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HARDY SPACES 3

1. INTRODUCTION

The origins of Hardy spaces can be traced to the year 1915 at Cambridge University, in
the work of the British mathematician G. H. Hardy (1877-1947). Hardy’s contribution,
at first glance, appeared modest: within a short nine-page article in the Proceedings of the
London Mathematical Society, he introduced a family of function spaces of holomorphic
functions—what we now call Hardy spaces.

At the time, this definition received little recognition. The year 1915, though produc-
tive for Hardy—he published nearly a dozen papers—yielded no apparent breakthroughs,
apart from this conceptual seed. The mathematical community, like the world at large,
was preoccupied: the First World War was under way, while Einstein’s general theory of
relativity and Wegener’s bold hypothesis on continental drift (Pangaea) captured much
of the intellectual landscape. Even within mathematics, the birth of Hardy spaces drew
scant attention.

Yet this seemingly auxiliary construct concealed profound significance. Hardy spaces
would ultimately provide a unifying framework connecting diverse areas of mathematics.
They proved central to the development of complex analysis, harmonic analysis, and
later found deep applications in signal processing. In addition, they anticipated whole
domains of modern mathematical thought, including operator theory, optimal control
theory, diffusion theory, and the theory of stochastic processes.

Hardy himself later recognized the broader implications of his original idea and returned
to refine the theory. However, the transformation of Hardy spaces into a fundamental an-
alytical tool was the result of collective effort. The so-called “Golden Generation” of
analysts—including Schur, Marcel Riesz, Frigyes Riesz, Szegd, Nevanlinna, Luzin, Pri-
valov, Smirnov, Kolmogorov, Paley, Wiener, and Zygmund—played an essential role in
expanding and deepening the theory. Their work established Hardy spaces as indispens-
able to modern analysis.

This legacy was then carried forward by a distinguished line of successors who broad-
ened the scope and deepened the applications of Hardy space theory: Beurling, Stein,
Fefferman, de Branges, Helson, Carleson, Kahane, Garnett, Gamelin, Sarason, Havin,
Douglas, Sz.-Nagy, Foias, Fuhrmann, Lax, and Phillips. Through their efforts, Hardy
spaces have become not only a central subject in complex and harmonic analysis but also
a cornerstone of modern mathematical analysis with far-reaching influence across both
pure and applied mathematics.
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2. PRELIMINARY

Let us denote the unit circle in the complex plane by T = {z € C : |z| = 1}. Write
z=12¢%0<6<2r. Then T = {¢? : 0 < § < 2r}. Consider ¢ : R — T defined by
o(x) = €. Then ¢ is a group homomorphism with ker(yp) = 27Z. Hence T = R/27Z. If
J: T — C, then f can be identified on R by f:R — C via the relations

f(x) = f(z +27k) = f(2),
where k € Z and Z € [0,27). That is, the function on T can be identified with 27
periodic functions on R, which allow understanding the notions of continuity, Lebesgue
integrability, etc. on the unit circle T. Further, the arch length measure on T can be
identified with the restriction of Lebesgue measure on [0, 27) in the following way.

Denote dm = %, where m can be realized by m{e? : 0, < 6 < 6,} = % with
0 < 6y — 6y < 27m. Here m is known as the normalized Lebesgue measure on T = [0, 27).

Hence if f is continuous on T, then

(21) [ | 7 F(tydmi).

Now onwards, we shall identify function f on R by f itself and dm(t) = dt. Moreover, m

is translation invariant on [0, 27) and
2 2

Ft—t)dt= | f()dt,
where ¢, € [0, 27). ’ ’

Complex Borel measure: The Borel o-algebra B(T) is the smallest o-algebra
generated by all open subsets (open arches) in T, where every member of B(T) is known
as a Borel set. For simplicity, we write B for B(T).

A function f : T — C = CU{oo} is called Borel measurable if f~*(U) € B(T) for every
open set U of one point compactification space C. Typically, U is either an open subset
of C in its usual topology or U = CK , where K is a compact subset of C.

A complex Borel measure on T is a set function p : B(T) — C satisfying u(0) = 0 and

(2.2) p(E) = ()

for every countable partition {B;}22, of E € B(T). It follows that the series in the right-
side of (2.2) must be absolutely convergence unless p is a non-negative measure. Thus,
|1(T)| < oo necessarily satisfied if p is not a non-negative measure. Consequently, pu

satisfies - .
p(lJBj) =D u(B;)
j=1 j=1

for every disjoint sequence {B;}7, in B(T). We denote the space of all finite complex
Borel measures by M(B). For u € M(B), define

Jull = s { > ) - U B =T}
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The space (M(B), | -||) is a Banach space. Here |- || is known as the total variation norm,
and || = ||(T).

Exercise 2.1. Show that i .
(1) = sup { 3 |8 : | B =T} =sup { 3 u(B)] : | J B; = T}.
=1 =1 i=1 i=1

(Hint: If {B;}$2, is a countable cover of T, then Z |u(By)| < 00.)

i=1
For n € M(B), define a linear functional 7, on C(T) by T,(f) = [ fdu. Then
T

| T, = sup{|T.(f)] : Ifllc < 1} = ||p||. Thus, every p € M(B) defines a bounded
linear functional on C(T) and vice-versa due to the following result.

Theorem 2.2. (Reisz representation theorem) Let T be a bounded linear functional on
C(T), then there exists unique pr € M(B) such that T = T,,. It is equivalent to M(T) =
C(T)*.

Let I be a finite index set and let z; € V for ¢ € I. Let € > 0. Then a w* open nbd of
fo € V* can be written as:

{F eV (f = fol(z) <eiel}

Proposition 2.3. Let E be a topological vector space with dual E*. Consider the weak-*
topology on E*. Then every linear functional ¢ : (E*,w*) — C is continuous if and only
if there exists e € E such that (f) = f(e) Vf € E*. More preciously (E*,w*)* = E.

Proof. < Trivial.
= Since ¢ is continuous the inverse image of an open set is open, i.e. the set
U.={f € E": p(f)] < e} = o~ ({B.0)})
is an open nbd around the point 0. Now recall the basis structure of nbds at a point in
(E*,w*). There exists ey, ea,...,e, € E and 6 > 0 such that
Vi=feb: max  A{[fle)l} <o
is contained in U.. Let ¢;(f) = f(e;),7 € I. Then Vs = {f € E* : max;c{|¢i(f)|} <}
Let fo € Nic; Kerpy = ¢i(fo) =0Vie Il = foe;) =0Viel = foeV;C
U = |¢(fo)| <€, Ve > 0. Since € is arbitrary chosen, fy € Ker ¢. Hence

ﬂKergoi C Kerp = 90:202-%,02- e C.

icl iel
Now
o(f) = ZCiSOi(f) = Z Aif(e) = f (Z Ci€i>
iel iel i=1
and we have shown that ¢ is evaluation at e = cie; +--- + cpe, € E. O

Corollary 2.4. The dual of (M(T),w*) is C(T).
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3. INVARIANT SUBSPACES OF L?(u)

In this section, consider shift-invariant subspaces of square integrable functions on T.
Let

L*(T,n) = {f : T — C is measurable and|| f||5 = / |fIPdu < oo},
T

where p is a finite complex Borel measure on T.
2m

For f € L'(T,m), we define the Fourier coefficients of f by f(n) = [ e~ f(t)dt, where

0
00

n € Z, and the corresponding Fourier series is f ~ 3. ¢ f(n). Consider an operator

S on L?*(T,m) defined by

(3.1) - S()(2) = 2£(2),

where z € T. Then (Sf)(n) = f(n — 1). That is, the Fourier coefficients got a right-shift
due to the action of S. The operator S is known as the shift operator. The following

question can be raised.
Question 3.1. What are the shift-invariant subspaces E of L*(T, u)?

That is, when zE C E? We shall use the notation clos E for the closure of E, and E,
the complex conjugate of E. We always consider £ to be a closed subspace unless it is
specified.

Example 3.2. When f € L*(u), the space Ey =span{z"f : n > 0} is shift-invariant.

Further, what are f € L?(u) such that F; = L?(u)? If so, we say f is a cyclic vector.
More generally, we consider identifying f € L?(u) such that zE; = E;.

Let E be a closed subspace of L2 Typically, we discuss the characterization of the
following two distinct cases.

We say E is simply invariant (or 1-invariant) if z£ C E and zF # E. On the other
hand, when zF = E, we say F is doubly invariant (or 2-invariant). Note that zF = F
if and only if ZE = E (since 2z = |2|*> = 1). This means zF C F and zF C F, and hence
FE is known as reducing space as well.

For a measurable set 0 C T, the space E, = x,L*(1) = {xof : f € L*(un)} = {f €
L*(p) : f =0 pa.e. on T \ o} satisfies zE, = E,.

Question 3.3. Does every reducing subspace look like E,?

Theorem 3.4. (Norbert Wiener) Let E C L*(T,u). Then zE = E if and only if there
exists a unique (up to set of measure zero) measurable set o C T such that E = x,L*(1).

Proof. Suppose zE = E. Let Pg be the orthogonal projection of L?(u) onto E. Set
X = Pgl (the evaluation of Pg at the constant function 1). Then y € F and 1 — y =
(I — Pg)l € E+. But 2"E C E, implies 2"y € E and hence 2™y L 1 — x, Vn € Z. That
is,

(3.2) /an(l —X)dpu=0,Vn e Z.
T
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Let g = x(1 — %), then dv = gdu is a finite complex Borel measure because of x € L'(u).
Thus by 1} T, : L*(n) — C defined by T,(f) = [ fdv satisfies T,(z") = 0. Since

T
trigonometric polynomials are dense in C(T), it follows that 7,(C(T)) = {0}. By Riesz
representation theorem, 7, = 0 and hence v = 0. (Note that ||T,|| = |lv||). That is,
g = x(1 — ) = 0. This implies that x = |x|*>. Thus, x takes values either 0 or 1. Let
o={teT: x(t) =1}. Then o is measurable. For simplicity, let P denotes the space of
all trigonometric polynomials on T. Since x € E, we get 2"y € E and hence P C E. This
implies clos(xP) C E. On the other hand, clos(xP) = xL*(u1), as we know closP = L?(pu).
Thus, xL?(u) C E. Therefore, it remains to show that xL?(u) = E.

For this, let f € F and f 1 2"y, Vn € Z (since clos(xP) = xL*(u1)). Since 2"f € E
and 1 —x L 2"f, Vn € Z. It follows that

(33) [ fan= [ 250 - vdu=o
T T
Vn € Z. Thus, (3.3) is satisfied by every polynomial p € P, and hence for every function

g € C(T) in place of p. By Theorem we get fx = f(1 —x) =0 a.e. p. This implies
that f =0 a.e. u. Thus yL?*(T) = FE. O

3.1. Simply invariant subspaces of L?(j1). Let B = {z"},cz. Notice that the

Fourier series of f € L*(T, m) with respect to the orthonormal basis B is f ~ _ f(n)z",

where f(n) = [ fz"dm. This implies that L?(T,m) can be identified with {*(Z). Since
T

(z%f)(n) = f(n — k), multiplication operator f — zf acts as a right-shift operator on
I2(Z). And hence it is legitimate to consider the space
H? =span{z": n >0} = {f € L*(m) : f(n) = 0,n < 0},
known as Hardy space. The space H? is a simply invariant subspace of L?(m), and
plays a prominent role in complex and harmonic analysis H?2.
The following theorem says that all the simply invariant subspaces have a somewhat
similar structure.

Theorem 3.5. (A. Beurling, H. Helson) Let E be a closed subspace of L*(T) and zE C
E, zE # E. Then there exists a unique © (up to constant of modulus 1) with |©| =1 a.e.
m on T such that E = ©H?.

Notice that f s ©f is an isometry on L*(m), and hence ©H? is closed.

Proof. Since zE C E (zFE # E), we consider the orthogonal complement of zE in E, and
denote it by £ © 2E = (zE)t. Then E © zE is non-trivial, and consider © € E © zF
with ||©]]2 = 1. Notice that © € E and © L zFE. Hence 2"© € zE,Vn > 1 and
O 1 2"0,Vn > 1.

2m 2m
/ 002"dm = / |©22"dm =0, Vn > 1.
0 0
By taking complex conjugate, we have

2m
/ |©22"dm =0, Vn > 1.
0
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—

This implies that (|©|?)(n) = 0, Vn € Z ~ {0}. By the uniqueness of Fourier series, it
2T
follows that |©]* = ¢ (constant) a.e. m, and we get 1 = [ |©]*dm = c. Thus, [0] =1 a.e.

0
m. Clearly, f — ©Of is an isometry. Note that © € E. Hence 2"0 € E, Vn > 0, implies
linear span of {z" : n > 0} has the same property. Let P, = span{z" : n > 0}. Then
OP, C E and clos (OP,) = O clos(P,) = ©H? Thus, ©H? C E. It only remains to
show that © H? coincides with E.
Let f € E and f L ©H?. We claim that f = 0. Since f L ©H? we get f L ©2", Vn >
0. Also, f € E implies z"f € zE,Vn > 1 and hence 2"f 1 ©,Vn > 1 since © 1 zFE.
Thus,

/f@é"dm =0,Vn>0 and/z”f@dm =0,Vn > 1.
T T

That is, (f©)(n) = 0, Vn € Z. This implies f© = 0 a.e. m. Since |©] = 1 a.e., we get
f=0ae m.

