As the values of f are in the right-half plane:

C+ = {z ∈ C : Re(z) ≥ 0}
the function z 7−→ (f(z))p is analytic and we can choose arg f(z) such that
| arg f(z)p| ≤ pπ/2, z ∈ D. Hence if 0 < p < 1, then there exists cp > 0 such
that |f(z)|p ≤ cp Ref(z)p [since Re f(z)p = |f(z)|p cos(arg(f(z))p)]. The MVT
applied to the harmonic function Ref(z)p gives∫ 2π

0

|f(reiθ)|p dt
2π

≤
∫ 2π

0

Re(f(reiθ)p)/ cos(πp/2)
dt

2π
= Re(f(0)p)/ cos(πp/2)

for 0 ≤ r < 1. Hence f ∈ Hp(D), 0 < p < 1.
■Moreover, since Re ( 1

f(z)
) ≥ 0 in D, we have f and 1

f
in Hp, 0 < p < 1. By

Property (iii), f is an outer function. □

(b) More generally, if f ∈ Hol(D), f(z) ̸= 0 and α :=
∑

z∈D | arg(f(z))| <∞ then f

is outer and f ∈ Hp(D) for every 0 < p < π/2α (but perhaps f ̸= H
π
2α (D).)

Proof. Apply the first case to g = fπ/2α. □

(c) For every h ∈ L1(T), Γh ∈ ∩0<p<1H
p(D) for every 0 < p < π/2α where

Γh(z) =

∫
T

ζ + z

ζ − z
h(ζ)dm(ζ)

Proof. If h ≥ 0 then Re Γh(z) ≥ 0 in D, hence Γh ∈ ∩0<p<1H
p(D). The general

case follows from h = h1 − h2 + ih3 − ih4 where 0 ≤ hj ≤ |h|. □

Remark: By the Herglot’z Theorem 5.28, the general form of a function f ∈
Hol(D) with Re(f) ≥ 0 is

Γµ(z) =

∫
T

ζ + z

ζ − z
dµ(ζ) + ic

where µ is a positive measure on T and c ∈ R.
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Example 6.9. (Herglotz Integral) Let µ ∈ M(T) such that

fµ =

∫
T

ξ + z

ξ − z
dµ(ξ).

Then fµ ∈ Hp, 0 < p < 1 since Re fµ(z) =
∫
T

1−|z|2
|ξ−z|2dµ =

∫
T Pz(ξ)dµ ≥ 0 if µ ≥ 0

and µ = µ1 − µ2 + iµ3 − iµ4 where 0 ≤ µj ≤ |µ|.
■ If µ ≥ 0 then also Re( 1

fµ
) ≥ 0 =⇒ 1

fµ
∈ Hp, hence fµ is an outer.

Example 6.10. (Cauchy Integral) If f is integrable then F (z) = 1
2πi

∫
T

f(ξ)
ξ−z

dξ =
1

2πi

∫ 2π

0
eitf(eit)
eit−z

dt =⇒ F (z) = 1
2πi

∫ 2π

0
eit

eit−z
dµ(t). If µ ≥ 0 then Re{ eit

eit−z } =
1−r cos(t−θ)

1−2r cos(t−θ)+r2
> 0. Hence f ∈ Hp, 0 < p < 1.

(v) If f ∈ H∞ and ∥f∥∞ ≤ 1, then 1 + f is outer.

Proof. Re(1 + f) ≥ 0 and apply Theorem 6.8 (a) □

(vi) The set of outer functions is a commutative group for standard point-wise-point
multiplication.

(vii) Let f, g ∈ Hp(p > 0)
(a) Then fg is outer if and only if f, g are outer.

Proof. Let f = λ1B1S1[f ] and g = λ2B2S2[g], hence fg = (λ1λ2)B1B2S1S2[fg],
then use the uniqueness part of the Smirnov Canonical Factorization Theorem
5.32. □

(b) Let f be an outer function and let |f | ≤ |g|, then g is an outer.

Proof. Obviously, f
g
∈ H∞ and f

g
has no zeros in D. By Theorem 5.32 we get the

representation f
g
= λSF, where F is outer. Suppose that g is not outer. Then g =

λ1S1F1 with S1 is a non-trivial singular inner function and f = (λλ1)(SS1)(FF1)
with SS1 ̸≡ constant, which contradicts the hypothesis. □

(c) If f ∈ Hp(D), p ≥ 1 and inf
z∈D

|f(z)| > 0, then f is outer.

Proof. It is clear that for g ∈ Hq (q ≥ 1) we have g
f
∈ Hq and hence by Theorem

5.33 (iv) f is outer. □

Theorem 6.11. Let p > 0.

(i) Let fn ∈ Hp be a sequence of outer functions with fn(0) > 0. If |fn| ↘ on T, then
f(z) = lim

n→∞
fn(z), z ∈ D exists uniformly on compact sets. Moreover, if lim

n→∞
fn(0) =

0, then f ≡ 0, otherwise f is an outer Hp function.
(ii) Let f ∈ Hp be an outer function. Then there exists a sequence of outer functions

fn ∈ Hp and inf
z∈D

|fn(z)| > 0, n ≥ 1, |fn| ↘ |f | on T (and hence on D) and f(z) =

lim
n→∞

fn(z), z ∈ D.
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Proof. (i) As the functions fn are outer, we have

log |fn(z)| =
∫
T
P (zξ̄) log |fn(ξ)|dm(ξ).

To show the uniform convergence of fn, it is enough to show that fn is uniformly
Cauchy sequence. For this, we will show log |fn(z)| is a uniformly Cauchy.

| log |fn(z)| − log |fn+p(z)|| =
∣∣∣ ∫

T
P (zξ̄) log

|fn(ξ)|
|fn+p(ξ)|

dm(ξ)
∣∣∣

≤ sup
|z|≤R

|P (zξ̄)|
∫
T

∣∣∣ log |fn(ξ)|
|fn+p(ξ)|

∣∣∣dm(ξ)

= const

∫
T
log

|fn(ξ)|
|fn+p(ξ)|

dm(ξ)

= const
(∫

T
log |fn(ξ)|dm(ξ)−

∫
T
log |fn+p(ξ)|dm(ξ)

)
.

The conclusion is followed by monotone convergence theorem.
Suppose that inf

n≥1
fn(0) = 0, then

lim
n→∞

∫
T
log |fn|dm = lim

n→∞
log fn = −∞.

For a point z0 ∈ D, we have P (z0ξ̄) ≤ 1+|z0|
1−|z0| = C0. Hence,

log |fn(z0)| ≤ C0

∫
T
log |fn|dm.

We conclude that lim
n→∞

log |fn(z0)| = −∞ and similarly for all z ∈ D and we get

f ≡ 0.
If inf

n≥1
fn(0) > 0 and |fn| ↘ h on T, then∫

T
log hdm = lim

n→∞

∫
T
log |fn|dm > −∞,

and hence log h ∈ L1. Now, it is obvious that lim
n→∞

fn(z) = f(z) with f = [h].

(ii) Without loss of generality, we may assume that f(0) > 0. Set fn = [|f |+ δn], where
δn > 0 an appropriate sequence with lim

n→∞
δn = 0 and

∫
T log(|f |+ δn)dm <∞. Then

fn satisfies the desired properties.
□

6.3. The Nevanlinna (N) and Smirnov (N+) classes. We know that Nevanlinna
class can be represented as

N =
{
f ∈ Hol(D) : there exist f1, f2 ∈

⋃
p>0

Hp such that f = f1/f2

}
and let
D =

{
f ∈ Hol(D) : there exist f1, f2 ∈

⋃
p>0

Hp such that f = f1/f2 and f2 is outer
}

be the Smirnov class (sometimes denoted by N+).
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Lemma 6.12. We have
N =

{
f ∈ Hol(D) : there exist f1, f2 ∈ H∞ such that f = f1/f2

}
and

D =
{
f ∈ Hol(D) : there exist f1, f2 ∈ H∞ such that f = f1/f2 and f2 is outer

}
.

Proof. Let f ∈ N, f ̸≡ 0 and f = f1
f2
, where f1, f2 ∈ Hp’s have canonical factorizations

f1 = λ[f1]B1S1 and f2 = λ[f2]S2. Set F1 = λ[min(1, |f |)]B1S1 and F2 = [min(|f |−1, 1)]S2.
Clearly F1, F2 ∈ H∞ and since |f |.min(|f |−1, 1) = min(1, |f |), we also get f = F1

F2
.

[|f |].[min(|f |−1, 1)] = [min(1, |f |)]

=⇒ [f ] = [|f |] = [min(1, |f |)]
[min(|f |−1, 1)]

Now, F1

F2
= λ[min(1,|f |)]B1S1

[min(|f |−1,1)]S2
= λ[f ]B1S1

S2
= λ[f ]B1S3.

Hence f = f1
f2

= λ[f1]B1S1

[f2]S2
= λ[f1

f2
]B1S3 = λ[f ]B1S3 =

F1

F2
. □

Definition 6.13. (Outer in Nevanlinna class) A function f ∈ N is called outer if there
exist two outer functions f1, f2 such that f = f1

f2
.

Properties 6.14. (of the class D and Nevanlinna outer functions)

(a) If f is outer, then f ∈ D.
(b) If f1 and f2 is outer, then so is f1f2.
(c) If f1f2 are outer, and f1, f2 ∈ D, then f1, f2 are outer.
(d) If f1, f2 ∈ D, then f1f2 ∈ D.
(e) If F ∈ Hol(D), G ∈ D and |F | ≤ |G| in D, then F ∈ D.
To verify (c), just let G = G1

G2
with G1, G2 ∈ H∞, and G2 outer. By hypothesis |G2F | ≤

|G1| in D, and hence G2F ∈ H∞. We conclude that F = G2F
G2

∈ D

Theorem 6.15. (Generalized Maximum Principle) Let f ∈ D and g be an outer function
in N. If |f | ≤ |g| on T, then |f | ≤ |g| on D.

Proof. Let f = f1
f2

and g = g1
g2

where f2, g1 and g2 are outer functions in H
∞ and f1 ∈ H∞.

By assumption |f1g2| ≤ |f2g1| on T and hence |f1g2| ≤ |[f1g2]| ≤ |[f2g1]| = |f2g1| in D. □

Remark 6.16. This result is not true in general if f ∈ N \ D and/or if g is not outer.

Let us recall that by Fatou’s theorem every f ∈ H∞ has a non-tangential limit a.e. on
T and the boundary function satisfies:∫

T
log |f |dm > −∞,

that means the non-tangential limits of f are non-zero a.e. From here we see that:

Proposition 6.17. Every function in N class has a non-tangential limit a.e. on T.
Proposition 6.18. Hp ⊂ N+

Proof. Hint: If f ∈ Hp\{0} then f = λBS[f ] where

[f ](z) = exp

(∫
T

ζ + z

ζ − z
log |f(ζ)|dm(ζ)

)
.
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Now log = log+− log− and consider f1, f2 corresponding to functions log+ and log−. □

So we have the relation: Hp ⊂ N+ ⊂ N.

Theorem 6.19. (Smirnov Theorem) f ∈ N+ and its boundary limit function belongs to
Lp then f ∈ Hp i.e. N+ ∩ Lp = Hp.

Proof. The proof depends on the Arithmetic-Geometric Mean Inequality:

exp

(∫
T
log hdσ

)
≤
∫
T
hdσ,

where h is a non-negative function on T which is integrable.
If f ∈ N+ then f = g1/g2 where g1, g2 ∈ H∞ and g2 is outer. Since the presence of an
inner factor in g1 will not affect whether or not f ∈ H2, we can also assume that g1 is
also an outer. Using the definition of an outer function applied to functions g1 and g2 we
see that

g1
g2
(z) = exp

(∫
T

ζ + z

ζ − z
log

|g1(ζ)|
|g2(ζ)|

dm(ζ).

)
Furthermore, for each r ∈ (0, 1) and w ∈ T∣∣∣∣g1g2 (rw)

∣∣∣∣2 = exp

(∫
T
Prw(ζ) log

|g1(ζ)|2

|g2(ζ)|2
dm(ζ

)
Now apply the Arithmetic-Geometric Mean inequality to the function |g1/g2| and the
measure Prwdm:

(6.1)

∣∣∣∣g1g2 (rw)
∣∣∣∣2 ≤ ∫

T

∣∣∣∣g1g2 (ζ)
∣∣∣∣2 Prwdm(ζ).

Integrate both sides: ∫
T
|f(rw)|2dm(w) =

∫
T

g1
g2
(rw)|2dm(w)

≤
∫
T

(∫
T

∣∣∣∣g1g2 (ζ)
∣∣∣∣2 Prw(ζ)dm(ζ)

)
dm(w)

=

∫
T

(∫
T
|f(ζ)|2 Prw(ζ)dm(ζ)

)
dm(w)

=

∫
T
|f(ζ)|2

(∫
T
Prw(ζ)dm(w)

)
dm(ζ)

=

∫
T
|f |2dm

Thus sup0<r<1

∫
T |f(rw)|

2dm(w) ≤
∫
T |f |

2dm, which implies f ∈ H2.
To prove the second statement of the theorem, observe that if f ∈ N+ and f |T ∈ L∞ then
as before we can assume f = g1/g2 and g1, g2 are bounded outer functions. By (6.1) we



50 HARDY SPACES

see that

|f(rw)|2 =
∣∣∣∣g1g2 (rw)

∣∣∣∣2 ≤ ∫
T

∣∣∣∣g1g2 (ζ)
∣∣∣∣2 Prw(ζ)dm(ζ)

=

∫
T
|f(ζ)|2Prw(ζ)dm(ζ)

≤ ∥f |T∥2∞
∫
T
Prwdm(zeta)

= ∥f |T|2∞,
which implies f ∈ H∞. □

Remark 6.20. Smirnov’s theorem is no longer true for f ∈ N even when f is analytic
on D. For instance the function

f(z) = exp

(
1 + z

1− z

)
which is the reciprocal of the atomic inner function described in Example 5.42 belongs to
N class, analytic on D and has boundary values of unit modulus a.e. on T. However it
does not belongs to H2 since as in Remark 5.43

|f(r)| = exp

(
1 + r

1− r

)
, r ∈ (0, 1)

which does not satisfy the necessary growth condition for an H2 function as described in
see[8](p. 59):

|f(λ)| ≤ ∥f∥√
1− |λ|2

, f ∈ H2.