Uniqueness: Let ©,H% = ©,H? and |©,| = |©3] = 1 a.e. on T. Then ©,0,H% = H?
and we get ©,0, € H?. Also, by symmetry 0,0, € H?, or 0,0, € HQ/.\ But H2N H? =

constant. (Hint: If f € H?, then f(n) = 0,n < 0 and f € H?, then (f)(n) = f(=n) =
0, n < 0. This means f(n) =0,Yn € Z \ {0}.) Hence ©,0, = c. Since [0:]|602] = 1, we
have ©; = c©,, where |c| = 1. O

Corollary 3.6. (Beurling theorem) Let E # {0}, E C H?> and zE C E. Then there exists
© € H? with |©| =1 a.e. on T such that E = OH?.

Proof. Tt is impossible that ZE' C E. On the contrary, suppose this could be the case. Then
for f € E with f # 0, there exists n € N such that f(n) # 0. By assumption, z""' f € E.

However, (z'1f)(=1) = f(n) # 0 implies 2"t f ¢ H? leads to a contradiction. This
means F is simply invariant, and in view of Theorem (Beurling-Helson), it follows
that £ = ©H? and © € H? by definition of H?. O

Definition 3.7. A function © € H?, with |©| = 1 a.e. is called inner function.

3.2. Uniqueness theorem in H2.
Theorem 3.8. If f € H? and f = 0 on a set of positive measure, then f =0 a.e. on T.

Proof. For f # 0,E; = span{z"f : n > 0} C H? and zE; C Ey = ©H? where O
is an inner function. Let 0 = {z € T : f(z) = 0}, Then m(o) > 0. Let us verify
that ¢g|, = 0, Vg € E;. Since g € Ey, there exists sequence p, € P, (the space of all
polynomials) such that p,f — ¢ in L?*(m). Hence

0§/|9|2dm:/‘9—pnﬂ2§Hg—pnf||§—>0asn—>oo.

Implies g|, = 0 a.e. m. In particular, for ¢ = ©, ©|, = 0, which is a contradiction. O
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3.3. Invariant subspaces of L?*(u). (Absolutely continuous and singular subspaces)

Let p be a finite Borel measure on T, and E C L?(u) with zE C E. We consider
invariant subspaces of L?(u) which are based on Lebesgue decomposition of y. A measure
v is called absolutely continuous with respect to m if m(B) = 0 implies v(B) = 0,
where B € B and we write v < m. By Radon-Nikodym theorem, there exists a positive
integrable function w such that dv = wdm. That is,

/dez/:/qrfwdm

for each Borel measurable function f on T.

A measure v is called singular with respect to m if it is concentrated on a set C' of
Lebesgue measure zero. That is, v L m if v(B) = m(B N C) for every B € B(T). Let p
be a finite and positive Borel measure on T, then by Lebesgue decomposition,

W= fqg + s, where pu, < m and pgs L m.
So, if f € L?(u), then

[irtdn= [ 1Pau+ [ 17Pn,

T T T

By this, we can construct an orthogonal decomposition of f. Let ¢ be the concentration
set for ps. Then

(3.4) L*(ps) € L*(n) and L*(pa) C L*(p) and L*(ps) L L*(pa)-
Now, f = fx1wo + fXo = fa + fs. This means
(35) L*(p) = L*(pta) © L*(ps).

The subspaces L?(u,) and L?(u,) are invariant subspaces and are known as absolutely
continuous and singular spaces, respectively.

We need the following results in order to prove the main result about invariant subspaces
of L?().

Lemma 3.9. Let p be a finite complex Borel measure on T.

(i) If @(n) = [e™du(t) =0 for alln € Z, then pu = 0.
T

—

(11) If (dp)(n) =0 for all n € Z ~ {0}, then du = cdm.

Proof. (i) Let f € C?*(T), then f is Borel measurable and we have
1.0) = [ f@aut
T

= [ (S dmem)ante

nez
= Zf(n) / e™dyu(t) (by Fubini’s Theorem)
nez T
= 0 (by assumption).
Hence T,,(f) = 0 for all f € C*(T). Since C*(T) is dense in C(T), by Theorem [2.2] we get
w=0.
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(ii) From the given condition and similar to the proof of case (i), we can write
/ F(t)dp(t) = f(0) / dp = (T / f(t)
Thus dp = p(T)dm, where dm = dt. O

Let T': H — H be an isometry (or 7" € iso(H)) on the Hilbert space H. A subspace D
of H is called wandering if 7D 1L T™D for m # n (m,n > 0).

Lemma 3.10. (H. Wold, A. Kolmogorov) Suppose T' € iso(H) and TE C E. Let D =

E o TE. Then D is a wandering subspace of T, and E = ( > EBT”D) o < N T"E) =
n>0 n>0

Ey® Ey, where T|g,, is unitary, and T|g, is completely non-unitary (i.e. if E' C Ey and

TE' C E' implies T|g: is not unitary).

Theorem 3.11. (H. Helson 1964) Let dp = wdm + dus be the Lebesgque decomposition
of a positive finite Borel measure p and let E C L*(u) be simply invariant. Then there
exists 0 C T with m(c) = 0 and a measurable function © such that

E=Ey® E, = 0H?® x,L*(1,), where

OH? C L*(ita), XoL*(us) C L*(us) and
(3.6) 102w = 1.
Conversely, if o is measurable and © verified (@), then ©H? @® x, L*(115) is simply in-
variant.

Proof. Set D = E© zE = (zE)* # {0} and let E = < > z"D) @ ( N z“E) = FEy® FEw
n>0 n>0

be the Wold-Kolmogorov decomposition of E. Let © € D with ||©|]y = 1, then © € E
and © L zFE. This implies z"© € zE, Vn > 1, and hence 2"© L ©Vn > 1. That is,

/(z”@)(:)d,u = / 1©22"dp =0, ¥n > 1.
T T
And by conjugation
/ 1©)22"du =0, ¥n > 1.
T

Thus (|%)(n) =0,Vn € Z~ {0}. By Lemma (i), we get |O|?du = cdm. But,
1= [|©Pdu=c [dm = c. Thus,
T T

dm = |0*du
= |®f*dua + O dps
(3.7) = |O]Pwdm + |O]*dps.
Implies |[©*> = 0 a.e. p, on T (because m has no singular part) and dm = |©O]*wdm

implies [©]?w = 1 a.e. m. By Wold-Kolmogorov Lemma [3.10} restriction z|p_ is unitary,
2B, C E = Ey, @& Ey, and z|g, is non-unitary on every section of Ey, etc. Thus, we
conclude that zE,, = E,. By Wiener theorem, E., = x,L?*(u) for some o C T. As © €
D C Ey L E, implies © L x,L?*(y). In particular, this implies [ ©0du = [ |0]*du = 0.

Hence O, = 0 a.e. p. But © # 0 a.e. m implies m (o) = 0 (since dm = |©|?du). Thus, in
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view of we obtain
Boo = XoL*(11) = Xo L*(1s) C L*(pts)-
We have already shown that D C L?*(u,), because D C Ey 1 E., = L*(u,) implies
D C L?*(ug,). Therefore, Ey = > @2"D C L*(u,). Also, span{z"© : n > 0} C Ey, since
n>0

© € Ey. We claim that E, = span{z"© : n > 0}.

On the contrary, suppose there exists f € Eyospan{z"© : n > 0}. Then f 1 2"O, Vn >
0. Recall that © L zE. But f € E, implies 2" f € E and hence z"f L ©,Vn > 1. Thus,

/fmdu:OVnZO and [ 2"fOdu=0,Vn>1.

That is (f/C:)d\u)(n) =0Vn € Z. By Lemma (i), it implies that fOdu = 0. Since © # 0
a.e. m and f € Ey C L*(u,), it follows that f = 0. Now, by Parseval identity, it is easy
to verify that
Span{z"© :n >0} = {Zanz”@ : Z lan|* < oo}.
n>0 n>0
(Notice that {2"©},>0 is an orthonormal set in L2(11,), since dy, = wdm and |©]*w = 1.)
Further, it is easy to see that
Ey = @{ Zanz” : Z lan)? < oo} = OH?.
n>0 n>0

Indeed, f — Of is an isometry from L?*(T,dm) onto L*(du,) = L*(wdm). That is,
[ 11 = [ (1P
T T
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4. FIRST APPLICATIONS

We have seen that there is one to one correspondence between simply invariant subspace
of L?(p) with the set of measurable unimodular functions (inner functions) due to Helson’s
theorem. This congruence opens many possibilities to apply Hilbert space geometry and
operator theory to L?(u1) and vice-versa. Here we discuss inner-outer decomposition of the
Hardy class functions, Szego infimum, and Riesz brother’s theorem for “analytic measure”.
That is, for which positive measure p on T, the “analytic half” P, = span{z" : n > 0} is
dense in L*(T, u).

4.1. Some consequences of Helson’s theorem. Let i be a positive Borel
measure on T with du = wdm + du,. Notice that if 2E C E C L*(u), then E = E, ® E,,
where 2FE, C E, C L*(u,), because E = OH? & x,L*(u,), where ©H* C L*(u,) and
Xo LZ(ps) C L2 (ps)-

(a) If u = pg, then zE C E C L?*(us), implies 2E = E, because, by Helson’s theorem
[3.11] we already have E = x,L*(p1s), which is 2-invariant.

(b) Show that for du = du, = w dm, the followings are equivalent:

(i) There exists F such that 2E C E C L*(p14)-
(ii) There exists © such that [O*w =1 a.e. m.
(iii) w > 0 almost everywhere m.

(iv) m is absolutely continuous with respect to fi,.

(c) If du = dpy = wdm and 2E C E C L*(u1,), then E = ©H? with |6]2w =1 a.e. m.

4.2. Reducing subspaces. Let f € L*(u) and du = wdm + dus. We look for
sufficient conditions that ensure that E is reducing. If there exists measurable set e C T
such that m(e) > 0 and f|. = 0. Then Ey is a reducing subspace, and there exists
o C T~ e such that E; = x,L*(u). In fact, 0 = {z € T : f(z) # 0}. On the contrary,
suppose zEy C Ey. Then by Theorem [3.11] we get Ey = OH?@® xL? (), and hence f € Ey
implies f = f, + fs, where f, = ©Oh, h # 0 a.e. m (by Theorem , since h € H?). This
implies f, # 0 a.e. m, which is impossible because f|. = 0 and m(e) > 0 implies f,|c =0
with m(e) > 0. Thus, E; = zE; = x,L*(u) for ¢ C T (by Wiener theorem). Notice that
E; = span{z"xt1f : n > 0} = x1eEr = XoL*(1) and 1 € L?(u), implies 0 C T \ e.
Indeed 0 = {z € T : f(2) # 0}, which is defined up to a set of ;1 measure zero.

4.3. The problem of weighted polynomial approximation. We know that the space
of trigonometric polynomials P = span{z" : n € Z} is dense in L”(u) for every positive and
finite measure p and 1 < p < co. Let P, = span{z" : n > 0}. One of the main problems is
describing the closure of P in L*(p1). Denote H?(p) = clos Py |z2(,). The most important
part of this problem is to distinguish between the completeness case H?(u) = L*(u1), from
the incompleteness case H?(u) C L*(p).

Corollary 4.1. H?(uu) = H?(u,) ® L*(ps).

Proof. H*(u) = span{z" : n > 0}. By Helson decomposition H*(u) = E, & F, with
E, C L*(na) and E, C L*(us). Since we know that zE, = E,, by Wiener theorem,
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Es = xoL?(us) with m(c) = 0. Since 1 € H?(u1), we have 1 = 1, + 1, with 1, # 0 a.e. .
But 1, € E, = x,L*(ps) implies xo L?(11s) = L*(us), i.e., By = L*(jus).

Further, (P,), C E, implies clos(P,), = H*(u,) € E,. But, for f € E, C H2( )
implies there exists p, € P, such that || f — py|[r2(, — 0. Since ||f — pn||L2 o = IIf =
PullZauy 1 = PallZaquy = I = Pallizg,) + IPnllZzq., (since f =0 p-ae) and ||f -

pn||L2 () = <|f _an 2(pa) T “anL2 (us) = =|f _pn|’%2(#) — 0 we get f € H?(pta)- -

Remark 4.2. Note that for H?(u,), the closure of P, in L?(u,) has two possibilities:

(i) 2H?(pe) = H*(i1a) and hence by Wiener theorem H?(p,) = XoL*(ita) = L*(ta),
because 1, € H?(j,) implies that there does not exist o C T such that m(T~\¢) > 0.
(i1) 2H?(1a) © H?(1a)(C L*(pq)), and hence H?(pu,) = OH? with |0]2w = 1.

The following results help to distinguish the above two cases.
Lemma 4.3. H?(u) is reducing (and hence H?*(u) = L*(n)) if and only if z € H*(p).

Proof. If H*(u1) is reducing, then z € H?*(u) is trivial. Suppose z € H?(u), then exists
Pn € Py such that ||Z — py||r2¢s) — 0. Let ¢ € P, Then

/ |2q — qpa|*du < ||qHZO/ |Z — pn|? = 0 as n — oo.

T T
This implies 2P, C H?*(u), or Py C 2H?*(u) (closed). Hence H?*(u) C zH?(u), i.e.
ZH?*(p) C H*(p). But 2H?*(u) € H?(p) implies zH?*(p) = H?(u). Now, it is clear from
Wiener theorem and theorem [3.8| that H?(u) = x,L*(1) = L*(p). O

Corollary 4.4. H*(u) = L*(n) if and only if dist(1, HZ(u)) = 0, where HZ(p) is the
closure of span{z" : n > 1} in L*(p).

Proof. Let H*(u) = L*(u), then z € H?(u), implies dist (1, H(u)) = dist (z, H*(u)) = 0.
On the other hand, if dist (1, H2(x)) = 0, then z € H?(u), and hence H?(u) = L*(p). O
Note that the quantity
dist® (1, H3 (1)) = inf /|1 — p*du
pGIP’
is known Szegé infimum, where P = span{z :n > 1}

It can be seen that dist(1, Hg(,u)) depends only on the absolute part of the measure
p. Let du = wdm + dpus be the lebesgue decomposition of p. As similar to Corollary [4.1]
it can be seen that HZ(u) = HZ(1a) ® L*(ps). We also use the fact that if M; and M,
are subspaces of a Hilbert space H such that M; L M,, then Pyqen, = Py, + Py, for
M, L Ms. Thus, we can write

dist* (1, HA) = [Py L 11Bsq,

= [[(Prz(u.) ® Prauy) L (Lo + 15)[l22()
= HPHS(Ma) 1 111"%2(”@) ( since 15 € LZ(IMS))
= inf /|1 — p[Pwdm.

peP Jr
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The evaluation of Szeg6 infimum is intimately related to the multiplicative structure of
H?.

4.4. The inner-outer factorization. Recall that a function f € H? is called inner if
|f| =1 a.e. on T. On the other hand, f € H? is called outer if E; = H?.

Theorem 4.5. (V. Smirnov, 1928) Let f € H? and f # 0, then there exists an inner
function finn € H? and an outer function fou € H? such that f = finnfour- Moreover,
this factorization is unique and E; = fin H>.

Proof. Note that Ey C H?, Ey # {0}, and E/ is not reducing, else z € H?. Here, E; =
span{z"f : n > 0} C H? By Theorem [3.5, we have E; = ©OH? where [0] = 1 a.e.
m. Let fi, = O, then f = Og, where g € H% We claim F, = H?. Let h € H?. Since
E; = ©H? and ©h € ©H? there exists p, € P, such that p,©g = p,f — ©h in L*. But,
multiplication by an inner function is an isometry, we get
[Png = hll2 = [©(png — h)[|l2 — 0.

Hence, F, = H 2. Here g = fou is desired outer function.
Uniqueness: Take f = fifo, where f; is inner and f5 is outer. As f; is inner, h — fih is
an isometry, and hence as Fy, = H?, we get

finnHQ = Ef = m{z”flfg n > 0} = flm{z”fg n > O} = leQ.
By the uniqueness of the representing inner function of the simply invariant space Ey

(cf. Theorem and Corollary [3.6)), we get fin, = Afi1 with [A| =1, and Afi four = fi fo
implies four = Afo. O

4.5. Arithmetic of inner functions.

Definition 4.6. Let ©,, O, be two inner functions in H2. We say ©, divides O, if 8—? € H?.

Equivalently, ©, divides O, if and only if ©,H? D ©,H?2. For this, if ©, = ©0,, then ©
is necessarily inner, and ©,H? = ©,0H? C ©,H?, since ©H% C H?. On the other hand,
if ©,H? D ©,H?, then we get O, € ©,H? implies © = g—f € H?.

We deduce the following two elementary properties:

Theorem 4.7. Let © = ged{©1, 0}, the greatest common divisor of ©1 and O. Then
(i) span {©,H? ©,H*} = OH*
(ii) ©1H? N OH? = OH?, where © = lem{01, O, }.

Proof. (i) ©xH? C span{©,H? ©,H?} = ©OH?; k = 1,2 for some inner function © (by
Beurling’s theorem) implies © divides Oy ; k = 1,2. Let ©' be another divisor of Oy : k =
1,2. Then ©'H? > ©,H?, and hence ©'H? D span{©,H?; k = 1,2} = ©H?. This implies
©' divides © and thus © = gcd{©y; k = 1,2}. The proof of (ii) is similar to (i). O

Definition 4.8. Let {©; : i € I} be a family of inner functions.
(i) © = ged{©; : i € I} if O divides each ©;, and © is divisible by every other inner
function that divides each ©;.
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(i) © = lem{O; : i € I} if each O; divides © and © divides every other inner function
that is divisible by each ©;
Convention: In case the ged or the lem does not exist, we write ged{©; : i € [} =1
and lem{©, : i € I} = 0.

Corollary 4.9. span{0; € H? : i € I} = OH?, where © = ged{0; : i € I} and
NO;H? = OH?, where © =lem {0, : i € I}.

Corollary 4.10. Let F be a proper subset of H>. Thenspan{z"F : n > 0} = ©OH?, where
© = ged{ finn : f € F\{0}}, and fin, stands for inner factor of f.

Proof. We have span{z"F : n > 0} = span{fi,.,.H*> : f € F\ {0}}. (By Smirnov’s
theorem). By applying Corollary we get the required. 0

4.6. Characterization of outer functions.

Theorem 4.11. (Integral Mazimum Principle) Let f € H?. Then the followings are
equivalent:

(1) f is outer

(ii) f is a divisor of the space H?, i.e. if g € H? and 4e€ L?, then 4e H?.

Proof. (i) = (i): Let f = fiunfouw be an inner-outer factorization of f. Then f,, =
f;m = % € L? because of fi,, € H?> C L% By (ii), we get fin, € H?. But fi,, € H?
implies fin, = A (constant) with |A\| = 1. Hence f = A fou.

(i) = (ii): Given f is outer, we have E; = H?. Since 1 € H?, there exists p, € P, such
that p,f — 1in L% Let g € H? and h = % € L?. Then

@) g b= [ lpaf = 1 < louf ~ 1l > 0 a5 0 .
T T

But p,g € H? implies (p,g)(k) = 0 if & < 0. Since ¢ — ¢(k) is continuous linear
functional on L'(T) for each k, by (4.1) we get (h)(k) =0, Vk < 0. Thus h € H>. O

Corollary 4.12. If two outer functions fi and fy verify |fi] = |f2] a.e. on T, then
f1 = Afy where |\ = 1.

Proof. Since f, is outer, f; € H?, and |%| =1 € L?, by Theorem [4.11} we get % € H>. In

the similar way g = % € H? implies % = A (constant) and hence f; = Afy with |[A\| = 1.

Thus, an outer function is completely defined by its modulus. 0

Corollary 4.13. Let w > 0, w € L(T). If there exists f € H* such that |f|*> = w a.e.
T, then there exists a unique outer function fo € H? such that | fo|*> = w a.e. T.

(Hint: By Smirnov theorem, f = fi.n four €tc.)
Corollary 4.14. If f € H*(T) is simultaneously inner and outer then f is constant.

Proof. Since f € H*(T) is inner |f| = 1 and hence 1/f = f € H*(T) by the Theorem
4.11] Since f, f € H*(T) hence f is constant. O
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4.7. Szego infimum and Riesz Brother’s theorem. Here we consider two theorems
in two different settings by using the fact that in an orthogonal complement of the analytic
polynomials P, the absolute component of a measure is only important.

Theorem 4.15. (Szegd and Kolmogorov) Let p be a finite Borel measure on T with
Lebesque decomposition dp = wdm + dy,, where w € LY (T). Then

(i) either there does not exist any f € H? such that |f|*> = w a.e. m, then
ot J st =o
+
(ii) or there exists (unique) f € H? such that |f|* = w a.e. m, and f is outer, then
it [ 1= pPdu = IO
peP+ T

Proof. (ii))We know that the Szegd infimum I will satisfy
I? = dist®(1, HZ(p)) = dist?(1, H3 (pa))

= 1nf/|1—p]2wdm

pePY
Given that |f|? = w a.e. m, and f is outer. Hence

— inf / f — pfPdm.

As f is an outer function, we can verlfy that span{z"f : n > 1} = zH? Hence [ =

disty2(f, zH?). Note that f = 3 f(n)z" = f(0) + g, where g € zH?. Since f(0) L zH?,
n>0

it follows that I = dist2(f(0), 2zH2) = |f(0)].

(i). Now, we consider the invariant space F, = HZ(ju,). If zE, # E,, then there exists ©

such that E, = OH? with |©]*>w = 1. But 2z € F, and hence z = Of for some f € H?.

This implies that |f]? = % = w (since |z| = 1), and this leads to case (ii). Hence,

case (i) is possible only if zE, = E,. But, then E, = L*(u,) by Remark [£.2[i). Hence
dist(1, H3 (1)) = 0, since 1 € L* () = Ha(11a)- O

The above Theorem (Szegd and Kolmogorov) leads to the problem of computing | f(0)|?
in terms of w. In order to do this, we have to consider H? as a space of analytic functions
on the unit disc, which we do later.

Riesz Brother’s result is an important consequence of Helson’s theorem. For that, we
need to recall an important result related to the Radon-Nikodym derivative.

Let |p| be the total variation measure of a complex-valued Borel measure p on T, i.e.

\p| (o —Sup{zm 0i)| : {oi}ier is a partition of o in B(T )}

el
Suppose 4 is absolutely continuous with respect to a positive measure A on B(T). Then

there exists p € L*(\) (the Radon—Nikodym derivative of 1 with respect to \) such that

(o / pldA.
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Theorem 4.16. (Riesz Brother’s, 1916) Let 1 be a complex-valued Borel measure on T
such that
/Z”d,u =0,Vn > 1.
T

Then < m and du = hdm, where h € H' = {f € LY(T) : f(k) =0, k < 0}.

Note that, a measure yp that satisfies [ z"dp = 0 for n < 0 will be called analytic
measure. !

Proof. Tt is clear that u < |p|. Let g € L'(|u|) be the corresponding Radon-Nikodym
derivative of pu with respect to |p]. We claim that |g| = 1 a.e. u. For § > 0, set 0 = {t :
9(0) < 1= 6. Then lul(0) = [ Igldl] < (1~ 6) (). Tmaplies (o) = . Simlarly: the

case o' = {t : |g(t)| > 1 — 5}. This proves the claim. As a consequence of the Corollary

A1 we get
(4.2) Hg(|ul) = H*(|ula) & L*(|uls)-
But |g| =1 a.e. |u| implies g € L*(|u|), and

(", G)12()) —/Z”gd\u! —/Z"du—O, n>1.
T

T
In other words, g L 2™, n > 1 in the Hilbert space L?(|u|), and hence g L HZ(|u|). In view
of (4.2)), we obtain g L HZ(|u|s). Now, by construction, |g| = 1 a.e. |u|, which implies
lg| = 1 a.e. |u|s. This is impossible ( since g L HZ(|u|s) ), unless |u|s = 0. Finally, p << ||

implies
(o) = [ gdlul = [ galy = [ guinm

for each o € B(T). That is u < m with Radon-Nikodym derivative h = gw € L'(T), and
h(k) = / ZFhdm = / ZF quwdm = /zkdu =0 if k< —1.
T T T
Hence h € H'. O

Question 4.17. *
For g € L'(T), define gy = span{z"g : n > 0}|.1(1). Characterize all possible g € L'(T)
such that inf ||1 —pgl|s = 0.

pepP?

4.8. Exercises.

Example 4.18. b, =

an inner.

Proof. by = X — 22@0 A z”(\z| = 1) and clearly b,\(k) =0fork <0,and ), \ZA(k)IQ <
o0; hence by € H?(T). Moreover, for |z| = 1 we have |\ — z| = [\ — Z| = |1 — Az|, thus
lba(2)] = 1. O
Example 4.19. f =TI} by, is an inner.

Proof. For f,g € H*® we have || fgllcc < || flloollg]|cc hence H*.H>* C H*, a product of

inner function is inner. [l

Example 4.20. S;, = exp( a(<+z)) where a > 0, € T.
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Proof. As Re (HZ) = Ilﬁ_lili > 0 for any ¢ € T, ]z] <1,z # T, we obtain that |S¢,| = 1 on
T. Moreover for every n > 0 we have Sga = Jpz Sga z)dm = lim,y [1 f(z)dm =0
where f(z) = 2"S¢q(2) and f.(z) = f(rz),() <r<l (fr( ) = 0 since f, is analytic in
|z| < 1/r and f,(0) =0.) O
Example 4.21. f =[], S, o, where a;, >0 (€ T,

Proof. See the proof of (ii). O

Examples related to the outer functions you will get in Chapter [6] Subsection [6.2]
Exercise 4.22. For every f € L? prove that f - H>*(T) C E; = span{f, zf, 2%f,... }.

Proof. Clearly fP, C Ey, where P, is the space of analytic polynomials. It only remains to
show (fP,)*= C (fH>)* (orthogonal complement in L?). Let g € (fP,)*, i.e. [ gfpdm =
0 for any polynomial p € P,. Thus for any h € H*, fT gfhdm =0 because gf € L' and

h is a weak limit o(L>, L') of its Fejer’s polynomials. () O
Example 4.23. If f € H*(T) such that 1/f € H*(T), then f is an outer.
Proof. By the exercise 4.22, 1 = f-1/f € E; hence E; = H*(T). O

Exercise 4.24. Let f,g € L*(T) (thus fg € L'(T)). Show that for every n € Z, fg(n) =
> rez 9(k) f(n — k); the series converges absolutely.