The original definition of the Nevanlinna class is different from definition in 6.3. f ∈ N
if and only if

sup
0≤r<1

∫
T
log+ |f(rξ)|dξ <∞.

The equivalence of the two definitions is not at all obvious; the proof can be found in
Nevanlinna and Nevanlinna (1922), Privalov (1941), Duren (1970) [12][p.16], and Koosis

(1998) [4] . We will state the theorem as follows:

Theorem 6.21. [12][p.16] A function analytic in the unit disk belong to the class N if
and only if it is the quotient of two bounded analytic function.

Proof. (⇐) Suppose first that f(z) = φ(z)/ψ(z) where φ, ψ are analytic and bounded in
D. There is no loss of generality in assuming |φ(z)| ≤ 1, |ψ(z)| ≤ 1 and ψ(0) ̸= 0. Then∫ 2π

0

log+ |f(reiθ)|dθ ≤ −
∫ 2π

0

log |ψ(reiθ)|dθ.

But by Jensen’s formula (see Ahlforse, p. 206)
1

2π

∫ 2π

0

log |ψ(reiθ)|dθ = log |ψ(0)|+
∑
|xn|<r

log
r

|zn|
,

where zn are zeroes of ψ. This shows that
∫
log |ψ| increases with r, so f ∈ N.
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(⇒) Let f(z) ̸≡ 0 be of class N. Let f has a zero of multiplicity m ≥ 0 at the origin,
so that z−mf(z) → α ̸= 0 as z → 0. Let zn be the other zeroes of f, repeated according
to multiplicity and arranged so that 0 < |z1| ≤ |z2| ≤ · · · < 1. If f(z) ̸= 0 on the circle
|z| = ρ < 1, the function

F (z) = log

{
f(z)

ρm

zm
Π|zn|<ρ

(
ρ2 − znz

ρ(z − zn)

)}
is analytic in |z| ≤ ρ, and ReF (z) = log |f(z)| on |z| = ρ. Hence by analytic completion
of the Poisson formula:

F (z) =
1

2π

∫ 2π

0

log |f(ρeit)|ρe
it + z

ρeit − z
dt+ iC.

This is sometimes called the Poisson-Jensen formula. After exponentiation, it takes of
the form f(z) = φρ(z)/ψρ(z) where

φρ(z) =
zm

ρm
Π|zn|<ρ

ρ(z − zn)

ρ2 − znz
. exp

{
− 1

2π

∫ 2π

0

log− |f(ρeit)|ρe
it + z

ρeit − z
dt+ iC

}
ψρ(z) = exp

{
− 1

2π

∫ 2π

0

log+ |f(ρeit)|ρe
it + z

ρeit − z
dt

}
Now choose a sequence {ρk} increasing to 1 such that f(z) ̸= 0 on the circles |z| = ρk.
Let Φk(z) = φρk(ρkz; ); Ψk(z) = ψρk(ρkz). Then f(ρkz) = Φk(z)/Ψk(z) in D. But the
functions are analytic in the unit disk, and |Φk(z)| ≤ 1, |Ψk(z)| ≤ 1. Hence {Φk} and
{Ψk} are normal families, and there exists a sequence {ki} such that Φki(z) → φ(z) and
Ψki(z) → ψ(z) uniformly in each disk |z| ≤ R < 1. The function φ, ψ are analytic in unit
disk and |φ(z)| ≤ 1, |ψ(z)| ≤ 1. According to the definition of ψρ the fact that

∫
log+ |f |

is bounded gives a uniform estimate |Ψk(0)| ≥ δ > 0, so ψ(z) ̸≡ 0. Thus f = φ/ψ and the
proof is completed. □

The importance of this theorem is that it allows properties of functions in N to be
deduced from the corresponding properties of bounded analytic functions. The

boundary behavior, for example, can now be discussed.

Theorem 6.22. For each f ∈ N, the non-tangential limit f(eiθ) exists almost everywhere
and log |f(eiθ)| is integrable unless f(z) ≡ 0. If f ∈ Hp for some p > 0, then f(eiθ) ∈ Lp.

Proof. Assuming f(z) ̸≡ 0, represent in the form φ(z)/ψ(z), where |φ(z)| ≤ 1 and |ψ(z)| ≤
1. Since φ and ψ are bounded analytic functions, they have non-tangential limits φ(eiθ)
and ψ(eiθ) almost everywhere. Appleaing to Fatou’s Lemma we have∫ 2π

0

| log |φ(eiθ)||dθ ≤ lim inf
r→1

{
−
∫ 2π

0

log |φ(reiθ)dθ
}

But
∫
logφ(reiθ)dθ increases with r, by Jensen’s theorem. Hence log |φ(eiθ)| ∈ L1 and

similarly for ψ. In particular ψ(eiθ) cannot vanish on a set of positive measure. The radial
limit f(eiθ) therefore exists almost everywhere, and log |f(eiθ)| ∈ L1. Another application
of Fatou’s lemma shows that f(eiθ) ∈ Lp if f ∈ Hp. □

The theorem says that if f ∈ N and if f(eiθ) = 0 on a set of positive measure, then
f(z) ≡ 0. In other words, a function of class N is uniquely determined by its boundary

values on any set of positive measure.
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It is evident from the representation f = φ/ψ that
∫
log− |f(reiθ)|dθ is bounded if

f ∈ N. Hence f ∈ N if and only if
∫ ∣∣log |f(reiθ)|∣∣ dθ is bounded.

6.4. A conformably invariant framework. Here we consider the classes Nev(Ω) and
D(Ω), where Ω is a simply connected domain (̸= C), that is, domains that are

conformably equivalent to the open unit D.

Definition 6.23. Define
H∞(Ω) = {f ∈ Hol(Ω) : ∥f∥H∞ = sup

z∈Ω
|f(z)| <∞}

and
N(Ω) = {f ∈ Hol(Ω) : there exist f1, f2 ∈ H∞(Ω) such that f = f1/f2} .

For ω : D → Ω be an onto conformal map. A function f ∈ Nev(Ω) is called outer if f ◦w
is an outer in Nev(D). With this definition, we get

D(Ω) =
{
f ∈ Hol(Ω) : there exist f1, f2 ∈ H∞(Ω) such that f = f1/f2 and f2 is outer

}
.

The following two results are simple factorization to Ω of the corresponding well known
facts in D. Note if ω : Ω → D extends to a homeomorphism of clos (Ω) onto clos (D),

then we say Ω is Jordan domain.

Lemma 6.24. (Generalized Maximum Principle) Let Ω be a Jordan domain. Let λ ∈
∂Ω, f ∈ D(Ω)∩C

(
clos(Ω)\{λ}

)
and let g be an outer function such that g ∈ C

(
clos(Ω)\

{λ}
)
and |f | ≤ |g| on ∂Ω \ {λ}. Then |f | ≤ |g| on Ω.

Lemma 6.25. Let f ∈ H∞(Ω). Then f is outer if and only if there exists a sequence of
outer functions (fn)n≥1 ∈ H∞(Ω) such that

inf
z∈Ω

|fn(z)| > 0, n ≥ 1, lim
n→∞

fn(z) = f(z), |fn(z)| ↘ |f(z)|, z ∈ Ω.

Corollary 6.26. Let Ω1 ⊂ Ω2 be two simply connected domains and f ∈ N(Ω2).

(i) If f is outer on Ω2, then f |Ω1 is outer on Ω1.
(ii) If f ∈ D(Ω2), then f |Ω1 ∈ D(Ω1).

6.5. The generalized Fragmen-Lindlöf principle. The result of Theorem 6.15 and
Lemma 6.24 are, in fact, the versions of the Fragmen-Lindlöf principle. The difference is

that, in general, the mejorants are not given by analytic functions.

Let Ω be a Jardon Domain, let M and M∗ be two non-negative functions on Ω, and let
ω ∈ C(∂Ω∖ {λ}), where λ ∈ ∂ω, Ω > 0. Then M∗ is called Fragmen-Lindlöf majorant
for M and ω if for every f ∈ Hol(Ω) ∪ C(clos(Ω)∖ {λ}) with |f | ≤M on ∂Ω∖ {λ} we

have |f | ≤M∗.

Theorem 6.27. (Generalized Fragmen-Lindlöf principle) Let f ∈ D(Ω) and G ∈ N(Ω)∩
C(clos(Ω) ∖ {λ}) be such that M ≤ |F | on Ω, ω ≤ |G| on ∂Ω ∖ {λ}. Then either there
exists an outer function [ω ◦ ω] (and then M∗ = |[ω ◦ ω] ◦ ω−1| is a Fragmen-Lindlöf
majorant for M and ω) or f ≡ 0 for all f ∈ Hol(Ω)∪C(clos(Ω)∖{λ}) such that |f | ≤M
on Ω and |f | ≤ ω on ∂Ω{λ} (and then M∗ = 0).
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Proof. In view of (e) of Properties 6.14, the inequalities |F | ≤M ≤ |F | show that f ∈ (Ω).
If there exists f ̸≡ 0, f ∈ N(Ω) such that

|f ◦ ω| ≤ ω ◦ ω ≤ |G ◦ ω|
on T∖ω−1({λ}), then we can define the outer function [ω ◦ω]. Applying Lemma 6.24 we
get |f ◦ ω| ≤ |[ω ◦ ω]| on T ∖ ω−1({λ}) and hence the desired result. □

6.6. Exercises.

Exercise 6.28. Let b be a non-constant function in the closed unit ball of H∞. Put

f =
1

1− b
.

Then f is an outer in Hp, for 0 < p < 1.

Proof. Since b ∈ {∥f∥∞ ≤ 1 : f ∈ H∞} by the maximal principle, |b(z)| < ∥b∥∞ ≤ 1 for
each z ∈ D. Hence f is analytic on D. Moreover we have

Re
1

1− b(z)
=

1− Re b(z)

|1− b(z)|2
≥ 1− |b(z)|2

|1− b(z)|2
> 0uad(z ∈ D).

Hence by Smirnov Theorem 6.8, f is an outer in Hp. □

Exercise 6.29. If a polynomial p has no zero in the open disc D, then p is outer.

Proof. Consider p(z) = const
n∏

i=1

(
1 − z

ξi

)
, |ξi| ≥ 1. As |z| < 1 and |ξi| ≥ 1, we have

Re
(
1− z

ξi

)
≥ 0. By applying Theorem 6.8 and the Property ( viia.) □
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7. Harmonic analysis in L2(T, µ)
The main result of this section is the Helson- Szegö theorem characterizing those

L2(T, µ) in which the Fourier series of every function f ∈ L2(T, µ) converges in the norm
topology. This is one of the main results of harmonic analysis on the circle group T. It is
closely related to generalized Fourier series with respect to a minimal sequence; harmonic
conjugates, the Riesz projections, and weighted estimates for Hilbert singular integrals.

Definition 7.1. A sequence (xn)n≥1 in Banach Space X is called minimal if xn ̸∈Mn =

span{xk : k ̸= n}, and is called uniformly minimal if inf
n≥1

dist
( xn
∥xn∥

,Mn

)
> 0.

To proceed we need a corollary of the Hahn Banach Theorem.

Proposition 7.2. Let M be a linear subspace of a normed linear space X, and let x0 ∈ X.
Then x0 ∈M if and only if there does not exists a bounded linear functional f on X such
that f(x) = 0 ∀x ∈M but f(x0) ̸= 0 (in fact it is 1).

Proof. (⇐=) If x0 ∈M, f is a bounded linear functional on X and f(x) = 0 ∀x ∈M. The
continuity of f shows that f(x0) = 0 (since x0 ∈M). So there does not exists a bounded
linear functional f on X such that f(x) = 0 ∀x ∈M.
(=⇒) x0 /∈ M. Then ∃ a δ > 0 such that ∥x− x0∥ > δ,∀x ∈ M. Let M ′ be the subspace
generated by M and x0 and define f : M ′ → C by f(x + λx0) = λ if x ∈ M and λ is a
scaler. Since δ|λ| ≤ |λ|∥x0 + λx∥ = ∥λx0 + x∥ =⇒ |f(x + λx0)| = |λ| ≤ 1

δ
∥λx0 + x∥.

Also f(x) = 0 on M and f(x0) = 1. By the Hahn Banach Theorem there exists unique f̃
which extends f from M ′ to X. □

Lemma 7.3. (i) A sequence (xn)n≥1 ⊂ X is minimal if and only if there exists fn ∈ X∗

such that (xk, fn) = δkn. Such a pair ((xn)n≥1, (fk)k≥1) will be called biorthonormal
and fn, n ≥ 1 coordinate functionals.

(ii) (xn)n≥1 ⊂ X is uniformly minimal if and only if there exists a sequence (fn)n≥1 of
coordinate functionals such that sup

n≥1
∥xn∥ ∥fn∥ <∞.

Proof. (i) By Hahn-Banach theorem, if xn ̸∈Mn, then there exists a sequence fn ∈ X∗

with ∥fn∥ = 1, fn(xn) = ∥xn∥, f̃n(xn) = 1, f̃n = fn
∥xn∥ .

(ii) Moreover for any subspace E ⊂ X,
dist(x,E) = sup{|f(x)| : f ∈ X∗, f |E ≡ 0, ∥f∥ ≤ 1}.

For this, if x ∈ E then both sides are equal. So firstly we will show ”≤”. When
x ̸∈ E, by Hahn- Banach theorem there exists f̃ ∈ X∗ such that f̃(x) = dist(x,E),

and f̃(E) = 0 with ∥f̃∥ ≤ 1. Implies

dist(x,E) = |f̃(x)| ≤ sup{|f(x)| : f ∈ X∗, f |E ≡ 0, ∥f∥ ≤ 1}.
For the other inequality, let y ∈ E, then we have

|f(x)| = |f(x− y)| ≤ ∥f∥∥x− y∥ ≤ ∥x− y∥,
and hence |f(x)| ≤ inf

y∈E
∥x− y∥ = dist(x,E). This implies

sup{|f(x)| : f ∈ X∗, f |E ≡ 0, ∥f∥ ≤ 1} ≤ dist(x,E).



HARDY SPACES 55

Thus,
sup{|f(x)| : f ∈ X∗, f |E ≡ 0, ∥f∥ ≤ 1} = dist(x,E).

Now, replacing f by f/f(x), it follows that

inf
{
∥f∥ : f ∈ X∗, f |E ≡ 0, f(x) = 1} =

1

dist(x,E)
.

(If ϕ ̸= S ⊂ (0,∞) then 1
sup(S)

= inf 1
S
= infs∈S

1
s
)

Main Proof: Apply this to x = xn, E =Mn, and let fn ∈ X∗ be the correspond-
ing coordinate functionals with minimal norm. Then,

dist
( xn
∥xn∥

,Mn

)
=

1

∥xn∥
dist(xn,Mn) =

1

∥xn∥
1

∥fn∥
.

Thus,

inf
n≥1

dist
( xn
∥xn∥

,Mn

)
> 0 if and only if sup

n≥1
∥xn∥ ∥fn∥ <∞.

□

Definition 7.4. To a minimal sequence (xn) we associate the (formal) Fourier series

x ∼
∑
n≥1

(x, fn)xn, x ∈ X.

The operator x 7−→ Pnx = (x, fn)xn is called the projection on the nth Fourier component
(or the co-ordinate projection with respect to the biorthogonal pair ((xn)n≥1, (fk)k≥1).

Remark 7.5. We have ∥Pn∥ = ∥fn∥∥xn∥ (because fn(xn) = 1).

Proof. ∥Pn(xn)∥ = |fn(xn)|∥xn∥ = 1.∥xn∥ = ∥fn∥∥xn∥ (since fn(xn) = 1, and 1 = ∥fn∥).
Also, since Pnx = (x, fn)xn we have

sup
x̸=0

∥Pn(x)∥
∥x∥

≤ ∥fn∥∥xn∥

=⇒ ∥Pn∥ = ∥fn∥∥xn∥,
because at the point xn the function value attends its maximum. □

Definition 7.6. A sequence (xn) in Banach space X is called a basis of X if for all x ∈ X

there exists a unique sequence (an) ⊂ C such that x =
∑
k≥1

akxk. Note that an = an(x) A

sequence xn is called a basis sequence if it is basis in spanX{xn : n ≥ 1}.

Theorem 7.7. (S. Banach, 1932 ) Let (xk) be a basis of the Banach space X. Then (xk)
is uniformly minimal and fk(x) = ak(x), x ∈ X are the coordinate functionals.

Definition 7.8. Let X be a Banach space and let (xn)n∈Z be a family in X. Then it is
called symmetric basis if for all x ∈ X, there exists a unique (ak(x))k∈Z ⊂ C such that

x = lim
n→∞

n∑
k=−n

ak(x)xk. It is called non-symmetric if x = lim
n,m→∞

n∑
k=−m

ak(x)xk.

Lemma 7.9. Let χ = (xk)k∈Z and (fk)k∈Z be a biorthogonal pair in a Banach space X.

Set Pm,n =
n∑

k=−m

(. , fk)xk, m, n ∈ Z. Then
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(i) χ is a symmetric (respectively non-symmetric) basis if and only if sup
n≥1

∥P−n,n∥ <∞

(respectively sup
m,n

∥Pm,n∥ <∞) and χ is complete.

(ii) If χ is a (at least symmetric) basis, then (fk)k∈Z is total, i.e. fk(x) = 0 for all k ∈ Z
implies x = 0.

(iii) For σ ⊂ Z, define χσ = span{xk : k ∈ σ} and χσ = span{x ∈ X : fk(x) =
0 for all k ̸∈ σ}. If χ is a basis, then for all σ ⊂ Z, we have χσ = χσ.

Proof. (i) Since χ is a basis, lim
m,n

Pm,nx = x for all x ∈ Lin{xk : k ∈ Z}. By the UBP

(uniform bounded principle: pt-wise bounded implies uniform bounded) supm,n ∥Pm,n∥ <
∞.

(ii) If fk(x) = 0 for all k ∈ Z, then P−n,nx = 0 for all n ≥ 1. Hence x = 0.
(iii) The inclusion χσ ⊂ χσ is clear (even for minimal families). On the other hand, if

x ∈ Xσ, then x = lim
n→∞

P−n,nx with P−n,nx ∈ Xσ. Hence x ∈ Xσ.

□

7.1. Skew projections. Let L,M be two subspaces of a vector space X such that
L ∩M = {0}. Define P : L+M → X by P (x+ y) = x, then P 2 = P, P |L = id and
P |M = 0. Then P is called skew projection onto L parallel to M and denoted as

P := PL||M .

Lemma 7.10. Let L,M be two subspaces of a Banach space X verifying L ∩M = {0}.
Then

(i) PL||M is continuous if and only if PL̄||M̄ is well defined and continuous (here L̄ =

clos L and M̄ = clos M).

Proof. Let x+ y ∈ L+M,x ∈ L, y ∈M. Then PL||M is continuous ⇐⇒ ∥PL||M(x+
y)∥ = ∥x∥ ≤ c∥x+y∥ for every x ∈ L, y ∈M ⇐⇒ ∥x∥ ≤ C∥x+y∥, x ∈ L, and y ∈M
⇐⇒ PL||M is continuous. □

(ii) If L,M are closed, then PL||M is continuous if and only if L+M = clos (L+M).

Proof. Apply closed graph theorem for the operator T = PL||M . □

Definition 7.11. Let L,M be two subspaces of a Hilbert space H. Define angle α ∈ [0, π
2
]

(or minimal angle) between L and M by

cos⟨L,M⟩ = cosα = sup
x∈L, y∈M

|⟨x, y⟩|
∥x∥∥y∥

.

NOTATION: We write α = ⟨L,M⟩.

Remark 7.12. L ⊥M if and only if α = π
2
.

Lemma 7.13. With the above notations we have
cos⟨L,M⟩ = cos⟨L̄, M̄⟩ = ∥PM̄PL̄∥

and
sin⟨L,M⟩ = sin⟨L̄, M̄⟩ = ∥PL||M∥−1,

where the symbols have obvious meaning.
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Proof. Clearly, sup
y∈M\{0}

|(PM̄x, y)|
∥y∥

= ∥PM̄x∥. Moreover, ⟨x, y⟩ = ⟨PM̄x, y⟩ for y ∈ M and

hence

cos⟨L,M⟩ = sup
0̸=x∈L, 0̸=y∈M

|⟨x, y⟩|
∥x∥∥y∥

= sup
0̸=x∈L, 0̸=y∈M

|⟨PMx, y⟩|
∥x∥∥y∥

= sup
0̸=x∈L

1

∥x∥
sup

0̸=y∈M

|⟨PMx, y⟩|
∥y∥

= sup
0̸=x∈L

∥PM̄x∥
∥x∥

.

But

sup
0̸=x∈L

∥PM̄x∥
∥x∥

= sup
0̸=x∈L

∥PM̄PL̄x∥
∥x∥

= sup
0̸=x∈H

∥PM̄PL̄x∥
∥x∥

= ∥PM̄PL̄∥.

Hence cos⟨L,M⟩ = ∥PM̄PL̄∥
Now,

∥PL||M∥2 = sup
0̸=x∈L, 0̸=y∈M

∥PL||M(x+ y)∥2

∥x+ y∥2

= sup
0̸=x∈L, 0̸=y∈M

∥x∥2

∥x+ y∥2

= sup
0̸=x∈L

∥x∥2

inf0̸=y∈M ∥x+ y∥2

= sup
0̸=x∈L

∥x∥2

∥(1− PM̄)x∥2
.

This now gives

sin2⟨L,M⟩ = 1− cos2⟨L,M⟩ = 1− sup
0̸=x∈L

∥PM̄x∥2

∥x∥2
= inf

0̸=x∈L

∥(1− PM̄)x∥2

∥x∥2
=

1

∥PL||M∥2.
So sin⟨L,M⟩ = 1

∥PL||M∥ . □

Corollary 7.14. The projection PL||M is continuous if and only if ∥PL̄PM̄∥ < 1 (and
hence if and only if ⟨L,M⟩ > 0). Moreover, ∥PL||M∥ = ∥PM ||L∥.

Proof. PL||M is continuous⇔ ∥PL||M∥ exists and> 0⇔ 1
PL||M

exists and> 0⇔ sin⟨L,M⟩ >
0 ⇔ ⟨L,M⟩ > 0. Since sin⟨L,M⟩ > 0 ⇔ cos⟨L,M⟩ < 1 ⇔ ∥PMPL∥ < 1 by Lemma 7.13

□

7.2. Bases of exponentials in L2(T, µ). Now, let X = L2(T, µ), where µ is a finite
Borel measure, and xk = eikt, k ∈ Z (or, xk = zk, k ∈ Z).

Lemma 7.15. If (eikt)k∈Z is a basis of L2(µ) then µs ≡ 0.

Proof. Let σn = {k : k > n}, let L2
σn

= spanL2(µ){zk : k > n}, and let fk be coordinate

functionals associated to (eikt)k∈Z, then⋂
n≥1

L2
σn

= {x ∈ L2(µ) : fk(x) = 0 for all k ∈ Z} = {0}
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(∵ x ∈ L2(µ) =⇒ x =
∑

k∈Z⟨x, fk⟩zk =
∑

k∈Z fk(x)z
k and fk(x) = 0 since fk ⊥

L2(σk) for all k ≥ 1( by Proposition 7.2 ) =⇒ x = 0 (by Banach theorem 7.7). Clearly,
L2
σn

is an invariant subspace, and zn ∈ L2
σn

and zn ̸= 0 on T. So it can be deduced (as in

Corollary 4.1) that L2
σn

= L2
σn
(µa)+L2(µs) for all n ∈ Z. But then also

⋂
n≥1

L2
σn

⊃ L2(µs),

implies L2(µs) = 0. □

Remark 7.16. For studying exponential basis in L2(T, µ) one can restrict to measure
which is absolutely continuous with respect to the Lebesgue measure m, dµ = wdm, w ∈
L1
+(T,m).

Lemma 7.17. (Kolmogorov, 1941 ) Let w ≥ 0, w ∈ L1
+. Then (zn)n∈Z is a minimal

sequence in L2(wdm) if and only if 1
w
∈ L1(T).

Proof. Due to biorthogonality, we have

δn,k = (zn, fk)L2(wdm) =

∫
T
znf̄kwdm, n, k ∈ Z.

So we deduce that f̄kw = z̄k, k ∈ Z, that is fk = zk

w
, k ∈ Z. Hence

fk ∈ L2(wdm) if and only if

∫
T

1

w2
wdm <∞.

□

7.3. Riesz Projection. Let P,P+ be as earlier and P− = span{eikt : k < 0}. Define the
Riesz projection P+ by

P+f =
∑
k≥0

f̂(k)eikt, f ∈ P.

Then
P+ = PP+||P− .

Let also

Pm,nf =
n∑

k=m

f̂(k)eikt, f ∈ P, m, n ∈ Z, m ≤ n.

The following result gives the principle link between the problem of bases and the norm
estimation of the Riesz projection.

Lemma 7.18. Let w ∈ L1
+. Then the followings are equivalent.

(i) (zk)k∈Z is a nonsymmetric basis of L2(wdm).
(ii) sup

n,m∈Z
∥Pm,n∥ <∞.

(iii) (zk)k∈Z is a symmetric basis of L2(wdm).
(iv) sup

n∈Z
∥P−n,n∥ <∞.

(v) The Riesz projection P+ is continuous on L2(wdm).
(vi) ⟨P+, P−⟩ > 0 (or ⟨H2

+, H
2
−⟩ > 0, where H2

± = closL2(wdm) P±.

Proof. In view of Lemma 7.9 we get (i) ⇔ (ii) and (iii) ⇔ (iv). It is also clear that (ii)
implies (iv). Using Lemma 7.13 and Corollary 7.14 we obtain (v) ⇔ (vi). Next, we verify
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that (iv) implies (v). Pick f ∈ P, then for n = n(f) sufficiently large, we get (using

the relation: ẑ−nf(k) = f̂(n + k)), P+f = znP−n,nz
−nf, so ∥P+f∥ = ∥P−n,nz

−nf∥ ≤
∥P−n,n∥∥f∥ implies ∥P+∥ ≤ sup

n≥1
∥P−n,n∥. It remains to show that (v) implies (ii). Note

that
Pm,nf = zn+1(1− P+)z

−(n+m+1)P+z
mf, f ∈ P.