Proof. By Cauchy Schwarz’s inequality [|f(g — ¢')|| < [|fll2]lg — ¢'||2, the multiplication
Myf = fg is continuous L*(T) — L'(T). Moreover the Fourier series g = >, ., 9(k)2*
converges for the norm of LZ(T) Hence fg = > ., (k)2 f converges in L'(T), wich

implies fg(n) = 3., 30k)(z* ) (n). The calculation follows from (2% f)(n) = f(n—k). O
Exercise 4.25. Let f = fifouw € H*(T). Show that sup{[g(0)| : ¢ € H*(T),|g| <
|f] a.e. on T} = | four(0)]

Proof. From the previous exercise @(0) = @(O)QZ(O) for all ¢, € H?(T). Moreover for
every inner function h, we have |h(0)] < ||h|l; = 1. Given g € H*(T,)|g| < |f|, which
implies [§(0) = [Gin(0)Gout(0)] < |gout(0)]. Then by Theorem

GO < GO = inf [ 10— pPlofim < g [ 11— = Fua O
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5. CANONICAL FACTORIZATION OF HP-SPACES ON DISC

In this section, we discuss the canonical factorization of functions in H?- spaces on the
open unit disc as a product of three factors, namely a Blaschke product, a singular inner
function, and an outer function in its Schwarz-Herglotz representation. This will help us
analyze the questions raised earlier. In particular, Szego infimum etc.

Definition 5.1. Let D = {z € C : |z| < 1} and Hol(ID) denotes the space of analytic
functions on D. For p > 0, set

2m
HP(D) = {f € Hol(D) : || f||%» = sup / | f (re™)|Pdt < oo} ,
0<r<1.Jo
and H*(D) = {f € Hol(D) : ||f|lg= = sup|f(z)] < oco}. Here dt is the normalized
zeD

measure on T. )
For p > 1, set L? = LP[0, 27| = (L?[0,2x],dt) and HP = {f € L?: f(k) =0, k < 0}.
The space HP(D) and H? are called Hardy spaces of the disc and Hardy space
respectively. Later on we canonically identify these two spaces as same.

5.1. Properties of H? spaces.

(i) H?(D) is a linear space.
(ii) f — || f|lg» is @ norm if p > 1.
(i) H?(D) ¢ HY(D) if p > q.
(iv) For p =2, let f € Hol(D), and ) )
=> f(n)z", f(n) € C.
n>0

By Parseval’s identity

27
|1k =3 1w 0 < <1
0

n>0

2m
su re)|?dt = F(n))?
sw [ 1ty > If0
Thus for f € Hol(D), we have f € H*(D) if and only if Z |f(n)]?
n>0
(v) If 1 < p < oo, H? is a Banach space, and 0 < p < 1, H? is a complete metric space
[12](p. 37). If p < 1, then ||.||, is not a true norm, in fact H? is not normable.
However the expression d(f, g) = ||f — g[| defines a metric on H? if p < 1.

and we have

Example 5.2. The function f(z)=71 is analytic on D but is not in H*(DD).

oo

Proof. Since é = > ", 2", the coefficients of f are not square-summable. ([l

For f € H®||f2 = supge,; fy | (rQ)2dm(C) < IIfIl% < o0 —> f € H? hence
H> c H?.
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Example 5.3. The inclusion H>~(D) C H*(D) is strict since the function f(z)=log = is
an unbounded analytic function on D but it is member of H?(D), because it has a Taylor

series:

log

has square summable coefficients.

5.2. A Revisit to Fourier Series. The functions in L?[0,27] can be thought of as
functions on (0, 27), which can be extended periodically to real line R.
Lemma 5.4. Let f € L'0,2n], g € LP[0,27], 1 < p < oo. Then
(i) for almost every x € (0 27r) y— f(z —y)g(y) is integrable on (0,2m).
(i1) f*g(x fo g(y)dy is well defined and belongs to LP|0, 2.
(1i1) ||f*9||p < Il ||9||p

Proof Note that (:1: y) — f(x — y)g(y) is measurable, and by Fubini’s theorem |f x*

) < [1f(z—y)|lgy )|dy < 00 a.e. z. By Minkowski integral inequality,
IWE; / dyH / 17~ )9y = ol 1]
Further, if f € L'(0,2x) and f(n) Je~"dt, then (f «g)(n) = f(n)g(n), when-
ever g € LP and 1 < p < oo (using Fublnl s theorem) O

5.3. Approximation identity (or good kernel).

(i) If a family (E,) C L' satisfies
(a) sup ||Eq|; < oo

(b) lim E,(n) = 1,
then lim || f — f * E,|[, = 0 for f € LP(1 < p < o0). This is still true for p = oo, if

f € C(T) (called approximate identity of L*.)
(i) If (E,) C L' satisfies
(a) sup ||[Eq|1 < oo

2
(b) lim/ E.dx =1
> Jo
(¢) im sup |E,(x)|=0,Vd>0.
& s<jzl<m

then conditions of (a) and (b) of (i) is satisfied and we get lim || f — f * E, ||, = 0.

5.4. Dirichlet, Fejer and Poisson Kernels. (i) Dirichlet kernel
LR sin(m + 1)t
l)m — tkt _ 2 )
D¢ sin(t/2)

k=—m

(ii) Fejer kernel
k| > 1 (sin”T“t>2
n+1z Z( n+1 ~ n+1\sin(t/2)/

k=—n

’fL
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(iii) Poisson kernel
it 11
P.(t) = P(re")

_ _ k| ikt
7—|1—reit|2izr e, 0<r<l1.

keZ
Result: If f € L, then

(1) f*Dp(t) = Z f(k)e* = S,,(f:t) (Partial Fourier series sums of f)
k=—m
(2) fxD,(t) = Zf(])(l — i) et = ! z": Sm(f;t) (Arithmetic mean of
n+1 n+14e ’
partial sum of Fourier series of f)
(3) fPo(t) =Y fll)yrMe™ 0 <r<1.
keZ
(4) (®y,)n>1 and (P,)o<r<1 are good kernels, and || P, ||y = ||P,|1 = 1.
(5) P.x Py = P, for 0 <r 1 <1 (semi group property).

Corollary 5.5. If f € LP, 1 <p < o0, then lim ||f — f*®,]||, = 0. Hence trigonometric
n—oo
polynomials are dense in LP. (Hint: This follows from the property of the good kernel.)

The same is true for p = oo, if f € C(T).
Corollary 5.6. If f € L', f(n) =0, Vn € Z, then f = 0.

Notations: For f € L', set f, = f*xP., 0<r < 1.
For f € Hol(D), we set fiy(z) = f(rz), if |z| < 1,0 < r < 1. Clearly f,) is analytic in
bigger domain: [z] < 1 <1+e.
Corollary 5.7. If 0 <r <p<land f € [P, 1 < p < o0, then lin%||fr — fll, = 0.
T—

Moreover, || frllp < | follp < || flp(using mazimum modulus principle).
If f € Hol(D), then || foyllp < ||fipllp and the limit (possible infinite) lirr% | fnyllp < o0,
r—

exists. In fact, liII% | fyllp = I flaey iof f € HP(D). (It follows due to P, is a good kernel.)
r—

5.5. Identification of H?(DD) with H?(T).

Theorem 5.8. Let 1 < p < o0.
(1) If f € HP(D), then li_r)rif(r) — f exists in LP(T) and f € HP(T). (For p = oo, the
limit holds in the weak* topology of L*°(T) i.e. in o(L, LY.)
(ii) f+—— f is an isometry.
(iii) f and f are related by fo) = (f)y=fxP.
The function f is called the boundary limit of function f.

Proof. Let f = Z a,z" € H?(D), then
n=0

(5.1) M = sup || fullp < oo
0<r<1
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(i)

(5.2)

(i)

(iii)
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For 1 < p < oo, by Banach Alaoglu theorem ([5.1)) implies that (f))o<r<1 is weakly
relatively compact in LP(T). Since LP = (L?)*, i +I% = 1land f,) € LP; M =
sup ||[Afm|l < oo, where Afyy € (L”)*. This gives a limit point f € LP(T) of
0<r<1

(fre))re—1 in the weak topology of LP. We claim that the convergence takes place
in LP. As the functional ¢ — ¢(n) is continuous on L? ( since |3(n)| < |l¢|lz» ) for

e>0,0<r <1, Ir, with r <r, <1 such that ]f(r)(n) — f(n)| < e. Note that
1oy = Fllp < ey = S llp + [y = fllp = O as 7 = 1,
if we suppose fq,) — f in LP. But then as r — 1, f;)(n) = a,7" — an, n € Z with
ap, =0 if n < 0. Hence a, = (f)(n), which implies f € H?(T).
We deduce that f does not depends on (ry)g>1 and for £ € T,

—

(fx P =) anr*e" =D (Hn)r"le™ = fi)(€).

Now, by property of good kernel P, we get
e =l = 1) = fllp = Oasr — 1.
That is f,) — f in LP.

For p = oo, the similar reasoning gives the convergence f(,y = ( f)r = f in weak*
topology of L.

Case p = 1 : The space L'(T) can be regarded as a subspace of M(T), the space
of all complex measures on T. As M(T) = C(T)*, by Banach Alaoglu theorem, the
balls of M(T) are weak* relatively compact.

We again get the existence of limit f € M(T) as llgi foy = £, but this is weak*

limit in M(T). That is, [ fiyg — [ fg, g € C(T). As before take g(t) = e~ then
(f)(n) = juln) = lirr% f(r) (n), n € Z, and hence fi(n) = 0 if n < 0. By Riesz Brother’s
r—

theorem we get © << m, and the corresponding Radon Nikodym derivative of p
with respect to m is equal to f € H'. Using the same argument as in the beginning

of the proof, we get (f)(n) =an, n >0, f, = (f)r Hence
lim [ f = fll = [1f = ()l =0
because f. — f in L? for 1 < p < oo by Corollary 5.7,
Let us first consider the case p < co. Since f = lirr% fr), we get using Corollary
r—
£ llp = [ oy llp = [1LF 1l o -
For p = oo, observe that as f is weak™ limit of f(,), we get
| Flle < minf | lloo = |l
On the other hand f,) = fxP., we get
lim sup || fr)[lse < )1 lo-
r—1

Hence, we conclude that || f|| go ) = ||f||Hoo(T) = ||f||oo
has been given in ({5.2]).
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Convention: Thus in view of Theorem 5.8 for p > 1 we can identify f € H?(D) and its
boundary limit f by
foy=fr=f*P. and f = Zf(n)z
n>0
Now f (n) represents Fourier coefficient of f at n and Taylor’s coefficient as well. Note

that if f € H?(D) then f(0) = f(0) always.

Corollary 5.9. For every £ € D, the point wise evaluation map ¢ : H'(D) — C, defined
by we(f) = f(&),f € HYD), is a continuous linear functional on H' (and hence on
HP, 1<p< o).

Proof. Let f be the boundary limit of f € H'(D). Write £ = re®, 0 <r < 1. Then

f * P Zf znt |n\ ZCL emtTn _ (eint) _ f(remt) _ f(f)

1+ ¢
Thus [(€)] < 1/ ll1Prllee < 1 lh— i O
Remark 5.10. If f, — f in H?,1 < p < oo, then f, — f uniformity on compact sets in
D.
Proof. For |A] <7 < 1, |fa(A) = FO)] < I1fa = FlIEESE = I1fn = FlliEE = 0as n — oo,
since || fu — f|| = 0. Any arbitrary compact set K C {|A| < r}, hence f, — f uniformly
on K. U

5.6. Jensen’s formula and Jensen’s inequality.

Lemma 5.11. Let f € H' with f(0) # 0 (because f(0) = f(0)) and let A, be the sequence
of zeroes of f in D counted with multiplicity Then

log |(0) e / log | /(1) dm(t).

n>1
In particular

log |£(0)] < / log | (1) dm(t)
If f € Hol(Dy (), then

o2 /(0)] + Y toz 5 = [ Toa £ (0)am(r).

n>1
Proof. First we consider f € Hol(Dy,.). Let us assume that Z(f) NT = 0, i.e.
f has no zeroes on T. Then Z(f) N D=finite={ A1, Ao, ..., Ay }. Set B(z) = H - ) :

For By(z) = %((1_)\)) it is easy to see that
— AP — =)
By =1 - L= AN :
Thus we set |[B| =1 on T, and f/B is a zero free holomorphic function on D4 for some
9 > 0. Hence, log | f/B| is a harmonic function on Dy, s and allow to apply MVT (because
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log g(z) = log |g(2)| +iarg(g(2)), if g(z) # 0) and we get
08 4/B)0)] = [ 10g]/Bldm = [ 10g] fldm.