But then
∥Pm,nf∥ = ∥(1− P+)z

−(n+m+1)P+z
mf∥ ≤ ∥P+∥∥P+z

mf∥ ≤ ∥P+∥2∥f∥
for all f ∈ P, since ∥1− P+∥ = ∥P+∥, (by Corollary 7.14). Hence the result follows. □

7.4. Harmonic conjugates. In order to get the desired characterization of exponential
type bases in L2(µ), we need a result of analytic type, namely, the so-called harmonic

conjugation on T (or D).

Theorem 7.19. Let u ∈ L2(T) be a real valued function. Then there exist a unique real
valued function v ∈ L2(T) such that v̂(0) = 0 and u + iv ∈ H2. The mapping u 7→ v is
linear and continuous with ∥v∥ ≤ ∥u∥.

Proof. Let u =
∑
n∈Z

û(n)eint ∈ L2. Then ū =
∑
n∈Z

¯̂u(n)e−int. Since u is real valued, ū = u⇔

¯̂u(n) = û(−n), n ∈ Z. Define
f = û(0) + 2

∑
n≥1

û(n)zn.

Then f ∈ H2 and

Re f =
1

2
(f + f̄) = û(0) +

∑
n≥1

û(n)eint +
∑
n≥1

¯̂u(n)e−int = u.

This means that v = Im f will satisfy the conclusion of the theorem. Next, we show that
v is unique. If u+iv = u+iv1 ∈ H2, then v−v1 ∈ H2. As v−v1 is real valued v − v1 ∈ H2.
But this is possible only if v − v1 = c. Also c = v(0) − v1(0) = v̂(0) − v̂1(0) = 0[since
for v, v1 ∈ H2 =⇒ v(0) = v̂(0), v1(0) = v̂1(0); and v̂(0) = v̂1(0) = 0 from assumption.]
Finally, we have

v = Im f =
f − f̄

2i
=

1

i

(∑
n≥1

û(n)eint −
∑
n≥1

¯̂u(n)e−int
)
=

1

i

(∑
n>0

û(n)eint −
∑
n<0

û(n)eint
)
.

The process u 7−→ v is linear and

∥v∥2 =
∑
k ̸=0

|û(k)|2 ≤ ∥u∥2,

and if û(0) = 0, then ∥u∥ = ∥v∥. □

Definition 7.20. The function v is called Harmonic conjugate of u. Let v = ũ. The
mapping H : L2(T) → L2(T), u 7−→ ũ is called the Hilbert transform.

7.5. Different formula for ũ.

(a) We can translate the above formula for ũ in terms of Riesz projections

ũ =
1

i
(P+u− P−u)−

1

i
û(0).
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In particular, if û(0) = 0, then ũ = 1
i
(P+u − P−u). Also, we have f = u + iũ =

2P+u− û(0).
(b) If u verify the conditions of the theorem, then f = u + iv ∈ H2 and u = Re f. As f

extends to D so Re f does as well. For z ∈ D, u(z) = Ref ∗ Pz = u ∗ Pz. Since the

Poisson kernel verify Pz(ζ) = Re
(ζ + z

ζ − z

)
, we get u(z) = Ref1(z), where

f1(z) =

∫
T

ζ + z

ζ − z
u(ζ)dm(ζ).

Note that f1 ∈ Hol(D)∗1 and Re f1 = u, f1(0) =
∫
T
udm ∈ R. By uniqueness, we have

f = f1 and

ũ = Im f = Im f1 =

∫
T
Im
(ζ + z

ζ − z

)
u(ζ)dm(ζ) =

∫ 2π

0

Qr(τ − t)u(eit)
dt

2π
where z = reit and

Qr(t) = Im
(ζ + z

ζ − z

)
=

2r sin t

1− 2r cos t+ r2
.

∗1[
uad

eit + z

eit − z
= 1 + 2

∞∑
n=1

zne−int =⇒ 1

2π

∫ π

−π

(
eit + z

eit − z
)f(eit))dt

=
1

2π

∫ π

−π

f(eit)dt+
2

2π

∫ π

−π

∞∑
n=1

zne−intf(eit)dt

= f̂(0) + 2
∞∑
n=1

f̂(n)z−n.

Since it has a power series it is analytic. (See [9] p.12 )
]

Remark 7.21. For r → 1, Qr ∼
sin t

1− cos t
= cot(t/2). In fact, one can show that

ũ(τ) = (u ∗ cot(./2))(τ) =
∫ 2π

0

u(τ − t) cot
(
t/2
) dt
2π

in the sense of Cauchy principle valued integral.

7.6. The Helson-Szegö theorem.

Theorem 7.22. Let µ be a finite Borel measure on T. Then the followings are equivalent.

(i) The family (zn)n∈Z is a (symmetric or nonsymmetric) basis of L2(µ).
(ii) The Riesz projection P+ is bounded on L2(µ).
(iii) The angle satisfies sin⟨P+, P−⟩ > 0.

(iv) dµ = |h|2dm, where h ∈ H2 is an outer function such that dist
( h̄
h
,H∞

)
< 1.

(v) dµ = wdm, where w = eu+ṽ and u, v are real valued bounded functions and ∥v∥∞ < π
2

(condition (HS)).

The proof of the theorem will be given in several steps based on the following lemmas.
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Lemma 7.23. The mapping j : H2 × H2 → H1, (ϕ, ψ) 7−→ ϕψ is continuous and sym-
metric. Moreover, j(B2 ×B2) = B1, where Bp is the unit ball in Hp.

Proof. The continuity follows from the Cauchy Schwarz inequality ∥ϕψ∥1 ≤ ∥ϕ∥2∥ψ∥2.
For surjectively, let f ∈ H1, then f = λBS[f ]. Write ϕ = λBS[f ]

1
2 and ψ = [f ]

1
2 then

ϕψ ∈ H2. □

Lemma 7.24. Let E be a subspace of the Banach space X, and Φ ∈ X∗. Then
∥Φ|E∥ = inf{∥Ψ∥X∗ : Ψ = Φ on E} = inf{∥Φ + α∥X∗ : α ∈ X∗ and α|E = 0}

Proof. The inequality ”≤” is clear. For ”≥” apply Hahn-Banach theorem. Let Ψ′ = Φ|E.
Then

∥Ψ∥X∗ = sup
x∈X

|Ψ(x)| ≥ ∥Ψ′∥X∗ = sup
x∈X

|Ψ′(x)| = ∥Φ|E∥.

By Hahn-Banach theorem, there exists Ψ′ ∈ X∗ such that ∥Φ|E∥ = ∥Ψ′∥X∗ , and hence
the result follows. □

Lemma 7.25. Let f ∈ H1 and suppose that f(T) ⊂ A ⊂ C. Then f(D) ⊂ convA) (the
closed convex hull of A).

Proof. Observe that for z = rw ∈ D, |w| = 1 we have f(z) = Pz ∗ f =
∫
T

1−|z|2
|ζ−z|2f(ζ)dζ ∈

conv(A). However, conv(A) = ∩H where the intersection is taken over all the half-planes:
H = {z ∈ C : Re(az + b) ≥ 0} containing A, a, b ∈ C. Since Pr > 0 and

∫
T Prdm(ξ) = 1,

we see that the condition Re(af(ζ + b) ≥ 0) for a.e. ζ ∈ T as f(ζ) ∈ A ⊂ H =⇒
Re(af(z) + b) ≥ 0 =⇒ f(z) ∈ conv(A) □

Lemma 7.26. (V. Smirnov, A. Kolmogorov) Let v ∈ L∞(T) be a real valued function
then eλṽ ∈ L1(T) if λ∥v∥∞ < π

2
.

Proof. It is sufficient to show that ∥u∥∞ < π
2
implies eũ ∈ L1. Set f = e−i(u+iũ), which is

well defined in D, since u + iũ ∈ H2. Clearly |f | = eũ and | arg f | = |u| < π(1− ϵ)

2
for

some ϵ > 0 (on T and hence on D in view of Lemma 7.25). The same reasoning as in
(Theorem 6.8) now gives f ∈ H1 and hence |f | = eũ ∈ L1(T). □

Proof. Implication (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) of Helson-Szegö theorem.
Recall that we may restrict to dµ = wdm, w ∈ L1

+(T). By Lemma 7.18 we get the
equivalence of (i),(ii) and (iii).
Next we show (i) and (ii) are equivalent to (iv) (See Fig 1): Note that if the sequence
(zn)n∈Z is a basis, then we can see from Banach’s (Theorem 7.7) and Kolmogorov’s
(Lemma 7.17) that 1

w
∈ L1 and hence logw ∈ L1 (this can be justified without using

Banach theorem as z̄ ̸∈ H2(µ) we get logw ∈ L1). In view of the later observation, we
suppose that there exists an outer function h ∈ H2 such that |h|2 = w. Thus,

(f, g)L2(µ) =

∫
T
fḡwdm =

∫
T
fhḡh

h̄h

h2
dm =

∫
T
(fh)(ḡh)

h̄

h
dm =

∫
T
FG

h̄

h
dm

for all f ∈ P+ and g ∈ P− and therefore,

∥f∥2L2(µ) =

∫
|fh|2dm = ∥F∥2L2(T), ∥g∥2L2(µ) = ∥G∥2L2(T).
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;

Figure 2. Fig1

Clearly F = fh ∈ H2, since ḡ ∈ P0
+, we get G ∈ H2

0 . By definition of outer function, it
follows that span{F = fh : f ∈ P+} = H2, and also A := {F = fh : f ∈ P+, ∥F∥ ≤ 1}
is dense in the unit ball B2 of H2. For the same reason, we see that B := {G = ḡh : g ∈
P−, ∥G∥ ≤ 1} is dense in B2 ∩H2

0 . We deduce that
cos⟨P+,P−⟩L2(µ) = sup{|(f, g)| : f ∈ P+, g ∈ P− ∥f∥2L(µ) ≤ 1, ∥g∥2L(µ) ≤ 1}

= sup
{∣∣∣ ∫

T
FG

h̄

h
dm
∣∣∣ : F ∈ A, G ∈ B

}
.

Set Φ(k) =
∫
T
k( h̄

h
)dm, k ∈ L1(T). As h̄/h ∈ L∞(T), we get Φ ∈ (L1(T))∗. By (Lemma

7.23), we see that the angle ⟨P+,P−⟩ = ∥Φ|H1
0
∥, and by means of (Lemma 7.24), we can

express it in terms of h:

cos⟨P+,P−⟩L2(µ) = ∥Φ|H1
0
∥ = dist

L∞(T)

( h̄
h
, (H1

0 )
⊥
)
= dist

L∞(T)

( h̄
h
,H∞

)
.

The last equality is the consequence of the relation

(H1
0 )

⊥ = {g ∈ L∞ :

∫
T
gfdm = 0 for all f ∈ H1

0} = H∞.

Now, we conclude that cos⟨P+,P−⟩ < 1 if and only if logw ∈ L1, w = |h|2 for an outer

function h ∈ H2 satisfying distL∞(T)(
h̄
h
, H∞) < 1, that is (i) and (ii) are equivalent to (iv).

Proof of implication (iv) =⇒ (v):(See Fig 2) Suppose distL∞(T)(
h̄
h
, H∞) < 1, where
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;

Figure 3. Fig2

h is a outer and |h|2 = w. Then there exists g ∈ H∞ such that ∥ h̄
h
− g∥∞ < 1. That is for

ϵ > 0, we have | h̄
h
− g| < 1 − ϵ a.e. on T, and hence ||h|2 − gh2| < (1 − ϵ)|h|2 a.e. on T.

Setting a = |h(ξ)|2 > 0 for ξ ∈ T, we see that |a− gh2| < (1− ϵ)a.
Geometrically, it means that if α ∈ (0, π

2
) is such that sinα = 1−ϵ, and A = {z : | arg z| <

α}, then we get gh2(T) ⊂ A (cf. Figure 1).
From (Lemma 7.25) we get gh2(D) ⊂ A, so log gh2 is analytic in D. We set v = − Im
log gh2 = − arg gh2 and get |ṽ| = Re log gh2 + c = log |gh|2 + c, where c has to be chosen
such that ṽ(0) = 0. We obtain log gh2 = ṽ − iv − c and gh2 = eṽ−iv−c on T, we have

| h̄
h
− g| < 1 − ϵ, which implies that |1 − |g|| < 1 − ϵ, hence ϵ ≤ |g| ≤ 2 − ϵ. Finally,

|h|2 = eṽ−c

|g|
= eu+ṽ, where u = − log |g| − c ∈ L∞(T) and ∥v∥∞ < π

2
.

Proof of implication (v) implies (iv):
Let wdm = eu+ṽdm, where u, v ∈ L∞(T) are real valued and ∥v∥∞ < π

2
. Clearly logw =

u+ ṽ ∈ L1 and by (Lemma 7.26) we have w ∈ L1(T). Hence there exists an outer function
h ∈ H2 such that |h|2 = w. Thus log |h|2 = u + ṽ and log h2 = u + ṽ + i(u + ṽ)∼ =
u + ṽ + i(ũ − v + c) for some constant c ∈ R. Setting g = e−(u+iũ)−ic we obtain, in view
of |g| = e−u, a bounded holomorphic function g ∈ H∞. Moreover,

h

h̄
g =

h2

|h|2
g = exp(i(ũ− v + c)− u− iũ− ic) = exp(−u− iv),
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where ∥v∥∞ < π
2
. This gives the following estimates on T.

e−∥u∥∞ ≤
∣∣∣h
h̄
g
∣∣∣ ≤ e∥u∥∞ ,

∣∣∣ arg(h
h̄
)g
∣∣∣ = |v| < π

(1− ϵ)

2
.