As log |(f/B)(0)| =log |(f)(0)] + Zlog |\;|71, we get the desired formula.
=1

For f having zero on T, we consider f,, 0 < r < 1, where f,.(z) = f(rz). Note that f,
is analytic in |z| < 1/r < 14 €. Choose r such that f, has no zero on T. If for all r f, has
zeros on T, then f has uncountably many zeroes on T hence zero set has a limit point in
T and f is identically zero. (Note that if A is a zero of f if and only if \/r is a zero of

fr.) For such an r, apply the previous case:
r

(5.3) log | £(0)] + 3 log —— — /T log | f,dm(t

|An]
[An|<r
Now f is analytic in Dy, so f has finite number of zeros on T. Let Z(f)NT = {& : i =
1,2,...,k}. Hence f = pg with p = II¥_, (2 — &) and g is a holomorfic functions such that
g and é are bounded on T. However for every r, 0 <r <1 and z € D
6 — 21 < |6 — 2l + [o(1 = )] < [6 — r2| + |1 — | < 206 — 2] <2

(5.4 — fla—zl<le—re <2
We will calculate for one zero & € T. f,.(§) := f(r§) = |r§ — &;["g(r§) = log|f(r&)| =

nlog|ré — &5 + log|g(ré)|
Now from ((5.4))

He -l <l —¢
. 1 < 2
r€ =&~ 18 — ¢

log | £(r€)| = — (n log +log !g(r&)!)

1
ré — &l
—2n
— 1
< gl =2+ og |g(ré)]

= 2nlog |§ — &;[ +log [g(r§)| := h(£) say
To apply DCT and take llir% inside the integration in {) we need to show: fT |h(&)]dE <

oo. This holds since [;log|€ —&;|d¢ is integrable (in fact it is zero, See [7] P. 307, Lemma
15.17).
The general case: Let f € H! and f(0) # 0. In order to pass limit in (5.3), note that
|logz — logy| < C|x — vy, if x,y > €. Hence
| log(lfr[ + €) —log(|f] + €)| < Cel|fr| = | f]] on T and
log(| fr| +€) = log(|f| + €) in L'(T) as r — 1.

But from ([5.3))
(5.5) log | £(0)] + ) log

[An|<r

r

- / log | f,|dm < / log(|f,] + )dm(t).
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As LHS in (5.5)) is increasing in r and RHS is convergent, we obtain
o8 (0)] + 3108 3 < [ 1og((] + )am
T

n>1 ”| B

for each € > 0. This completes the proof.
Since |A,| < 1 for all n € N hence the “in particular” case follows. O

Corollary 5.12. (Generalized Jensen’s inequality)
Let g€ H', g #£0, and |¢] < 1. Then
1-1gP

(56) () < [ s s a0 dm().

Indeed, to begin with, we may assume that g € Hol(D..). Apply the previous result

to the function ¢
—z
f(z) = g<1 — g‘z)’

and remark that Jacobian of this change of variable is |£ 4k T (Hint: Put s = =% etc )

Remark 5. 13 (Confrontation of two Jensen inequalities) Curiously, Jensen’s 1nequahty
of Lemma [5.1T] and Corollary [5.12| for the holomorphic functions is, in a way, the opposite
of the fundamental inequality of convexity in real analysis, which also bears the name of
Johan Jensen. In fact, the Jensen convexity inequality states that:

s@/gde/@gdm
T T

for any real integrable function g and any convex function ¢(¢” > 0). Setting g = log | f|
and ¢(x) = e we obtain the following:

[ 10 71dm < 10 [ |1dm =108 700
T T

5.7. The boundary uniqueness theorem.

Corollary 5.14. If g € H',g # 0, then log|g| € L*(T). In particular, if g € H' and
m{teT: g(t) =0} >0, then g = 0.

Proof. Indeed, g € H' may be expanded in its Taylor’s series (when realized on disc D)
as g = Y s, 9(k)2"%, where g(n) # 0, and n > 0 is the multiplicity of the zero at z = 0.
By applying Jensen’s inequality to function f = g/2", we get

log |g|ldm = /log | f|ldm > —oc.
T T
Since, logx < x if x > 0, we also have

/log|g|dm</|g|dm< 00.

Hence log [g| € L'(T). It is clear that if m{t € T : g(t) = 0} > 0, then [} log|g|dm = —o0,
which is possible only if g = 0. U

Remark 5.15. The corollary is true for all p > 0. Proof for this using the MVT for
harmonic function is done in the proof of Theorem [5.32

Remark 5.16. Recall that we have seen the second statement of the above corollary for
f € H? using a completely different approach.
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5.8. Blaschke Product.

Lemma 5.17. (Blaschke condition, interior uniqueness theorem) Suppose f € Hol(D), f #
0, and let (A\,)n>1 be the zero sequence of f in D, where each zero is repeated according to
its multiplicity. Suppose that

limin/log|fT\dm < 00,

r— T

then 3,51 (1 = [An|) < oo. In particular, this holds whenever f € H?(D), p > 0.

Remark 5.18. The condition Z(l — |A\u]) < oo is called Blaschke condition.
n>1

Proof. Without loss of generality, we can assume that f(0) # 0. But then Jensen’s formula
gives

n>1 An|<r
As |\,| — 1, we have log <W> ~ (1 = |\,|), and hence the desired conclusion followed.

The HP(D) case is a consequence of the obvious estimate logx < Cpa? for z > 0, p > 0,
because

liminf/log|fr| < liminf/C’p|fT|p < 0.
r—1 T r—1 T

For A\ € D, we define Blaschke factor by
A (A =2) Z)
ba(z) =
A(1=Az)
(i) If we assume the normalization by ( — %) =1, then for A = 0, we can define by(z) = 2.
(ii) Zero set Z(by) = {\}, by € HOI(C\{%}) |bx] <1 onDand |by|] =1on T.

Lemma 5.19. (Blaschke, 1915) If (An)n>1 € D satisfies the Blaschke condition Z(l -
n>1

|An|) < 00, then the infinite product

B =]t =lim [] b
n>1 e

converges uniformly on compact subsets of D and even on compact subsets of(C\Clos{%}nzl.
Moreover, |B| <1 inD, |[B| =1 a.e. on'T, and Z(B) = (An)n>1 (counting multiplicity).

Proof. Set B" = H by,. Then for 0 < r < R < 1, we have
[An|<r

|B" — B"||; = 2—2Re(B", B")
= 2—2Re/BRBrdm

BE
= 2- 2Re/§dm (because |[B"| =1 on T).



HARDY SPACES 27

BR

So by MVT for holomorphic function Z+ we get
BR
R 2
|B"*— B H2—2—2Re<BT)(0) 2—-2 | | | Anl.

r<|An|<R
By Blaschke condition Z log |\,| ™ < 0o, the product

n>1
IR

n>1
converges, which implies lirq H |An| = 1. This shows that (B") is a Cauchy sequence
r—
r<|An|<R

in H?> C L? for every r = r;, — 1. So we deduce the existence of B = lin% B". Moreover,
r—

|B| = 1 a.e. on T because |B"| = 1 on T, and B € H?. As the point evaluation is
continuous linear functional on H?, the limit lim,_,; B"(\) = B(\) exists uniformly on
compact subsets of I, and hence [B(A)| < 1, A € D. Using &= — 1 in H? (easy to see),
we get % — 1 uniformly on compact subsets of D as r — 1 and
B

(5.7) lim <§> (\) = 1.
This shows that B(A) = 0, [A\| < 1 if and only if A = A\, for some n > 1 (counting
multiplicity). If A # A\, and B(\) = 0, then ((5.7]) will fail.

In order to prove convergence on compact subsets of C \ clos{f:}nzl, the following
observation is enough.

b 1= (L= DO Pals) _ (L= MDA LD | 1=
An | - 3 < c— )

A1 = )z) Az — | dist(z, V)
where N = clos{-:n > 1}. O

IA

Corollary 5.20. (Frigyes Riesz, 1923) Let f € HP(D), p > 0 with corresponding zero
sequence (Ap)n>1. Then there exists g € HP(D) with g(§) # 0, V& € D such that f = Bg
and |l = lgll, on L7(T).

This may be thought as the Blaschke filtering of the holomorphic functions.

Proof. Take B" = H by, 0 < r < 1. Clearly, L. € Hol(D) and for p — 1, we get

BT
[Anl<r
|B"(p€)| — 1 uniformly on T. Hence,
P . / P _ P
(5.8) |51 =1m [ |50 amie) = I
And thus by definition of H?(ID),
f P ;

(/T g(ﬂf)‘ dm(f)); < || fllp for every 0 < p < 1.

Fix p, set g = %, and letting r — 1, we obtain

(/ o(p)| m(©)” < 171

and hence ||g||, < || f]|p- The other inequality follows from g =

.
0

E.



28 HARDY SPACES

Note: In the proof of equation we use the fact if f, — f in HP-norm and
g, — 1 uniformly as p — 1 then f,g, — f in H?-norm. To prove this use: |f,g, — f| =
\fo9,— f»+ f,— f| and to apply the DCT use Minkowski’s inequalities and g, is uniformly
bounded by M.

Question 5.21. * Is it possible to replace log | - | in Jensen’s inequality with some suitable
increasing function?

Remark 5.22. It is useful to introduce the notion of the zero divisor (or multiplicity
function) of a holomorphic function. For f € Hol(Q2), Q C C, f #£ 0, A € Q, set

0 if f(N\)#0

m if f(A) =--- = fmD(X) =0 and f™(\) # 0.

The value of ds(A) is called zero multiplicity of A. We can redefine the Blaschke condition.
The zero divisor of f € Hol(ID) verifies the Blaschke condition if and only if

> dy (N1 = [A]) < oo
AeD
The corresponding Blaschke product is given by

TToe® = T,

Aeb n>1

dy(N) =

Corollary 5.23. Let f € HP,p > 0 then there exists fr € HP; k = 1,2 such that
f=f+fo lfelly < U fllps and fi(z) #0 for z € D

Proof. If f(z) # 0, we may take f; = fo = %f If f has zeros, we have f = Bg, with
g € HP has no zeros. Thus f(z) = [B(z2) — 1]g(2) + g(2). O

5.9. Non-tangential boundary limits and Fatou’s Theorem. Recall that we have
identified boundary limit f of f € H?(D) via
lim || f, = fll, =0, f € H", 1 <p < 0.

We shall see another convergence of f(z) to its boundary values, namely the so-called
non-tangential convergence a.e. on T for f € H?(D) with 0 < p < oc.

Let 1 be a complex valued Borel measure on T and p € M(T). Let du = hdm + djs,
h € L'(m) be Lebesgue decomposition of x with respect to m. Then the derivative of u
with respect to m exists at almost every point £ € T, in the following sense.

aseéeam(A)  dm ’

where A is an arc on T tending to £. Such a point will be called Lebesgue point of .

Definition 5.24. A Stolz angle at the point ( € T is the set
Se = conv{(,sin(d)D: 0 < 0§ < 7/2}
where “conv” represents convex hull of sets.

A limit along a Stolz angle hm f (z) is called a non-tangential limit at a point
< Z—)
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S, =conv{{, sin(¢)-D}, 0<6<n/2

Stolz angle at the point £ on the unit circle.

FiGure 1. Figl

1—172

[T —reop: for f € LD {1 <p <o), we

Since the Poisson kernel satisfies P(re) =

have

P. *f 19 /’1 1_T (is)dm(eis)

f@ﬂm@%mﬂﬁ=ﬂﬁﬂCzéﬂ

= f* P(2)( write ).
That is P, x f(e?) = f x P(z), where z = re? € D. Sometimes it is called the Poisson
integral of f.
Now we see one of the most important result about non-tangential limit of the Poisson
integral.

Theorem 5.25. (P. Fatou’s, 1996) Let u € M(T) and ¢ € T be a Lebesgue point of p,
then the Poisson integral of

P(z)=Prplz /\c B

has a non-tangential limit at the point (, which is equal to dm(() i.€.,

. du
zﬁlCl,zn’éSQ P(z) = %(C) a.e. on T.

<w@)26D

In particular
. dp
lim P(r¢) = %(C) m-a.e. on T.

Proof. Since P x m(z) = 1 for every z (see Rudin, Real and Complex analysis, 11.5, p.
233) the result is correct for 1 = m. With a replacement of p if necessary by p—cm(c € C)
and with the use of a rotation, it suffices to examine the case u(T) = i(0) = 0 and ¢ = 1.
Let F be a premitive of y, i.e. a function on [—7, 7], left continuous and with a bounded
variation, such that ple®, ) = F(B) — F(a), F(—7n) = F(n). As F is defined upto a
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constant, we can assume F'(0) = 0. Integration by parts in the integral

Pxpu(z) = /7r P(ze "¥)dF(s),z € D.

—T

gives
APz g F
Pxpu(z) = —/ gF(s)ds :/ E.(s) (S>ds,
_ _. ds _W s
where F.(s) = —s%. We denote z = re? where |0] < 7,0 < r < 1, and calculate
E,
By = st 1= d 1—r __(1=r)ssin(0 —5)
ds |1 — rei@=9)|2 ds 1+ 12— 2rcos(f — s) |1 — rei@=s)4

ssin(f — s)
(1 —72) + 4rsin®(§ — s)/2
Let us show that the family {E, : z € S stolz angle} satisfies the conditions (i)-(iii) for
an approximate identity, given in (ii).

P(ze™™).

(i) For every z € Sy,

T dP(ze7¥)| ds T ds
E.l = — | — <A P ¥y~ = A’
2= [ 2 <A [ P
|ssin(6—s)|

where, A = sup

A=ryrasnZ(0—s2 -5 € [—m, 7],z € Sl} . It remains to show that

A < 00. Let C' > 0 be such that |§] < C(1—r) for any z = re? € S; (the existence
of such a C' can be verified as an exercise).

|ssin(6—s)| 4C(1—7)|sin(0—s)/2|
(a) It |8| = 20(1 - T‘), then (1—7)2+rsin?(0—s)/2 = (1—72)+45in?(0—s)/2 <C.