(cf. Figure 2). The value of (h
h̄
)g thus belongs to

D :=
{
z ∈ C : e−∥u∥∞ ≤ |z| ≤ e∥u∥∞ , | arg z| < π

(1− ϵ)

2

}
.

For λ sufficiently big and some δ > 0 we have B(λ, (1 − δ)λ) ⊃ clos D or λ−1B(λ, (1 −
δ)λ) = B(1, 1 − δ) ⊃ λ−1 clos D. Then λ−1 h

h̄
g ∈ B(1, 1 − δ) a.e. on T. In other words,

|λ−1(h
h̄
)g − 1| < 1− δ a.e. on T, and |λ−1g − ( h̄

h
)| < 1− δ a.e. T. As g ∈ H∞, this gives

distL∞(T)(
h̄
h
, H∞) < 1. □

7.7. An example. Let ω(eit) = |t|α, t ∈ (−π, π), α ∈ R. Then for α ≥ 1 we have
1/ω ̸∈ L1(T) and (eint)n∈Z cannot be uniformly minimal in view of Lemma 7.17. For

α ≤ −1, ω ̸∈ L1. Thus, the only interesting case is |α| < 1.
First note that if the quotient ω1/ω2 and ω2/ω1 are bounded, then the sequence (eint)n∈Z
is a basis of L2(ω1) if and only if it is one of L2(ω2).

[
|w1

w2
| < K and |w2

w1
| < K1. By the

Lemma 7.17, (eint)n∈Z is a basis of L2(w1) ⇔ 1
w1

∈ L1. Now∫
| 1
w2

| ≤
∫

|K
w1

| = K

∫
1

|w1|
<∞ ⇒ 1

w2

∈ L1 ⇔

(eint)n∈Z is a basis of L2(w2) by Lemma 7.17. Similarly the other case follows.]
The identity map f 7−→ f is an isomorphism from L2(ω1) to L

2(ω2).
Next, let ω1 = ω and ω2 = (1− eit)α. Then

logω2 = log |1− eit|α = αRe arg(1− eit) := u.
Necessarily, we get

ũ(t) = α arg(1− eit) = α arg(eit/2(e−it/2 − eit/2)

= α arg(eit/2(−2i sin t/2).

=

{
α(t/2− π/2) if t > 0
α(π/2− t/2) if t < 0.

We deduce that ∥ũ∥∞ = |α|π
2
< π

2
if |α| < 1. Hence (eint)n∈Z is a basis in

L2(|t|αdt) ⇔ |α| < 1.
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8. Transfer to the upper half-plane
In this section, we give an outline of the Hardy-space theory in the half-plane and on the
line. We restrict ourselves to the key results only: an isometric correspondence between
Hardy-space in the disc and in the half-plane, the canonical factorization, the Fourier

transform representation (Paley-Wiener theorem), and invariant subspaces.

8.1. A unitary mapping from Lp(T) to Lp(R). Let ω : D → C, ω(z) = i1+z
1−z

, be the
usual conformal mapping of the disc D to the upper half-plane C+ = {ξ ∈ C : Im ξ > 0}.
The restriction to the boundary ω|T is a one to one correspondence between T∖ {1} and

R. The inverse ω−1, ω−1(x) =
x− i

x+ i
has Jacobian |J(x)| = 2

1 + x2
, x ∈ R. Hence the

mapping
U = Up : L

p(T) → Lp(R)

Upf(x) =

(
1

π(x+ i)2

)1/p

f(ω−1(x)), x ∈ R,

is an isomorphic isomorphism (unitary for p = 2) of the space Lp(T) onto Lp(R).
First, we give three descriptions of the image under U of the Hardy-space

H2(T) ⊂ L2(T), then pass to arbitrary p, 1 ≤ p ≤ ∞. Clearly, UpH
p(T) is a closed

subspace of Lp(R).

8.2. Cauchy kernel and Fourier transform. The first description of U2H
2(T) is

straightforward.

Lemma 8.1.

U2H
2(T) = spanL2(R)

{ 1

x− µ̄
: Im µ > 0

}
.

To prove this we first need the following proposition:

Proposition 8.2. H2(D) = span{cλ = 1
λ−z

: λ ∈ D}

Proof. From Corollary 5.9 for f ∈ H2, and for each λ ∈ D the evaluation map φλ is
bounded and by Riesz-representation theorem it takes of the form: φλ(f) = f(λ) = ⟨f, cλ⟩
where cλ ∈ H2 is unique. We now calculate cλ and see that it is 1

λ−z
, z ∈ D. For each

λ ∈ D, the function λ→ 1
λ−z

∈ H2, since
1

λ− z
=
∑
n≥0

λ
n
zn and (λ

n
) ∈ ℓ2(N0)

and so

∥ 1

1− λz
∥ = ∥

∑
n≥0

λ
n
zn∥ =

〈∑
n≥0

λ
n
zn,
∑
n≥0

λ
n
zn

〉 1
2

=
1

1− ∥λ∥2
<∞.

Furthure, if f =
∑

n≥0 anz
n ∈ H2 then〈

f,
1

1− λz

〉
=
∑
n≥0

anλ
n = f(λ).
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By the uniqueness of the Riesz-representation theory: cλ = 1
λ−z

. Moreover, ∥cλ∥2 =

⟨cλ, cλ⟩ = cλ(λ) =
1

1−|λ|2 . cλ is called the Cauchy Kernal or Szego Kernal. The space

H2 is called the Reproducing Kernal Hilbert space.
It is easy to check that the set D = {cλ : λ ∈ D} is linearly independent. Also if f ∈ H2

is orthogonal to cλ, ∀λ ∈ D then f = 0 ( since f(λ) = ⟨f, cλ⟩). Hence D is dense in H2.
(A set D in X is dense if and only if D⊥ = {0}.)

□

Proof of Lemma 8.1. Since H2(T) = spanL2(T)

{
1

1−λ̄z
: |λ| < 1

}
, and U2 is an isometry, we

have

H2(T) = spanL2(T)

{
U2(1− λ̄z)−1 =

Cλ

z − ω(λ)
: λ ∈ D

}
= span{ 1

z − µ
: Imµ > 0}.

Clearly, µ = ω(λ) runs over the entire upper half-plane C+. □

Now, we recall that Fourier transform F and its inverse F−1,

F(f)(z) =
1√
2π

∫
R
f(x)e−ixzdx,

F−1(f)(z) =
1√
2π

∫
R
f(x)eixzdx

are unitary mapping of L2(R) onto itself.

Lemma 8.3. U2H
2 = F−1L2(R+), where L

2(R+) = {f ∈ L2(R) : f = 0 on (−∞, 0)}.

Proof. Compute the inverse Fourier transform of the function χR+e
iλx ∈ L2(R+), where

Imλ > 0 :

F−1(χR+e
iλx) =

1√
2π

∫
R
χR+e

iλxeixzdx =
1√
2π

1

i(z + λ)
[ix(z + λ)]∞x=0 =

i√
2π

1

z − (−λ)
,

where −λ = µ runs, again, over the entire half-plane C+. Since F−1 is an isometry, Lemma
8.3 reduces to the proof of the following identity:

L2(R+) = span{χR+e
iλx Imλ > 0}.

The equality follows from the injectivity (classical Fourier uniqueness theorem) of the
Fourier transform F . Let f ∈ L2(R+) and suppose that f⊥χR+e

iλx for all λ with Im λ > 0.∫
R
f(x)χR+e

−λxdx = 0

=⇒
∫
R
f(x)χR+e

−xe−iyxdx = 0 (putting λ = y + i)

=⇒ F(fχR+e
−x)(y) = 0 (∀y ∈ R)

=⇒ f χR+e
−x = 0 a.e. on R [ since f̂ = 0 =⇒ f = 0]

=⇒ f = 0
□

8.3. The Hardy space Hp
+ = Hp(C+). Here we see from real line R to the half-plane

C+. We identify the subspace UpH
p ⊂ L2(R) with the space of boundary values of a
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certain holomorphic space in the half-plane C+. Note that ω−1(z) = z−i
z+i

is a conformal
mapping from C+ to D.

Hence the same formula as above, Up : H
p(C+) → Hp(D)

Upf(z) =

(
1

π(z + i)

)1/p

f(ω−1(z)), Im z > 0

defines a holomorphic function in C+ for all f ∈ Hp(C+).
Moreover, ω−1 is still conformal at the boundary points r ∈ R and transfers a Stolz
angle in C+, {x+ iy : |x− r| < cy}, into a Stolz angle in D. Now, Fatou’s theorem
implies that the functions Upf, f ∈ Hp(D), have non-tangential boundary limits

(Up(f))R a.e. on R, Up(fT) = (Upf)R. Hence in order to get another characterization of
UpH

p(T), it remains to describe UpH
p(D) in intrinsic terms as a subset of Hol(C+). This

is done in the next theorem. But, first we define Hardy classes on C+.

Definition 8.4. Hardy space Hp
+ = Hp(C+), 0 < p ≤ ∞, is the class of functions

g ∈ Hol(C+) such that

∥g∥Hp
+
= sup

y>0

(∫
R
|g(x+ iy)|pdx

) 1
p
<∞,

with the usual modification for p = ∞. In order to compare Hp(C+) with UpH
p(D), we

need the following simple result.

Lemma 8.5. (i) Let γ be an arbitrary circle in D. Then∫
γ

|f(z)|p|dz| ≤ 2

∫
T
|f(z)|p|dz|

for all f ∈ Hp(D), 1 ≤ p <∞, here |dz| stands for the arc length measure.
(ii) Let g ∈ Hp(C+), 1 ≤ p <∞ and z ∈ C+, then

|g(z)| ≤
( 2

π Im z

) 1
p∥g∥Hp

+
.

Proof. (i) First let p = 1. For u ∈ L1(µ), denote by u∗ be the harmonic extension of u in
the unit disc,

u∗(z) =

∫
T
u(ζ)

1− |z|2

|ζ − z|2
dm(ζ), z ∈ D.

We show that u 7−→ u∗|γ is a bounded operator from L1(π) to L1(γ) of norm at most 4π.
Indeed, ∫

γ

|u∗(z)||dz| ≤
∫
γ

|u(ζ)|1− |z|2

|ζ − z|2
dm(ζ)|dz|

=

∫
T
|u(ζ)|

(∫
γ

1− |z|2

|ζ − z|2
|dz|
)
dm(ζ)

= 2πr

∫
T
|u(ζ)|1− |c|2

|ζ − c|2
dm(ζ),

where γ = γ(c, r). In the last inequality, we have used the MVT for harmonic functions
applied to the Poisson kernel Pz(ζ) = Re

(
z+ζ
z−ζ

)
. Since 2πdm(z) = |dz| on T, r ≤ 1 − |c|
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and 1−|c|2
|ζ−c|2 ≤ 1+|c|

1−|c| ≤
2

1−|c| , we get the desired inequality. For an arbitrary p, 1 ≤ p < ∞,

we have |u∗|p ≤ (|u|p)∗, from Holder’s inequality, and the result follows.
(ii) Using the MVT in the disc, D = {x+ iy : |λ− (x+ iy)| < Imλ}, Holder’s inequality,
and what is sometimes called the “rolling a disk” trick:

|g(λ)| = 1

π(Imλ)2

∫
D

|g dxdy|

≤ 1

π(Imλ)2
(

∫
D
|g|pdxdy)

1
p (

∫
D
1dxdy)

1
q

≤
( 1

π(Imλ)2

)(∫
D

|g|pdxdy
) 1

p
(π(Imλ)2)

1
q

≤
( 1

π(Imλ)

)2(1− 1
q
)(∫ 2 Imλ

0

dy

∫
R
|g(x+ iy)|pdy

) 1
p

≤
( 2

(π Imλ)

) 1
p∥g∥Hp

+
.

□

The following theorem is one of the main result of this section.

Theorem 8.6. Let 1 ≤ p ≤ ∞. Then UpH
p(D) = Hp(C+).

Proof. If g ∈ Hol(C+), y > 0, and Uf = g, then∫
R
|g(x+ iy)|pdx =

1

2π

∫
Cy

|f(z)|2|dz|,

where Cy is the circle in D having the interval [y−1
y+1

, 1] as diameter and being tangent to

the unit circle T at the point 1. A line on the upper half plane at a distance y parallel
to x-axis maps to the circle Cy := {z : |z − y

y+1
| = 1

y+1
}, i.e., to check! for a point

(x+ iy0) in the line parallel to x-axis in the upper half plane maps to Cy0 under w
−1. i.e.,

w−1(x+ iy0) =
x+iy0−i
x+iy0+i

satisfies |z − y0
y0+1

| = 1
y0+1

. There are two points to be noted from

the above discussions (Fig 3): (i) Infinite straight-line parallel to x-axis on the upper-half
plane wraps around the circle Cy

(ii) The region Im z ≥ y > 0 maps into the inside of the circle Cy, easily check that (0, 2y)
maps to center of the circle ( y

y+1
, 0). Now∫

R
|g(x+ iy0)|pdx =

∫ +∞

−∞

∣∣∣∣ 1

π(x+ iy0 + i)

∣∣∣∣ |f(ω−1(x+ iy0))|pdx

=

∫ +∞

−∞

1

π(x2 + (y0 + 1)2)

∣∣∣∣f (x+ iy0 − i

x+ iy0 + i

)∣∣∣∣p dx
=

∫
Cy0

|f(z)|p |dz|
2π

So it remains to verify that

sup
0<r<1

∫
T
|f(rξ)|p|dξ| <∞ ⇔ sup

y>0

∫
Cy

|f |p|dz| <∞, ∀f ∈ Hol (D).
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( =⇒ ) Using Lemma 8.5 (i) =⇒ : for any closed curve γ ∈ D,∫
γ

|f(z)|pdz ≤ 2

∫
T
|f(z)|pdz

=⇒ sup

∫
γ

|f(z)|pdz ≤ 2 sup

∫
T
|f(z)|pdz

=⇒ sup

∫
γ

|f(z)|pdz <∞

=⇒ sup
y>0

∫
Cy

|f(z)|pdz <∞ [for γ = Cy]

( ⇐= )To prove the converse, let g ∈ Hp
+. By Lemma 8.5 (ii), g is bounded on every half-

plane Im z ≥ y > 0. Hence g◦w is bounded on the disc int(Cy). Since the function (1−z) is

outer on the int(Cy) (no-zero inside the interior) and f = π
((

2i
1−z

)2) 1
p
(g ow) ∈ Lp(Cy),

∗1

we get f ∈ Hp(Cy) by the integral maximum principle 5.33 (iv). (We use the previous
theory for the following classes Hp(D) over disc D = int (Cy), instead of the unit disc D;
the corresponding modifications, including the very definition of Hp(D), do not cause any
difficulties and can be obtained by a linear change of variable). Now, applying Lemma
8.5(i) to the circle γ(r) = {z ∈ C : |z| = r} ⊂ int(Cy), we get∫

γ(r)

|f(z)|p|dz| ≤ 2 sup
y>0

∫
Cy

|f(z)|p|dz|.

In fact, the Poisson representation (Corollary 8.8) implies that for g ∈ Hp
+, the norms(∫

R
|g(x+ iy)|pdx

) 1
p

are monotonically increasing in y > 0 and tend to ∥g|R∥Lp as y → 0 (to see this, use
approximate identity properties of the Poisson kernel). This shows that ∥g|R∥Lp = ∥g∥Hp

+
.

□

∗1[∫
Cy
(π( 2i

1−z
)2)|gow|p(z)dz =

∫
{line passing through y} |gow|

pdw =
∫
AB

|g(w)|pdw <∞
since g ∈ Hp(C+) =⇒

sup
y>0

(∫
R
|g(x+ iy)|pdx

) 1
p
<∞ =⇒ ∀y > 0,

∫
R
|g(x+ iy)|pdx <∞]

Theorem 8.7. (R. Paley and N. Wiener, 1934 )
Hp(C+) = F−1L2(R+)

Proof. This is immediate from Lemma 8.3 and Theorem 8.6. □

8.4. Canonical factorization and other properties. The following properties are
straightforward consequences of the change of variables from Section 8.1, Theorem 8.6,

and the corresponding facts from Hp theory in the disc D.
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;

Figure 4. Fig3

Corollary 8.8. (Poisson formula) If f ∈ Hp(C+), 1 ≤ p ≤ ∞, then

f(x+ iy) =
1

π

∫
R

y

(x− t)2 + y2
f(t)dt, y > 0.

Proof. f ∈ HP (C+) =⇒ there exists g ∈ Hp(D) such that Upg(z) = f(z), z ∈ C+ =⇒
f(z) = ( 1

π(z+i)
)1/pg( z−i

z+i
), z ∈ C+. Now put w = z−i

z+i
∈ D for z ∈ C+; then ( 1

z+i
)2 = (1−w

2i
)2

hence f(z) can be re written as

f(z) =

(
1

π
(
1− w

2i
)2
)1/p

g(w) for z ∈ C+ and w ∈ D.

= h(w) ∈ Hp(D)

[
since

(
1

π
(
1− w

2i
)2
)1/p

is bounded on D and g ∈ Hp(D)

]
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Now using Poisson formula for h on D :

f(z) = f(x+ iy) = h(w) =
1

2π

∫ 2π

0

h̃(ξ)
1− |w|2

|ξ − w|2
|dξ|

=
1

2π

∫
R
h̃(
t− i

t+ i
)
1− | z−i

z+i
|2

| t−i
t+i

− z−i
z+i

|2
2dt

1 + t2
[since ξ =

t− i

t+ i
, w =

z − i

z + i
]

=
1

2π

∫
R
f̃(t)

2y

|t− z|2
dt

=
1

π

∫
R

y

(x− t)2 + y2
f̃(t)dt, y > 0

□

Corollary 8.9. (Boundary uniqueness theorem) If f ∈ Hp(C+), 1 ≤ p ≤ ∞ and f ̸= 0,
then ∫

R

| log |f(x)||
1 + x2

dx <∞.

Proof. Let f ∈ Hp(C+) =⇒ f(z) = h(w) for z ∈ C+, w ∈ D and h ∈ Hp(D) By the
boundary uniqueness theorem for the disk:

1

2π

∫ 2π

0

| log |h(ξ)|||dξ| <∞

=⇒ 1

2π

∫
R

∣∣∣log |f̃(t)|∣∣∣ 2dt

1 + t2
<∞

=⇒
∫
R

| log |f̃(t)||
1 + t2

dt <∞.

□

Corollary 8.10. (Blaschke condition and Blaschke product) If f ∈ Hp(C+), 1 ≤ p ≤ ∞,
and f ̸= 0, then ∑ Imλn

1 + |λn|2
<∞,

where λn are the zero of f in C+ (counting multiplicities). The corresponding Blaschke
product (having similar properties as in D) is

B(z) =
∏
n

ϵn
z − λn
z − λ̄n

, z ∈ C+,

where ϵn = |λ2
n+1|

λ2
n+1

(by definition, ϵn = 1 for λn = i).

Proof. Let f ∈ HP (C+), 1 ≤ p ≤ ∞ and f ̸= 0. Then there exists g ∈ Hp(D) such that

Upg = f. Now, f(λn) = 0 =⇒ Upg(λn) = 0 =⇒
(

1
π(λn+i)2

)1/p
g(λn−i

λn+i
) = 0 =⇒ g(γn) =

0 where γn = λn−i
λn+i

∈ D. So λ′ns are roots of f if and only if γ′ns are roots of g.

|γn| =
|λn − i|
|λn + i|

=⇒ |γn|2 = γnγn =
λn − i

λn + i
.
λn + i

λn − i
=

|λn|2 + λni− iλn + 1

|λn|2 − λni+ iλn + 1
=

1 + |λn|2 − 2yn
1 + |λn|2 + 2yn

where yn = Im(λn).
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Calculate 1− |γn|2 = 4yn
1+|yn|2+2yn

.

We have g ∈ Hp(D). So |γn| → 1 when n → ∞ as
∑

n≥1(1 − |γn|) < ∞ since
∑
an <

∞ =⇒ lim an = 0. So limn→∞(|λn|−1) = 0 =⇒ limn→∞ |λn| = 1) since limn→∞
1−|λn|2
1−|λn| =

limn→∞(1+ |λn|) = 2(̸= 0). So
∑

(1− |γn|) <∞ ⇔
∑

(1− |γn|2) <∞ (Limit comparison
Test of the series). Now consider the series:

∑ yn
1+|λn|2

1− |γn|2
yn

1+|λn|2
=

4yn
1+|yn|2+2yn

yn
1+|λn|2

=
4(1 + |λn|2)

1 + |λn|2 + 2yn
→ 4

( If |λn| → 1 in C+ =⇒ |λn| → x axis =⇒ Imλn = yn → 0 )
Hence by Comparison Test

∑
(1 − |γn|2) < ∞ ⇔

∑ yn
1+|λn|2 < ∞. Hence the desired

Blaschke condition is:
∑ Im(λn)

1+|λn|2 <∞.

■ The Blaschke factor for g ∈ Hp(D) is Πbγn
γn−w
1−γnw

for w ∈ D and g(γn) = 0. Here

bγn = |γn|
γn

=
|λn−i
λn+i

|
λn−i
λn+i

= (λn+i)|λn−i|
(λn−i)|λn+i| =

|λ2
n+1|(λn+i)

(λn−i)|λn+i|2 = |λ2
n+1|(λn+i)(λn+i)

(λ2
n+1)(λn+i)(λn+i)

= |λ2
n+1|λn+i

λ2
n+1λn+1

Now
γn − w

1− γnw
=

λn−i
λn+i

− z−i
z+i

1− (λn+i)(z−i)

(λn−i)(z+i)

=
2i(λn − z)(λn − i)

2i(λn − z)(λn + i)
. =

(z − λn)(λn + i)

(z − λn)(λn + i)

B(z) = Πnbγn
γn−w
1−γnw

= Πnϵn
z−λn

z−λn
where ϵn = |λ2

n+1|
λ2
n+1

.

Now λn = i =⇒ γn = 0 =⇒ w is a factor of B(w), w ∈ D =⇒ z−i
z+i

is a factor of B(z)
and obviously ϵn = 1. □

Theorem 8.11. Each function f ∈ Hp(C+); 1 ≤ p ≤ ∞, has a unique factorization of
the form f = λBV [f ], where λ ∈ T, B is the Blaschke product constructed from the zeroes
of f, V is a singular inner function (an H∞ function having no zeroes in C+ and with
unimodular boundary values on R) of the form

V (z) = eiazVv(z) = eiaz exp

(
i

∫
R

1 + tz

t− z
dv(t)

)
,

where a ≥ 0, and v is a finite positive singular measure on R, [f ] is the Schwarz-Herglotz
outer factor of the form

[f ](z) = exp
( 1

πi

∫
R

1 + tz

t− z
log |f(t)| dt

1 + t2

)
, z ∈ C+

Proof. Let f ∈ Hp(C+). Then there exists g ∈ Hp(D) such that f(z) = g(w) for z ∈ C+

and w ∈ D. Now
[g](w) = exp

[
1

2π

∫ 2π

0

ξ + w

ξ − w
log |g̃(ξ)||dξ|

]
Putting ξ = t−i

t+i
and w = z−i

z+i
we have:

t− i

t+ i
± z − i

z + i
=

{tz + 1 + it− iz} ± {tz + 1− i(t− z)}
(t+ i)(z + i)

=⇒ ξ + w

ξ − w
=

1 + tz

i(t− z)

Hence [f ](z) = [g]( z−i
z+i

) = exp
(

1
πi

∫
R

1+tz
t−z

log |f̃(t)| dt
1+t2

)
, z ∈ C+
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■ As g ∈ Hp(D), g can be written as g = λBS[g]. Here S(w) = exp
[
−
∫
T

ξ+w
ξ−w

dµ(ξ)
]
for

w ∈ D and ξ ∈ T and µ ⊥ m. ∴ S( z−i
z+i

) = exp
[
−
∫
R

1+tz
i(t−z)

dµ
(
t−i
t+i

)]
S(w) = exp

[
−1 + w

1− w
µ({1})−

∫
T\{1}

ξ + w

ξ − w
dµ(ξ)

]
=⇒ S

(
z − i

z + i

)
= exp

[
iµ({1})z −

∫
R

1 + tz

i(t− z)
dµ

(
t− i

t+ i

)]
[∵

i(1 + w)

1− w
= −z]

∴ V (z) = eiαz exp

[∫
R

1 + tz

i(t− z)
dν(t)

]
when α = µ{1}, dν(t) = dµ

(
t−i
t+i

)
= 2

1+t2
dµ(t). □

Remark 8.12. It is clear from the previous computations that other facts of the Hardy
Nevanlinna theory of Sections 3 and 4 in the disc can be transferred to the half-plane.
In particular, the properties of the inner outer factorization from subsections 6.2-6.3
still hold with corresponding modifications caused by the change of variables. For in-
stance, a function f ∈ Hp(C+) having an analytic continuation across a point x ∈ R has
singular representing measure zero in a neighborhood of this point. To find the point
mass of the singular measure, the logarithmic residues of Section 4 (to be added) can
be redefined and computed and so on and so on. In particular, the point mass at ∞ is

a = − lim
y→∞

1

y
log |f(iy)|.

8.5. Invariant subspaces. Here we consider translation invariant subspaces of L2(R)
and their Fourier dual objects - character invariant subspaces.

8.6. Duality between translation and multiplication by characters. Define the
translation operator τs by

(τsf)(x) = f(x− s), x ∈ R, for s ∈ R.
This is a group of unitary operators on L2(R). A subspace E ⊂ L2(R) (closed, as
always) is said to be (translation) 2-invariant and if τsE ⊂ E for all s ∈ R, and

(translation) 1-invariant if τsE ⊂ E for all s ≥ 0 but not for (all) s < 0. The Fourier
image of the translation operator τs is the multiplication operator by the corresponding

character eisx of the group R:
τs(Ff) = F(eisf), for all f ∈ L2(R).

Without any risk of confusion, we write eisx both for the function x 7−→ eisx and for the
multiplication operator by this function, f 7−→ eisxf. Hence, we have

τs = FeisxF−1,
that is, the groups (τs)s∈R and (eisx)s∈R are unitarily equivalent (conjugate) via the

Fourier transform.
We use the same terminology as above for eisx -invariant subspaces. A subspace
E ⊂ L2(R) is (character) 2-invariant if eisxE ⊂ E for all s ∈ R, and (character)

1-invariant if eisxE ⊂ E for s ≥ 0 but for (all) s < 0. Hence, E is an 1- or 2- character
invariant if and only if its Fourier image FE is a 1- or 2- translation invariant subspace.



74 HARDY SPACES

Clearly, the Hardy space H2(C+) is a character 1-invariant subspace, and
FH2(C+) = L2(R+) is translation 1-invariant.

Below, we will derive analogue of the Wiener theorem 3.4 and Beurling Helson theorem
3.5 for character invariant subspaces. First, we prepare the transfer of these results to

L2(R) by means of the operator U2.