(b) If |s| > 2C(1 — r) then |s| > 2|0|, and we have

|ssin(f — s)| < sl-Us[+16) _ Isl(lsl +16])
(1 —72) +4sin*(0 — 5)/2 ~ 4sin?(0 — s5)/2 — 4(]0 — s|/7)?
|s[(Is[ +[s/2])
~ A(|s| = [6]/m)?
SEB2)
= 1ol — fopgme -~ AT

Therefore A < max(C, 3%2)
(ii) Integration by parts gives:
: " ds :
z%lll,znlesl B EZ(S)% = zﬁlll,zrneSl(l — P(—z2)) =1
(Since P is the real part of an analytic function it is harmonic hence continuous
,then take the limit inside and P(—1) = 0)
(iii) Let 0 < |s| < m. Then for z € S; sufficiently close to 1 we have: |§| < C(1 —7r) <

d/2 and hence
(1 —7r?)ssin(f — s)

|E.(s)] = | 11— rei@—s)|4
which tends to 0 as z — 1,z € 5

(1—7r*)m

IS 11— reid/2s’
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These properties of E, and the evident relation:

. F(s) 1 du
lim =) L O
. 20 s 27 dm< )
ds,r(r;[) — % 11m8_>0 [L(el ’els) _ 11m8_>0 F(s);F(O) — % 11m5_>0 F(S))

as well as (ii) above, imply, when z — 1,z € S}

Pm@—%mzf&@G@ gﬁmﬁwww

S

Lol

which tends to 0. Indeed by (i), for any ¢ > 0 there exists § > 0 such that
5
F 1d
/ < I|n|3)5( (5) a / |E.(s)|ds < e2mA,
—0 S| —T

o)
and thus, given (iii) and above,

S 21 dm

hmz—)l,ZESl

Pxpu(z) — d—(l)' < e2rA

and the results follows. O

Corollary 5.26. If f € H?(D), 0 < p < 0o, then the non-tangential boundary limits of f
exist a.e. on T. That 1s,

lim  f(z) = f(&) for ae £€T.

Z—)f,ZESg

The boundary function & — f(&) is in LP(T), and for p > 1, f(€) = f(&) a.e. onT (f is
defined in Theorem@

Proof. For p > 1, the claim follows from Fatou’s Theorem ([5.25)) and the Identification
Theorem [5.§| (because radial limit exists).
Note that for f € LP(T) (1 < p < oc0) and du = fdm, we have

Pout) = [ (o)
= P f(@)( et 2 = 76)
= 1) = F(©) = F0€) = (&) = F(€) as ¥ — 1(Fatow's Theorem.)

Now by identification Theorem i) fr — fin LP, as r — 1. Since convergence in L?,
there exists a subsequence () such that P p(§) — f(f) as ry — 1 for a.e. £ € T ( since
convergence in LP implies there exists a subsequence which is pt-wise a.e. convergence).
Hence f(€) = f(&) for a.e. €€ T.
B For general case p > 0, we know that f = Bg = B(¢"/?)?, where g € HP(D). This
implies ¢'/? € H'(D). The result follows from the previous reasoning. O

Notation: From now onward, we identify the functions f € HP(ID) with their boundary
values on T, and write H?(D) = H?(T), 0 < p < oo, where H?(T) is the collection of
boundary functions of H?(D).
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5.10. The Riesz - Smirnov canonical factorization. Here we see the main result
of the Hardy space theory - a parametric representation of f € HP as a product of
Blaschke product, a singular inner function, an outer (maximal) function. The last two
functions are exponential of integral depending on the holomorphic Schwarz - Herglotz

kernel z — g+z whose real part is the Poisson kernel.

Theorem 5.27. Let f € LP, 0 < p < 0o be such that log|f| € L', and define
+z
1) = ([ 2081 701m(©) ). 12 < 1.

¢
¢
Then

(i) [f] € H?(D) and |[f]| = |f| a.e. on T.

(1)) If 0 £ g € HI(D), ¢ > 1, and |g| < |f| a.e. on T, then |g| < |[f]| on D (and hence

g € H(D)).

fii) [£] = & and [[)] = [£].
(iv) [fl(z) # 0 in D and for any o> 0, [|f|*] = [f]*.

Proof. (i) For fixed z, |§fz| < oo*! and log | f| € L' hence [f](z) is well defined. Clearly,

[f] is a holomorphic function on D. Recall that for a finite Borel measure p and a
convex function ¢, we have the Jensen-Young geometric mean inequality

Yo Fd Fd
J 3 w(f u).
Jdu Jdu
[ Proof Let F': (Q,u) — I C R(I is finite or infinite interval), set v = ﬁ. Let
A={h:h(z)=az+b;h <¢onl} Then h( [ Fdv) = [hoFdv < [+ o Fdv.
We get the inequality since ¢(z) = sup{h(x) : h € A}. ] By apply inequality

to the Borel measure du = ‘1< Ijg dm((¢), we get

P = exp /\c |Qlo g |£(O)Pdm() /lf

Set z = re'. By Fubini’s theorem, we get

/ < fwer( [ 'Z:zjt)dmmzufuz.

Now, by Fatou’s theorem and its corollary there, we have
log [[f](&)] = lim log [[f](r)| = log [ f(£)[ ae. § on T.
The modifications in the case p = oo are obvious.
(ii) Given that 0 # g € HY(D), ¢ > 1, and |g| < |f| a.e. on T. This implies log |g| € L*,
and hence by generalized Jenson’s inequaligy , we get

(5.9)

dm(¢).

[ T’@Zt

gl < [ |1<_—| '| log |9(C) dm(0)
1|2

< [ =R o Al
~ log|lA2)]

(iii) is a direct consequence of the definition.
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(iv) It is a direct consequence of the definition. But here we only consider the fact
log|f|® € L', whereas f® € L is not considered.
O
Note: *1[
§+z
-z

= 2" z
=1+2 — since |=| < 1.
; = 2|
Since z €D,z =7£,£€ T
{+z -
<142 "=1+2
| St ;r +2(3
Since r fixed for fixed z.]
Note that from Theorem to define [f] the condition log|f| € L' is sufficient, but
the extra condition f € LP ensures that [f] € HP(D).

The following result ensures the existence of enough harmonic functions as Poisson
integrals of finite Borel measures.

1 1
1= +r
- 1—r

< 00

Theorem 5.28. (G. Herglotz, 1911) Let u be a non-negative harmonic function on D.
Then there exists a unique finite Borel measure jn > 0 such that uw = P * u, that is

1P
Z’“/ﬂc—zwd“(o

Proof. By MVT we have for all z in D

2 1 — 2
/|<|| Jdm(Q) = | 7= |Z=2d’“)’

where we have set u,.(z) = u(rz),0 < r < 1, and dm = u,dm. Then pu, is a positive
measure and Var(u,) = MT(T) = uT(O) = u(0) < oo. Thus the family (u,)o<,<1 is uniformly
bounded in M(T), and has week* convergent subsequence .., that converges to u €

M(T). Recall that M(T) is dual of C(T)* with the duality < f,u >= [ fdu. Thus, if
T
f€C(T), f =0, then

fd,u—hm furdm>O:>u>O

n—oo
BMoreover, since u is Contlnuous on D, for z € D, we have

!Z\Q / |Z\2
u(z llm u(rpz hm / L, (
- = =

BUniqueness of u: Note that Pxpu(re') Z |"‘,u( )e™. For any v such that Pxu = Pxv

nez
implies /fi(n) = ©(n). Hence pu = v. O

Theorem 5.29. (Singular inner function): Let S € Hol(D), then the following are equiv-
alent:

(1) |S(2)| <1 and S(z) #0 on D, S(0) >0 and |S(§)| =1 a.e. on T.
(i1) there exists a unique finite Borel measure > 0 on T with p L m such that

S(2) = exp <— s de(()) zeD.

T¢—2
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Proof. (<=) (ii) implies (i) is a corollary of Fatou’s theorem (because of S € H*>(D) by

(i1)).

|S(z)| = exp ( Jr |1C 5}2 ) ,z € D and p L m. By Fatou’s theorem on —log |S(z)] =

f(2), llr%f(rﬁ) = du(¢) = 0 since p L m. lin}10g|S(r§)| =0 = S(¢)=1ae onT.
r— r—

Also |S(2)| = [S(re”)| < [S(§)] = 1.
(=)For (i) implies (ii), let u = log|S|™!, then by Herglotz theorem, there exists p

such that
log |S(2)|™* /
S| =

Once again by Fatou’s theorem (and |S(£)| =1 a.e. on T) we get

dp
%(5) = }griu(rf) =0 a.e. onT.
Hence p L m.
B|S(z)| = |Su(2)| in D. S(z) = A(2)Su(2) with |A(z)] =1 for all z € D, but S(0) > 0
and S,(0) > 0 which implies that A = 1 and which further implies that S = S,,. O

Definition 5.30. A nonconstant inner function that has no zero in D is called a singular
inner function. A function S verifying (i) or (ii) of the preceding theorem is called a
singular inner function.f The word “singular” is used because of the representation of such
functions by singular measures.

—logzx,0 <z <1
O,z>1

logx,z > 1

Notation 5.31. logt 2 =
0,0<x <1

and log™ =z = {
Then log = logt —log™; |log | = log" +log™ and log™ # < x when x > 0. Also |log" 2 —
logty| < |z — gyl for z,y > 0.

Theorem 5.32. (Smirnov, 1928: Canonical Factorization Theorem) Let f € HP(D), p >
0. Then there exists a unique factorization f = ABS|f]|, where A\ € C, |]\| = 1,B, S and
[f] are defined earlier.

Proof. First set
_r
9= 5
We will show that any zero free function g satisfies fT log |g|dm > —oo. We may assume
g(0) = 1. Since ¢ has no zeroes in D, log |g(z)| is harmonic in D. The MVT for the

harmonic function says that any for any r € (0,1)

0 = log |g(0)] Z/TIOg lg(r&)[dm(§)

— [ tog lg(rOlame) ~ [ 1og Ig(r¢)ldm(e)

T T
Thus [plog™ [g(r§)|dm(§) = [rlog™ |g(r&)|dm (&) < [y g(ré)ldm(§)dm(€) < [|g]| (Cauchy
Schwartz). Since g € HP(D), g along with the functions log™ |g| and log™ |g| have radial

limits a.e. on T. By Fatou’s lemma

[ 10" lgldm < iy [ 102" lg(r) aml€) < ]
T r=JT
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which implies that log™" |g| is integrable on T. Simillary log™ |g| and log g is integrable
Then |f| = |g| a.e. on T, and hence [g] = [f]. Set A = }(—( and S = 5f5. Then
f = Bg = BAS[g] = ABS|[f]. As B and [f] are uniquely defined for f, the uniqueness of

factorization follows. O

Next, we consider the structure of the outer functions in H?.

Theorem 5.33. (Structure of outer function) Let p,q,r > 1 and f € HP. Then the
following are equivalent.

(i) There exists A € C, |A\| =1 such that f = A[f].
(i1) for all z € D, the generalized Jensen inequality is equality:

(5.10) log | (2)| = / P(=8) log | £(€) dm(é).

(111) Identity holds for at least OTTFLe z € D.

(iv) If g € H? and % € L", then § € H" (Integral Mazimal principle).
If p =2, then (i)-(iv) are equivalent to

(v) the function f is outer in H?(In the earlier sense i.e., E; = H?).

Proof. (i) implies (ii) is followed from the definition of [f]. The implication (iii) goes to
(ii) is trivial. For (iii) implies (i), suppose ([5.10]) holds for some z, € D. By Riesz-Smirnov
factorization theorem, we have f = ABS[f], and by (5.10)), we get

| (20)| = [AB(20)S(2,)[f1(20)] = [B(2,)S(20)| =1 = |B(z,)| = [S(20)| = 1.
By maximum principle, B = S =constant= 1 in D, implies f = \[f].
(i) implies (iv): If g € HY, then g = A\ BS[g] and we get ¢ ’\EBD‘?][)Q] = (&) BS[%} e
in view of Riesz-Smirnov theorem and by the hypothesis that g/felL.

(iv) = (i): Let f = ABS[f] and set g = min(|f],1). Then [¢g] € H* and “i}]‘ <1 ae.
on T. By (iv) we get e gr (r arbitrary). Again, we have g] =\ BlSI[ ] )\13151%

(because [[g]] = [g] and [f} = %), we get 1 = )\)\1331581 = Ao B3Sy with |A\o| = 1,

where Bj is a Blaschke product and S5 is a singular inner function. As |By(z)| < 1 and
|S2(2)] < 1 for all z € D, we get |By| = |S2] = 1 and hence By = Sy = 1. Thus, we
conclude that B = S = 1, implies f = \[f].

It remains to show that (iv) and (v) are equivalent if p = 2. As (i)-(iii) are independent
of choice of ¢ and r, we get equivalence between (iv) as well with p = 2, and arbitrary

q,r and with p = ¢ = r = 2, (iv) is just earlier characterization of the outer function on
H2. O

Remark 5.34. In the family of Hardy spaces, dividing by an analytic function, even if
it does not have any zero, is a delicate process and the result could be a function that
does not belong to any Hardy space. For example, if S is a singular inner function, then
1/S does not belong to any Hardy space (easily check!). However, at the same time,
its boundary values are unimodular and one is (wrongly) tempted to say that 1/S is an
inner function. The above result (Theorem [5.33] (iv), IMP) says that dividing by an outer
function is legitimate as long as the boundary values remain in a Lebesgue space.
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Definition 5.35. (Outer in H?) Let f € H?, p > 0 and f = ABS[f]. The function [f] is
called the outer part of f, and ABS is called the inner part of f. We write [f] = f,u: and
ABS = finn. If f = A[f], then f is called outer.