Lemma 8.13. Let us = exp
(
s z+1
z−1

)
s ∈ R, and let E be a (closed) subspace of L2(R). The

E is a 2-invariant subspace (with respect to the shift operator f 7−→ zf) if and only if
usE ⊂ E, for all s ∈ R, and E is 1-invariant subspace if and only if usE ⊂ E, for all
s ≥ 0, but not for (all) s < 0.

Proof. If b ∈ H∞, and E is a z-invariant subspace of L2(T), then bE ⊂ E. Indeed, by
DCT, we have

lim
r→1

∥bf − brf∥2 = 0, for all f ∈ E,

where br(z) = b(rz).
On the other hand, znf ∈ E, for n ≥ 0 and therefore, brf ∈ E, since Taylor series of
br is absolutely convergent on T. Hence bf ∈ E. The same holds true for b̄ ∈ H∞ and
z̄−invariant subspace E. These prove the “only if” part of the lemma.
By analogous reasoning, to prove the converse, it suffices to show that the function z

is the bounded pointwise limit of functions ϕs =
us − (1− s)

us − (1 + s)
as s → 0+. We have

Re(1 − us(ζ)) ≥ 0, and hence |ϕs(ζ)| ≤ 1, for ζ ∈ T. On the other hand, using the
standard formula
esw = 1 + sw + o(s) as s→ 0+, we easily get lim

s→0
ϕs(ζ) = ζ for ζ ∈ T \ {1}. □

Theorem 8.14. (P. Lax, 1959 ) Let E be a subspace of L2(R).
(i) E is a (character) 2-invariant subspace if and only if E = χΣL

2(R) for a measurable
subset Σ ⊂ R.

(ii) E is a (character) 1-invariant subspace if and only if E = FqH
2(C+) for a measur-

able function q on R with |q| = 1 a.e.

Proof. Lemma 8.13 shows that E is 2 or 1-invariant if and only if its preimage U−1
2 E ⊂

L2(T) has the same property with respect to the shift operator on L2(R). The results thus
follow by applying theorems 3.4, 3.5 and Theorem 8.6. □

Corollary 8.15. Let E be a subspace of L2(R).
(1) E is translation 2-invariant if and only if E = FχΣL

2(R) for a measurable subset
Σ ⊂ R.

(2) E is translation 1-invariant if and only if E = FqH2(C+) for a measurable func-
tion q on R with |q| = 1 a.e.

Indeed, it suffices to use Theorem 8.14 and duality of Subsection 8.6.

Corollary 8.16. (i) If F ⊂ H2(C+), then spanH2
+
{eisxF : s ≥ 0} = ΘH2(C+), where

Θ is the g.c.d of the inner factors of f ∈ F.
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(ii) If F ⊂ L2(R+), then spanL2(R+){τsF : s ≥ 0} = F(ΘH2(C+)), where Θ is the g.c.d

of the inner factors of F−1f, f ∈ F.
(iii) If f ∈ L2(R), then spanL2(R){eisxf : s ∈ R} = L2(R) if and only if f ̸= 0 a.e. on R.
(iv) If f ∈ L2(R), then spanL2(R){eisxf : s ≥ 0} = L2(R) if and only if f ̸= 0 a.e. and∫

R
(1 + x2) log |f |dx = −∞

(v) If f ∈ L2(R), then spanL2(R){τsf : s ≥ 0} = L2(R) if and only if Ff ̸= 0 a.e. on R
(vi) If f ∈ L2(R), then spanL2(R){τsf : s ≥ 0} = L2(R) if and only if Ff ̸= 0 a.e. and∫

R
(1 + x2) log |Ff |dx = −∞.

Indeed, it suffices to use Theorem 8.14 and Corollary 8.15 and the corresponding
properties of z-invariant subspaces of L2(R).

Theorem 8.17. (Cauchy Representation) Assume that 1 ≤ p <∞.

(i) Let F (z) belongs to Hp(C+) and let F (x) be its boundary function. Then F (x) ∈
Lp(−∞,∞). F (z) =

1

2π

∫ ∞

−∞

F (t)

t− z
dt, y > 0 and(8.1)

0 =
1

2πi

∫ ∞

−∞

F (t)

t− z
, y < 0.(8.2)

(ii) Let F (x) be any function in Lp(−∞,∞) satisfying (6.2). Then (6.1) and the Poisson
representation (Corollary 8.8 ) define one and the same function F (z) on C+. F (z)
belongs to Hp(C+) and the non-tangential boundary function is equal to F (x) a.e.

Proof. (i) By Fatou’s lemma and the definition of Hp(C+), we have:∫ ∞

∞
|F (x)|pdx ≤ lim

y→0
inf

∫ ∞

−∞
|F (x+ iy)|pdx <∞ =⇒ F ∈ Lp(−∞,∞).

Let G(z) = 1
2πi

∫∞
−∞

F (t)
t−z

dt, y ̸= 0 Then G(z) is homomorphic separately for y > 0 and
y < 0. For y > 0

G(z)−G(z) =
1

2πi

∫ ∞

−∞

[
1

t− z
− 1

t− z

]
F (t)dt

=
y

π

∫ ∞

−∞

F (t)

(t− x)2 + y2
dt

= F (z).
Since F (z) and G(z) are homomorphic on C+ so is G(z), z ∈ C+. But

G(z) = − 1

2πi

∫
T

F (t)

t− z
dt, z ∈ C+

is also homomorphic. Since G(z) and G(z) are both holomorphic, hence G(z) is constant
on C+. Since G(−iy) → 0 as y → ∞, G(z ̸= 0) on C+. Thus (8.1) and (6.2) holds.
(ii) Assuming

0 =
1

2πi

∫ ∞

−∞

F (t)

t− z
dt, ∀y < 0 =⇒ 0 = − 1

2πi

∫ ∞

−∞

F (t)

t− z
dt, ∀y > 0 =⇒ 0 = G(z),∀y > 0
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In (i) we have proved: G(z) − G(z) = F (z) for y > 0 =⇒ G(z) = F (z). Applying
Holders inequality:∫ ∞

−∞
|F (x+ iy)|pdx =

∫ ∞

−∞

∣∣∣∣∫ ∞

−∞

y/π

(t− x)2 + y2
F (t)dt

∣∣∣∣p dx
=

∫ ∞

−∞

∣∣∣∣∣
∫ ∞

−∞

[
y/π

(t− x)2 + y2
F (t)

]1/p [
y/π

(t− x)2 + y2

]1/q
dt

∣∣∣∣∣
p

dx

≤
∫ ∞

−∞

∣∣∣∣∣
(∫ ∞

−∞

y/π

(t− x)2 + y2
|F (t)|dt

)1/p(∫ ∞

−∞

y/π

(t− x)2 + y2
dt

)1/q
∣∣∣∣∣
p

dx

≤
∫ ∞

−∞

∣∣∣∣∣
(∫ ∞

−∞

y/π

(t− x)2 + y2
|F (t)|dt

)(∫ ∞

−∞

y/π

(t− x)2 + y2
dt

)p/q
∣∣∣∣∣ dx

≤
∫ ∞

−∞

∣∣∣∣(∫ ∞

−∞

y/π

(t− x)2 + y2
|F (t)|pdt

)∣∣∣∣ dx
≤
∫ ∞

−∞

∫ ∞

−∞

y/π

(t− x)2 + y2
|F (t)|pdxdt

≤
∫ ∞

−∞
|F (t)|pdt

This shows that F ∈ Hp(C+) □

8.7. Cauchy kernels and Lp- decomposition.

Theorem 8.18. (i) Show that Hp(C+) = spanL2(R)

{ 1

x− µ̄
: Imµ > 0

}
for 1 ≤ p ≤ ∞.

(Hint: Use Hp(C+) = UpH
p and solve Upf = 1

x−µ̄
).

(ii) Let 1 < p < ∞. Show that Lp(R) = Hp(C+) ⊕ Hp(C−), where ⊕ stands for the
orthogonal sum for p = 2 and direct sum for p ̸= 2.

(iii) Let

Cf(z) =
1

2πi

∫
R

f(t)

t− z
dt, z ∈ C \ R

be the Cauchy integral of f ∈ Lp(R), 1 ≤ p <∞, then the followings are equivalent.
(a) f ∈ Hp(C+).
(b) Cf = f∗, where f∗ stands for the Poisson integral extension.
(c) Cf(z) = 0 for Im z < 0.

Proof. Previously solved. □

Theorem 8.19. (The Paley Wiener theorem) An entire function E is called of exponential
type if

lim|z|→∞
log |E(z)|

|z|
<∞;

the limit itself is the type of E. Let Ea = set of all entire functions of exponential type
≤ a. For a > 0, show that the followings are equivalent.

(i) E ∈ Ea and E|R ∈ L2(R).
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(ii) There exists f ∈ L2(R) such that Ff = E and supp f ∈ [−a, a].

Hint: For (ii) =⇒ (i), estimate the exponential type of E applying the Cauchy
inequality to the Fourier transform of f :

|E(z)| =
∣∣∣ ∫ a

−a

e−ixzf(x)dx
∣∣∣ ≤ ∥f∥2

(e2a| Im z| − 1

Im z

) 1
2 ≤ (2a)

1
2 ea| Im z|.

Moreover, ∥E∥2 = ∥f∥2 by Plancherel’s theorem:
(i) =⇒ (ii): First suppose that E|R ∈ L2(R) ∩ L∞(R). Then by Phragmèn-Lindelöf

theorem |E(z)| ≤ ∥E∥∞ea| Im z|, for z ∈ C, implies

|Eλ(z)| =
iλ

z + iλ
eaizE(z) ∈ H2(C+), λ > 0.

The Paley Wiener theorem 8.7 entails that F(Eλ) = 0 a.e. on (−∞, 0) and hence
F(eaizE) = 0 on (−∞, a) (because lim

λ→∞
∥Eλ − eaizE∥L2(R) = 0). Therefore,

F(E) = τaF(eiazE) = 0 a.e on (−∞,−a). Similarly F(E) = 0 a.e. on (a,∞.) and we get
(ii).

In general case, replace E by Eϵ(z) =
∫
RE(z − t)ϕϵ(t)dt, where ϕϵ(t) = ϵ−1ϕ( t

ϵ
), ϕ ≥ 0 is

compactly supported in R. It is easy to see that Eϵ ∈ Ea+ϵ and
supp (Eϵ) ⊂ [−a− ϵ, a+ ϵ], and we have lim

ϵ→0
∥Eϵ − E∥L2(R) = 0.

Question 8.20. (a) Show that f ∈ H2(C+) if and only if f ∈ L2(R) and F(f) =
0 a.e. on R.

(b) Find f ∈ L1(R) ∩ L2(R) such that L2(R) = spanL2(R)(τsf : s ∈ R) and L1(R) ̸=
spanL1(R){τsf : s ∈ R} (Hint: Consider f = χ(a,b).)

(c) Riesz Brother’s theorem for R: Let µ be a complex Borel measure on R such that∫
R e

istdµ(t) = 0 for all s > 0. Show that µ << m.

8.8. Exercises.

Exercise 8.21. H1(C+) = H2(C+)H
2(C+)

Proof. We know that w : D → C+ is a conformal map.
F ∈ H1(C+) =⇒ F · w′ ∈ H1(D)
=⇒ F · w′ = G1 ·G2 where G1, G2 ∈ H2(D)

=⇒ F = [G1 · (w′)−1/2][G2 · (w′)−1/2]
Now define two functions g1, g2 by the following forms:

g1 • w = G1 · (w′)−1/2

g2 • w = G2 · (w′)−1/2

=⇒ (g1 • w)(w′)1/2 = G1 ∈ H2(D)

=⇒ (g2 • w)(w′)1/2 = G2 ∈ H2(D)
=⇒ g1, g2 ∈ H2(C+)
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and
F = (g1 • w)(g2 • w)
=⇒ F • w−1 = g1 · g2
=⇒ f = g1 · g2.

□
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9. Problem Sets

9.1. Problem Set I.

1. Determine the validity (TRUE/FALSE) of each of the following statements, providing
rigorous justification in every case.

(a) Every subspace of L2(T,m) of dimension greater than one is simply invariant.

(b) Let H2 = span{zn : n ≥ 0}. Is it true that H2 ⊥ zH2?

(c) If 0 ̸= f ∈ H2, then Ef = span{znf : n ≥ 0} is a reducing subspace of H2.

(d) Let µ be a finite measure on T. Is Ef necessarily a reducing subspace of L2(µ)?

(e) If Θ ∈ H2 is an inner function, does it follow that
span{znΘ : n ≥ 0} = ΘH2?

(f) Is H2(T,m) ∩ L∞(T,m) dense in L2(T,m)?

(g) Let µ be a finite Borel measure on T. If z̄2 ∈ H2(µ), does it follow that H2(µ) =
z2H2(µ)?

(h) Let f = χ[0,π
2
]. Does it follow that

span{znf : n ≥ 0}
is a non-reducing subspace of H2(T,m)?

(i) Suppose 0 ≤ µ ≪ m. Can it happen that H2(µ) is a proper reducing subspace of
L2(µ)?

2. Let µ be a finite Borel measure on T. Prove or disprove that
L2(µ) = L2(µ) · L2(µ).

3. Let µ be a finite Borel measure on C. Prove or disprove that for every f ∈ L2(C, µ)
there exist g, h ∈ L2(C, µ) such that f = gh.

4. Let w ∈ L1
+(T,m) = {g ∈ L1(T,m) : g ≥ 0}. Suppose there exists f ∈ H2 such

that |f |2 = w a.e. on T. Show that there exists a unique outer function fo satisfying
|fo|2 = w a.e. on T.