It is clear from the above theorem that if p = 2, then definition of inner and outer
functions coincide with previous ones.

Corollary 5.36. Let w € L' (T), and p > 1. The followings are equivalent.
(i) There exists f € HP, f # 0 such that |f|P = w a.e. on T.
(ii) logw € L.

Proof. As H? C H', and p > 1 (i) implies (ii) follows from the boundary uniqueness
theorem Corollary [5.14}
Now (ii) implies (i) follows by taking f = [w!/?]. Since if

1) = [w1(:) = exo ([ P Iog ol ram(e) )
then by Theorem (i), f € HP(D). :
Since
7P = e ( [ PEOelu©in(© )
by Fatou’s theorem [5.25] we get |f|? = w a.e. on T. O

5.11. Approximation by inner functions and Blaschke products. Using Fatou’s
theorem, we prove two important theorems on uniform approximation by inner functions.

Theorem 5.37. (R. Douglas and W. Rudin, 1969) Let % be the set of all inner functions.
Then
(5.11) L>=(T) = cng)os (@H‘X’ GRS E) = Span; ((:)1@2 10,0, € E) )

Moreover, any unimodular function in L*(T) belongs to

cng)Os(H) (@_1@2 10,0, € Z) )
Proof. 1t is enough to show that y, € span; (@_1@2 1 01,05 € E) for every Borel mea-

surable set ¢ in T. Let .

fn= [nxa—kﬁ)@\a}, n=273,...
and A, = {z € C: L < |z| <n}. Itis clear that f,(D) C A, (by maximum principle)
and f,(T) C 0A,. Now let ¢1(¢) = ¢ + % for ¢ € C {0}, and w : ¢1(A,) — D be a
conformal (Riemann) mapping of the ellipse ¢1(A,,) onto D. Since the boundary of ellipse
is smooth, w can be continuously extended to clos ¢1(A,), and hence

wo¢ro fr="0;
is an inner function (because 6; € H*(D), and by Fatou’s theorem |#;| = 1 a.e. on T).
Since w™! is continuous on clos(ID), it can be approximated by its Fejer polynomials.
Therefore,

1
fn+f_:¢1ofn:w_1001Espan(ﬁ’f: n>0).
n Lee
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Doing the same for the function ¢5(() = ¢ — %, we get an inner function 6y such that
fn— an € span; . (0% : n > 0). Hence f, € span; {0507 : k,n > 0}, implies
| ful? € SPan e (070507°05™ « kyn,l,m > 0) .
Thus,
Xo + %XT\(, € Spall . (010, : 01,0, € X)), forn=1,2,....

Letting n — 0o, we get x, € Spal; ((:)1@2 1 O, 05 € E) )
Let uw € L>=(T), and |u| = 1 a.e. and u; € L>®(T) with |u;| = 1 a.e. and u = u?. Given

e > 0, by (5.11)) there exists ¢, ©; € ¥ such that |u; —@g| < €, where g = Zaj@j, a; € C.
j=1
Set © = [[;_, ©;, and observe that g© € H*. Since [§O] = [g] (because |gO| = |g|), the
inner-outer factorizations of g and go© are of the form go = v[g] and g = wlg], where
v,w € X, and 1 — € < [[g]| < 1+ €. Now, |u1 — ¢g| = |ty — pOvlg]| < € gives
1 1 €
— — —= < .
u pOwvlg] ‘ 1—e¢
Since |u; —al < € and |u; — b| < € implies that |u? — ab| < |uy — a| + |a||u; — b|, we obtain
- - 1 2e
u — pwlg qb@@—’ < ,
ju—dulagior| < =
which completes the proof. 0

Theorem 5.38. (0. Frostman, 1935) Let © be a (non-constant) inner function and
¢ € T. Then by o © are Blaschke products with simple zeros for a.e. t € (0,1), where
ba(z) = 1’\_}2, A € D. In particular, © is a uniform limit of Blaschke products with simple
2€T0S.

Proof. Let ¢ = 1. Then we need to show that Hy(z) := b, 0 ©O(2) = %e(é)),z € Dis

Blaschke product with simple zeros for all ¢ € [0, 1). Let £ € T, then the boundary function

[H,(6)] = |08 | = |29 - |99\ _ ) — [, € H(T). Hence H, € H*(D).

1—t0(¢) ‘ et t—0(¢)

By the unique canonical factorization of Hy(z), Hy(z) = ABS[H,](z) where
+z ~
(1) = exp [ 2 log 7€) dm(©) = exp(0) = 1
. T
since |H;(§)| = 1. Hence Hy(z) = ABS. Our claim is to show: S = 1, where
+z
S<Z) = exp <_/ g Zdlut(f)) ) Mot 1 m, > 0.
o &—
To show S = 1 we will show u(T) = 0.
Then by Jensen’s formula (5.11]) (and expression of S and S € H* with [|S]| < 1),
and the fact |Hy(ré) <|S(ré)| = |S@r&)|™! < |Hy(ré)|™t, we get the following:

(™) = log SO = [ 1og|Se)|dm(€) < [ 10g| L) dm(©) = 1),
T T
for all t,r € [0, 1). Therefore, it is sufficient to check that lin% g(r,t) =0a.e. t € (0,1). Now
r—
w(T) < g(r,t) = fol lim, 3 1 (T) < fol lim, 1 g(r, t)dt = p(T) < fol lim, .y g(r, t)dt.
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We will show the right hand side is zero. For this we will show that
1

1
| sttt =ty [ gty

This happens due to DCT: |g(r, t)| = | [;log |H(r&)| | < [ log |[H,(0)|~d€ = log |H,(0)| ! €

L'(0,1). So by DCT we can interchange the limit:

1 1
/0 lim g(r,£)d = lim / / log | H, (&) dim(€)dt

= llm// log |Hi(r&)|dtdm(&) =0
since [} log |H,(ré)|"'dt = 0. Let u : D — R, by u(w) = f log |bs(w)|~tdt = fl log | b (w)|dt.

u 1s continuous then

u(T) = = [ tog b

) :
t— e
= /10g| ‘ |dt
0 — tei®
1 . [
= —/ {log |t — €| — log |t — e¥*|}dt
0

= 0.
Therefore fol log |H,y(€)|~*dt =0 = u(T) = 0.
B The zeros of by 0© are simple if A—©O(z;) # 0, V j, where (z;);>1 are the zeroes of ©'.
Indeed, if b)(©(2)) = 0, then A — ©(z;) = 0 and hence (b, 0 ©)'(2) = V4 (O(2))O’(2) # 0.
Finally, we show thar u is continuous on ID. Note that the integrals fol log |1 — tw|dt

and fol log |t — w|dt are similar and for w = = + iy, we have

/1 log |t — w|*dt = /1 log{(t — x)* + y*}dt
is continuous in x and yo( for instance fol loé(t — x)2dt = x(0,1) * log(x?) ). O
5.12. Exercises.
Exercise 5.39. Show that H*(D)H?*(D) = H*(D).

Proof. If f,g € H?, then ||fg|ly < ||fill2lg1]l2]] < co which implies H*H* C H'. For the
converse, let f € H' consider G = % then G # 0 in D. Hence G = ¢* for some function g.

Also we have ||G|| = ||f|| = G € H' = g € H?. Take h = Byg. Since B € H'(D)
and g € H*(D) C H'(D) = h=Bg € H*{D) and f =GB = ¢*B=g(Bg)=gh O

Exercise 5.40. f € H', f(T) C R then f is a constant.
Proof. Since f € H! for z € D,

IC— ,2 dm(C)(= Zf(2))

If f(T) C R and the Poison kernal P.(¢) is always real then f(z) is real from the above
integration. But the only analytic function which is real must be constant. 0J
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Exercise 5.41. Let f € HY?. Assume that f > 0 a.e. on T. Then f is a constant.

Proof. Assume f # 0. By the canonical factorization theorem we have: f = Bg where B
is the Blaschke product associated with f and g belongs to H'/? and has no zeros on D.
That is why we can define h = g'/?, and the function h belongs to H' with ||h||;, = ||g||%

Clearly, f = Bh®.

The condition f > 0 ensures that f = |f| a.e. on T. Hence, since B is unimodular on
T, we have Bh?> = h a.e. on T.

Now on one hand we have, Bh € H', and on the other hand h € H'. We know that
H'NH contains only the constant functions. Therefore Bh is a constant function. By the
uniqueness of the canonical factorization this happens precisely when B is a unimodular
constant and h is a constant. Thus eventually h is a constant. ([l

Example 5.42. If f(z) = exp(%%7) then f is a singular inner function.

Proof. Recall that |e®| = |eRewtilmw] — jeRew| — eRew Hence |f(2)] = exp (Re(2})) =
Iii; < 0 for z € D. Tt follows that |f(z)| < 1Vz € D. Thus f € H*>. Moreover for |z| =1

and z # 1 implies Re 25 = 0 and therefore | f(e)| =1 for all § # 0. Since e® is never

zero for any complex number w, it follows that f is an inner function with no zeros on D.

U
Remark 5.43. The function f(z) = exp(;=2) is not an inner. This function is the
reciprocal of the function in earlier example hence |f(e?)| = 1 for § € (0,27). However
for0 <r<1
1
|f(r)] = exp (#) — oo, uadr — 1~
—r

Although f has unimodular boundary value almost everywhere on T, it is unbounded
on D and hence is not an inner function. Thus when checking to see whether or not an
analytic function is inner one must be careful to check at first that it is actually bounded
on D.

Exercise 5.44. Let » > 0,s > 0,t > 0 be such that < —|— 1 Show that H" = H* - H?
and moreover || f,|| = mm{HgH Hth cg€e H h e Hist. f= gh}

Proof. By Holders inequality, if ¢ € H*(D),h € Hl(]D) then f = gh € Hol(D) and
for every p,0 < p < 1, we have [[f,|| < |lg,llsl|hplls; which implies f € H"(DD) and
I £l < llgllsl|Plle- Conversely, if f € H"(D), with f = ABV/[f] its Canonical factorization,
then by g = ABV[f]"/*,h = [f]"/*, we obtain f = gh and ||f]|, = ||g|ls||h]|¢. O

Exercise 5.45. Let A € D and ¢, be an evaluating functional on H?, 1 < p < o0, i.e.

ea(f) = f(N), f e H”.
Show that [|px]| = (1 —|A?)~Y/P.

Proof. When p = 2, 05(f) = f(A) = X150 f(k))‘k = (f, kx) 2, where

= Zxkzk,z e D,

k>0
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is the Szego reproducing kernal of H?, hence |[px|| = [|kall2 = (1 — |A?)~/2. When p-is
arbitrary, recall that for every function f, |f(A)| < |[f]A| and || f]|, = ||[f]P/2||§/” which
leads to:

loall = sup{[f(N)] - £ € H,[If]l, < 1} = sup{|[/I2 )7« [1£172]] < 13

— ((1 . |>\|2)—1/2)2/P'
O
Exercise 5.46. ( Neuwirth and Newman, 1967 ) Let f € H?(D),p > 0. Show that
f = constant if and only if the following hypothesis is verified:

(i) p>1and f(¢) isreal a.e. ( € T.
(ii) p>1/2 and f(¢) >0 ae. (€ T.

Show that the conclusion no longer holds if p < 1.

Proof. Case (i) is evident, because in this case f, f € H'(T), which implies f=constant.
For (ii) see Exercise [5.41]
For the last assertion, consider the function f; = ifi respectively fo = f2. It is easy
to see that fi; € HP(D) for any p < 1 and f, € HP(D) for any p < 1/2. O

Exercise 5.47. Let f,g € H? and h = fg. Show that [h(n)| < 32, [f(k)| - [3()].

Proof. The Fourier series g = Y iz 3(2)2? converges in L*(T) hence by Cauchy Schwartz’s
inequality the series h = fg = > ., 9(z) f2? converges in L'(T) and by continuity of
h = h(n), we obtain h(n) = .., f(n — j)g(j); the result follows. O
Exercise 5.48. Let p(e") =i(t — m) for 0 < t < 27. Find the Fourier coefficients of .
Proof. $(0) = 0 and for k # 0,

m)e *tdt /2

)
—~
=y
S—
I
O\,;
[N}
3
~.
—~
~

2m

= [—(t — m)e ™ /2nk] Zo +/ e~ *dt)2nk
0

—1/k

Exercise 5.49. (The Hilbert Inequality, 1908) Let f,g € H% Show that
> Jot 1| gl

k,7>0

Proof. For F,G € L*(T) and ® € L>(T) just as in (a) above, we have (®F,G) =
s B0 F(R)G(), which gives
(f,z9) Z
k,§>0 k +J + 1

Then the result follows from
[(0f,Z9)] < lefll2llZgllz < llelleoll fll2llgll = 7l fll2llg]l2-
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U
Exercise 5.50. (The Hardy Inequality, 1926): For every function h € H', Zk>0 (k)] <

k+1
Al

Proof. By Exercise h = fgwith f,g € H? and || f||2 = ||g||3 = ||#||: and by Exercises
£.47 and [5.49)

5 ] 5 Zessamt VONIUN g = i

k>0 k>0 kt1
U

We have seen that every HP function f(re®) converges almost everywhere to an LP
boundary function f(e). It is important to know that whether f(re) always tends to
f(e) in the sense of the LP mean or not.