5. Let µ be a finite Borel measure on T. Define H2
0 (µ) = zH2(µ). Show that

H2
0 (µ) = H2

0 (µa)⊕ L2(µs),
where µ = µa + µs is the Lebesgue decomposition of µ.

6. Let µ be a finite Borel measure on T. Prove that the following are equivalent:

(i) There exists a non-reducing subspace E ⊂ L2(µ) with zE ⊂ E.
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(ii) There exists a nonzero complex measure ν absolutely continuous with respect to
µ and orthogonal to P+, i.e.∫

T
zn dν = 0 ∀ n ≥ 1.

7. Let µ be a finite measure on T. Show that
zE ⊆ E ⊂ L2(µ) ⇒ zE = E

if and only if m is not absolutely continuous with respect to µ.

8. Let µ be a compactly supported finite measure on C. Show that every reducing subspace
E of L2(µ) is of the form

E = χσL
2(µ),

for some Borel set σ ⊂ C.

9. Let L∞(T,m) denote the space of essentially bounded measurable functions on T. Prove
the following:

(i) If f ∈ H2 ∩ L∞, then fH2 ⊂ H2.

(ii) If f ∈ H2 ∩ L∞ with ∥f∥∞ < 1, then 1 + f is an outer function.

(iii) If f ∈ H2 ∩ L∞, then ef ∈ H2 is an outer function.

10. Show that z − λ is an outer function if and only if |λ| ≥ 1. Hence, deduce that a
polynomial p is outer if and only if p has no zero in the open unit disc D = {z ∈ C :
|z| < 1}.

11. Let µ be a finite measure on T. If H2(µ) is a proper subspace of L2(µ), show that
dist(1, H2

0 (µ)) > 0.

12. If f ∈ H2 is an outer function, prove that
span{znf : n ≥ 1} = zH2.

13. Let µ be a finite Borel measure on T and define
H2

0 (µ) = span{zn : n ≥ 1} ⊂ L2(µ).
For f ∈ L2(µ), compute dist(f,H2

0 (µ)).

14. Let f ∈ H1(T,m)∩L∞(T,m). Show that there exist fj ∈ L2(T,m) (j = 1, 2) such that
Ef2 = f1Ef2 ,

where Eg := span{zng : n ≥ 0}.

15. Let f(z) = ez and suppose g ∈ H2(T,m) satisfies f ∗ g = 1. Show that g must be
constant.

9.2. Problem Set II.

1. Determine whether each of the following statements is TRUE or FALSE, providing
rigorous justification in each case.
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(a) An infinite Blaschke product has only finitely many repeated factors.
(b) For functions in Hp(D) with 0 < p < 1, non-tangential limits coincide with radial

limits.
(c) Can a non-zero function f ∈ Hp(T), 0 < p < 1, vanish on a set of positive measure?
(d) If f ∈ H1(D) is outer, then necessarily log |f | ∈ L1(T).
(e) If f ∈ L∞(T), then there exist inner functions θ1, θ2 and a sequence of polynomials

Pn such that Pn(θ1θ2) → f uniformly.
(f) For p > 0, let f ∈ Hp(D) with f ̸≡ 0. Does this imply that log |f | ∈ L1(T)?
(g) Let f ∈ Hol(D). Does the existence of non-tangential limits of f at a.e. ξ ∈ T

imply the existence of radial limits at a.e. ξ ∈ T?
(h) If Θ is an inner function in H2(T,m) such that ΘH2(m) = H2(m), does it follow

that Θ is constant a.e. with respect to m?
(i) Suppose f, g ∈ H2(T,m) are two non-zero functions with ĝ(0) = 0. Does it follow

that (̂fg)(0) = 0?
(j) Let f ∈ H2(T) satisfy 1

f
∈ H∞(T). Does it follow that 1

f
∈ Ef?

(k) For f ∈ H∞(D), define
f(r)(z) = f(rz), |z| < 1

r
, 0 ≤ r < 1.

Does it follow that
lim
r→1

∥f(r)∥∞ = ∥f∥H∞(D)?

2. Let S1 = {z ∈ D : |z − 1| ≤ c(1 − |z|)}. For z = reiτ , |τ | ≤ π, 0 < r < 1, show that
|τ |
1−r

is uniformly bounded on S1.

3. Prove that P0
+ is dense in Hp for 1 ≤ p <∞, and also dense in H∞ ∩ C(D).

4. Prove that H∞ is not separable.
5. Show that Hp \Hq ̸= {0} whenever q < p.
6. For ξ ∈ D and 1 ≤ p <∞, define

φξ : H
p → C, φξ(f) = f(ξ).

Show that
∥φξ/H

p∥ = (1− |ξ|2)−1/p.
7. The Nevanlinna class is defined as

N(D) =
{
f ∈ Hol(D) : sup

0<r<1

∫
T
log+ |fr| dm <∞

}
,

where log+ t = max(0, log t) for t > 0 and fr(z) = f(rz).
(i) Let f ∈ N(D) with f ̸= 0. Set hr(ξ) = max(1, |fr(ξ)|) for ξ ∈ T, 0 < r < 1, and

define Φr = [hr]. Show that
max(1, |fr(z)|) ≤ |Φr(z)| (z ∈ D), Φr(0) ≤ ec,

where c = sup0<r<1

∫
T log

+ |fr| dm.
(ii) Deduce that fr = ψr/φr, where φr = 1/Φr ∈ H∞ with |ψr| ≤ 1, ∥φr∥ ≤ 1 in D,

and |φr(0)| ≥ e−c for all 0 < r < 1. Applying Montel’s theorem, conclude that
there exist φ, ψ ∈ H∞ with f = ψ/φ.

(iii) Show that
N(D) = {ψ/φ : φ, ψ ∈ H∞} ∩ Hol(D).
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Hence, for every f ∈ N(D), the non-tangential limits exist a.e., log |f | ∈ L1, and
f = λBVµ[h], (h = |f |),

where Vµ(z) = exp
( ∫

T
ζ+z
ζ−z

dµ(ζ)
)
for |z| < 1 and µ is a singular measure on T.

(iv) Conversely, λBVµ[h] ∈ N(D) for every λ,B, Vµ, and every h > 0 with log h ∈ L1.
Moreover, Hp ⊂ Lp ∩N(D) for every p > 0, and Hp = Lp ∩N+, where

N+ = {λBVµ[h] ∈ N(D) : µ ≥ 0}.
(v) Let fk ∈ L2(T) (1 ≤ k ≤ n) and define

E = span{zmfk : m ≥ 0, 1 ≤ k ≤ n}.
Show that E is simply invariant (i.e., zE ⊊ E) if and only if
(a)

∫
T log |fk| dm > −∞ for all k, and

(b) θ
fj
fk

∈ N(D) for all j, k, where θ is an inner function.

8. Let f ∈ N(D) with f(0) ̸= 0, and let (λn)n≥1 = Z(f) be its zero sequence. Suppose µ
satisfies

Vµ(z) = exp
(∫

T

ζ + z

ζ − z
dµ(ζ)

)
.

(i) Show that

log |f(0)|+
∑
n≥1

log
1

|λn|
+ µ(T) =

∫
T
log |f | dm.

(ii) Let f ∈ H∞ with |f(z)| ≤ 1 in D and f(0) > 0. Show that f is a Blaschke
product if and only if

lim
r→1

∫
T
log |fr| dm = 0.

(iii) Let f ∈ Hol(D) with f(0) > 0. Show that f is a Blaschke product if and only if

lim
r→1

∫
T
log |fr| dm = 0.

(iv) Let f ∈ Hol(DR), R > 0, with zero set (λn)n≥1 (counted with multiplicities).
Define

n(s) = card{λk : |λk| ≤ s}, s ≥ 0.
(a) Assuming f(0) ̸= 0, prove

log |f(0)|+
∫ r

0

n(s)

s
ds =

∫
T
log |f(rξ)| dm(ξ), r < R.

(b) Suppose f(0) ̸= 0. For 0 ≤ a < R, show that∫ r

a

n(s)

s
ds ≤

∫
T
log |f(rξ)| dm(ξ) + C, a < r < R,

where C = C(f, a) depends only on f and a.
9. Let µ be a finite Borel measure on T singular with respect to m. Define

f(z) = exp

(
−
∫
T

ξ + z

ξ − z
dµ(ξ)

)
, z ∈ D.

Show that |f | = 1 a.e. on T.
10. Let f be holomorphic on D with f(0) > 0. If

lim
r→1

∫
T
| log |fr|| dm = 0,
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prove that f is a Blaschke product.
11. Let f ∈ Hol(D). Show that there exists g ∈ L∞(T) such that∣∣∣∣ [g]f

∣∣∣∣ ≤ 1 a.e. on T.

12. Let f ∈ H∞. Show that there exists g ∈ N(D) such that
Z(f) ∩ D = {z ∈ D : g(z) = 1}.

13. Let {Θi ∈ H2 : i ∈ I} be a family of inner functions. Show that
span {ΘiH

2 : i ∈ I} = ΘH2,
where Θ = gcd{Θi : i ∈ I}.

14. Show that a polynomial p(z) is outer in H2(T) if and only if Z(p) ⊂ {z ∈ C : |z| ≥ 1}.
15. For w ∈ L1(T), define

Ew = span{znw : n ≥ 0}
∣∣
L1(T).

Does there exist w ∈ L1(T) such that z ∈ Ew? Determine all such w.
16. Let M(T) denote the space of all complex Borel measures on T, and define

W = {µ ∈M(T) : µ̂(k) = 0 for k < 0}.
Suppose µn ∈ W converges to µ ∈ M(T) in the weak∗ topology of M(T). Show that

there exists h ∈ H1(T) such that µ̂(k) = ĥ(k) for all k ∈ Z.
17. Let f, g ∈ H2(T,m). Show that fg ∈ H1(T,m). Does the same conclusion hold if

f ∈ L2(T,m)?
18. Using the identification of H1(D) with H1(T), show that convergence in H1(T) implies

uniform convergence on every disc in D.
19. Let f ∈ H∞(D). Show that f(r) converges to f̃ in the weak∗ topology of L∞(T).

9.3. Problem Set III.

1. (a) Let p > 0 and suppose f ∈ Hp(D) with f ̸≡ 0. Does it follow that log |f | ∈ L1(T)?
(b) Let f ∈ Hol(D). Does the existence of non-tangential limits of f at almost every

ξ ∈ T imply the existence of radial limits of f at almost every ξ ∈ T?

2. Let µ be a finite Borel measure on T, singular with respect to m. Define

f(z) = exp

(
−
∫
T

ξ + z

ξ − z
dµ(ξ)

)
, z ∈ D.

Show that |f | = 1 almost everywhere on T.
3. Let f be holomorphic on the open unit disc D with f(0) > 0. If

lim
r→1

∫
T

∣∣ log |fr|∣∣ dm = 0,

then show that f is a Blaschke product.
4. Let f ∈ Hol(D). Show that there exists a function g ∈ L∞(T) such that∣∣∣∣ [g]f

∣∣∣∣ ≤ 1 a.e. on T.

5. Let f ∈ H∞. Show that there exists a function g ∈ Nev(D) such that
Z(f) ∩ D = {z ∈ D : g(z) = 1}.
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Additional Exercises. The following exercises are from N. Nikolskii, Operators,
Functions, and Systems: An Easy Reading, Vol. I.

Chapter 4, Exercises: 4.8.1–4.8.3

9.4. Problem Set IV.

1. Determine whether the following statements are true or false, providing rigorous justi-
fication in each case:

(a) Can a Blaschke product be an outer function?
(b) Does the generalized Jensen inequality hold for Hp when 0 < p < 1?
(c) Can an inner function arise as the uniform limit of Blaschke products with distinct

zeros?
(d) If f ∈ Nev(D) is outer on D, does it follow that f is outer on 1

2
D?

(e) If u ∈ L∞(T) is real-valued, does this imply that its Hilbert transform ũ also
belongs to L∞(T)?

2. Let f ∈ Hol(D). Suppose there exists a non-negative harmonic function g on D such
that |f(z)| ≤ g(z) for all z ∈ D. Show that f ∈ H1(T).

3. Prove that {
g ∈ L∞(T) :

∫
T
gf dm = 0 for all f ∈ H1

0

}
= H∞.

4. Show that the function
1

λ− z
is outer in D whenever |λ| > 1.

5. Let p, q, r ≥ 1 and let f ∈ Hp(D). Suppose that for any g ∈ Hq, the condition
g/f ∈ Lr(T) implies g/f ∈ Hr. Prove that f must be outer.

6. Let σ ⊂ T have positive Lebesgue measure. Define

fn = nχσ +
1

n
χT\σ, n ≥ 2.

Show that 1
n
< |fn(z)| < n for all z ∈ D and that |fn|(T) ⊂ { 1

n
, n}.

7. Let
E = span{zmfk : fk ∈ L2(T), m ≥ 0, 1 ≤ k ≤ n}.

Show that if zE ̸= E, then for some inner function θ we have θ
fj
fk

∈ Nev(D) for all j, k.
8. If f ∈ H1(C+) and f ̸≡ 0, show that∫

R

| log |f(x)||
1 + x2

dx <∞.

9. Let f ∈ Hol(D), f ̸≡ 0, and suppose f = f1/f2 with f, f2 ∈ H1. Show that there exist
g1, g2 ∈ H∞ such that f = g1/g2.

10. Prove that

H2(T) = spanL2(T)

{
1

1− λ̄z
: |λ| < 1

}
.

Additional Exercises. The following problems are taken from N. Nikolskii, Operators,
Functions, and Systems: An Easy Reading, Vol. I:

• Chapter 5, Exercises 5.7.1–5.7.2



HARDY SPACES 85

• Chapter 6, Exercises 6.6.1–6.6.3
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