Exercise 5.51. (Mean convergence theorem) If f € HP(0 < p < oo) then

2 2
(512) ti [P = [ e

and
27

(5.13) lim | f(re”) — f(e®)|"do =0

r—1 0

Proof. First let us prove for p = 2. If f(2) = . a,2" is in H?, then Y |a,|* < oo.
But by Fatou’s Lemma

27 27
| 1) = e Pdo < vt [5G~ (o
0 0

p—1

—27r2|an| (I—1r"

which tends to 0 ar » — 1. This proves and hence ( for p = 2.
BIffec H(0 < p < o0), we use the factorization f = Bg. Since [g(2)]P/? € H?, it
follows from what we have just proved that

2 0 pde 2 0 pde 2 0 pde: 2 0 pde
| iseenpan< [ iaeepan— [ laenpao = [ 1)

0 0 0
This together with the Fatou’s Lemma proves ({5.12))
The following lemma can now be applied to deduce (5.13]) from ([5.12]).
0

Lemma 5.52. [12]/p. 21] Let Q2 be a measurable subset of R and let p, € LP(w),0 < p <
n=1,2,... Asn — 0o, suppose o,(x) — ©(x) a.e. on Q and

[ fonta)pde / fp(o)lPde < o0
then

/ lon(z x)|Pdx — 0.
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Corollary 5.53. If f € H? for some p > 0, then
2
lim / llog™ [ £(re®)| — log* | £(e”)]| d8 = 0
r—1 0
Proof. Immediately follows from Mean convergence theorem and the following in-
equality:
1
|log™ a —1log*b| < —Ja—bP,a>0,b>0,0<p<1
p
For the proof the inequality see [12][p. 22] O

Exercise 5.54. [12][p. 34] A function f analytic in D) is representable in the form f(z) =
Pp(z) ie.
1 [ .
f(z) = —/ P.(0 —t)f(e™)dt
2 Jo ‘
as a Poisson-integral ¢ € L' if and only if f € H'. In this case p(t) = f(e) a.e.

Proof. If an analytic funcition f(z) has the form f(z) = Zp(z) then

2 27
| iseenian < [ jetwy
so that f € H. ’ ’

Conversely, suppose f € H!, and write

O(z) := i/0 7rPT(H —t)f(e™)dt

2
For any fixed p,0 < p <1

2m
f(02) = 5= [ PO =0 f(pe )

But by the Exercise fo% |f(pe™) — f(e")|dt — 0 as p — 1, so f(pz) — ®(z). Hence

O(2) = f(2). O

Corollary 5.55. A function f(z) is analytic in |z| < 1 is the Poisson integral of a

function ¢ € LP(1 < p < 00) if and only if f € HP.
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6. SZEGO INFIMUM AND GENERALIZED
PHRAGMEN-LINDELOF PRINCIPLE

In this section, we consider two applications of the canonical Riesz-Smirnov factor-
ization. Namely, the Szego infimum dist(1, HZ(u)) is expressed in terms of measure p,
the cyclic functions of L?(T) are described. The classical logarithmic integral criterion
for completeness of the polynomials, the case of incompleteness, and the closure of the
polynomials H?(y) is described in terms of the outer function related to Radon-Nikodym
derivative w = j—y’fl. We consider outer functions, their extremal and extension proper-
ties, and distribution value properties. The important Smirnov subclass of Nevanlinna
functions is considered. After transferring these results to an arbitrary simply connected
domain of C, we use these techniques to get a remarkably general Phragmen-Lindelof type

principle due to Smirnov (1920) and then by Helson (1960).

6.1. Szego infimum and weighted polynomial approximation.

Theorem 6.1. (Szegd, Kolmogorov) Let du = wdm + dus be a Borel measure. Then

inf /|1 — pl2dp = exp (/ logwdm) .
pePY JT T

Proof. By the Theorem two cases are possible
(i) If there exists f € H? such that |f|* = w a.e. m then dist® = 0; otherwise

(ii) dist? = | F(0)[?
By the Corollary Case (ii) < logw € L' holds if and only if logw € L' and in this

case:
+z

72) = exp [ 2 logu (dmi)

Since f € H2, f(0) = £(0) and |f(0)]2 = |f(0)]2 = exp [ logwdm.

O

Let f € L*(T), and write E; = span{z"f : n > 0}. If E; = L*(T), we say f is a cyclic
vector. Note that the half of the trigonometric system (2"),,>¢ is far from being complete
in L?(T), but multiplying by a suitable function f one can get completeness property i.e.
span{z"f : n > 0} = L*(T). It may happen that for different halfs of (2"),cz, nothing
similar is true.

Corollary 6.2. Let f € L?. Then E; =span{z"f :n > 0} = L? if and only if f(£) # 0
a.e. on'T and [ log|f|dm = —oo.

Proof. Two cases may possible: Either zFy = Ey or, zE; C FEy. In the first case by
N-Weiner Theorem there exists ¢ C T such that E, = x,L?*(n). If the second case
holds: zE; C FEj. < there exists 6 such that [] = 1 and E; = 6H?. Since E; =

L?* = zE; = L? again, hence only the first case is possible, so second case does not
possible, i.e., V0 such that |0] = 1, E; # §H? < there does not exists g € H? such that

2"f=0gVn&s 1|f|=1|g| < |f] = |g| & log|f| € L' by Corollary [5.36}
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(<) there exists o € T such that E; = x,L*(T). As f € x,L*(T) and f # 0 a.e. on
T we get o = T, and then E; = L*(T). O

Example 6.3. (a) If f(e") = |1 —€”|*, a > —1, then E; # L*(T).
(b) If f(e¥) = exp (%), then E; = L*(T).

The following two theorems are final statements on weighted polynomial approximation
on the circle T.

Theorem 6.4. Let i be a positive measure on T and let w = 57’2 its Radon-Nikodym
derivative. Then polynomials P, are dense in L?(u) if and only if logw ¢ L'(T).

Proof. Polynomials are dense in L?(u) if and only if the Szego distance is zero follows
from Corollary [£.4. This holds if and only if there does not exists an outer such that
|f|? = w ( using Theorem |4.15)), which is immediate from Corollary |5.36] O

Theorem 6.5. Let o be a positive measure on T, let dy = wdm + dus be its Lebesgue
decomposition and suppose that logw € L*(T). Let ¢ € H? be the outer function defined

by ¢ = [w%]. Then closure H*(p1) = closyz(,y Py is given by
H*(p) = L*(ps) @ (97 H?) = L*(ns) @ {f € Hol(D) : f¢ € H*}.

Proof. Indeed, Corollary [4.1| gives H?(u) = H?(wdm) @® L?(us) and Lemma 4.3/ and Theo-
rem [6.1] show that H?(wdm) is 1-invariant (non-reducing) subspace of L?(wdm) ( see also
Remark [1.2). & H?*(wdm) = 0H? for some 0 such that |0|*w = 1 by the Helson Theorem

311 = 0= [w2]! = L% Hence H?(wdm) = —5 H? = o~ H? since ¢ = [w'/?]. O

wi/2

6.2. Properties of Outer functions. Note that from Theorem to define [f] the
condition log|f| € L' is sufficient, but the extra condition f € LP ensures that [f] €
H?(D). In general, the definition of the outer function is defined as follows:

Definition 6.6 ( Outer functions ). Let h be a measurable function on T with log |h| €
LY(T). An outer function ( of absolute value |h| ) is a function f = A[h] with |A\| = 1 and,
as in Theorem [5.27

1) =exp ([ 52 0 1@ lam()). 1 < 1

Below we are discussing few properties of outer functions:

Properties 6.7. (i) An outer function f admits non-tangential boundary limits f.
Moreover, f € H?(D) < f € LP(T)

Proof. By Fatou’s theorem lim,_,1 log |[f][(r€) = lim,_,1 [ Pe(¢)log |f|(¢)dm(() =

log | f](€) exists non-tangentially a.e. on T. Hence |[f](€)| = |f(€)] = |[f]| = |f].
If f~€ LP(T) then [f] € HP(D) follows from the Theorem (i). If [f] € H?(D)

then f € LP since |[f]| = |f]- O

(ii) Let f € HP,p > 1. Then f is outer if and only if £y = closy»(fF,) = H?(&
f is cyclic in HP)
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If f € H? and % € H%(p > 0,q > 0), then f is outer.
P’I"OOf. f = >\1B151[f] and % = AQBQSQ[%] — m /\QBQSQ[ } = 1

ABS[%] = ABS = B=1,58 = 1(since |B| < 1,|S| < 1 on T) S1m11ar1y, By

By =1 and S; = Sy = 1. Hence f is an outer (% is also an outer.)

Theorem 6.8. (Smirnov, 1928)

45

(a) If f € Hol(D) and Re f(z) > 0 for all z € D, then f € H?, 0 < p < 1 (but

perhaps f ¢ H' (D)) . Moreover, f is an outer.

Proof. Note that Re f(z) > 0,Vz € D = Re f(z) > 0,Vz € D. Indeed if
there exists a point 2y € D such that Re f(z9) = 0 then by maximal/minimum
principle for harmonic functions Re f = 0 on DD, so f is constant, identically

equal to 0, a contradiction [see [11] p.150.]
As the values of f are in the right-half plane:
t={2€C:Re(z) >0}

the function z —— (f(z))? is analytic and we can choose arg f(z) such that
|arg f(2)?| < pr/2, z € D. Hence if 0 < p < 1, then there exists ¢, > 0 such
that |f(2)[? < ¢, Ref(2)? [since Re f(2)P = |f(2)|P cos(arg(f(z))*)]. The MVT

applied to the harmonic function Ref(2)P gives

| iseenr st < [ Re(trety) costmp/2) 57 = Re((0) cos(mp/2

for 0 <r < 1. Hence f € H?(D), 0 <p < 1.

BMMoreover, since Re (ﬁ) > 0 in D, we have f and % in H?, 0 < p < 1. By

Property (iii), f is an outer function.

O

(b) More generally, if f € Hol(D), f(2) # 0 and o := ) |arg(f(2))| < oo then f

is outer and f € HP(D) for every 0 < p < /2 (but perhaps f # Hza (D).)
Proof. Apply the first case to g = f™/2,

(¢c) For every h € LY(T), Th € Nocpc1 H?(D) for every 0 < p < m/2c where

thz) = [ HZhOdm(C)

O

Proof. If h > 0 then Re I'h(z) > 0 in D, hence I'h € Ny<p<1 H?(D). The general

case follows from h = hy — hy + ihg — ihy where 0 < h; < |A|.

O

Remark: By the Herglot’z Theorem the general form of a function f €

Hol(D) with Re(f) > 0 is

Pu(z) = [ Hdu(q) +ie

where p 1s a positive measure on T and ¢ € R.
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Example 6.9. (Herglotz Integral) Let u € M(T) such that

[tz
fu= [ o)

Then f, € H?,0 < p < 1 since Re f,(z) = [ - |Z‘2d,u = [ P.(§)dp >0if p >0

|£—=|?
and p = p11 — po + ip3 — ipg where 0 < p; < |pl.

W If 4 > 0 then also Re(#) >0 = # € H?, hence f, is an outer.

Example 6.10. (Cauchy Integral) If f is integrable then F(z) = 2m fnr 1) —dé =

LS — F(z) = & [P du(t). If > 0 then Re{=} =

271 JO  eft—z

> 0. Hence f € HP,0 < p < 1.

2mi JO ett—z
1—7 cos(t—0)
1—2r cos(t—0)+r2

(v) If f € H® and || f||c <1, then 1 + f is outer.

Proof. Re(1+ f) > 0 and apply Theorem [6.8| (a)

O

(vi) The set of outer functions is a commutative group for standard point-wise-point

multiplication.

(vii) Let f, g € HP(p > 0)

(a) Then fg is outer if and only if f, g are outer.

Proof. Let f = M B1S1[f] and g = X\yBSs[g], hence fg = (A X2)B1B2515:[fg],
then use the uniqueness part of the Smirnov Canonical Factorization Theorem

.52

(b) Let f be an outer function and let |f| < |g|, then g is an outer.

O

Proof. Obv1ously, € H* and f has no zeros in . By Theorem [5.32| we get the

representation g = )\SF , where F is outer. Suppose that g is not outer. Then g =
A1S1Fy with Sy is a non-trivial singular inner function and f = (A\;)(SS1)(FFy)
O

with S§S; # constant, which contradicts the hypothesis.

(c) If f e H?(D),p > 1 and inﬂf) |f(2)] > 0, then f is outer.
zE

Proof. 1t is clear that for g € H? (¢ > 1) we have % € H? and hence by Theorem

5.33| (iv) f is outer.

Theorem 6.11. Let p > 0.

(i) Let f, €

0, then f =0, otherwise f is an outer HP function.

O

H? be a sequence of outer functions with f,(0) > 0. If | fu| N\ on T, then
f(z) = lim f,(2), z € D exists uniformly on compact sets. Moreover, if lim f,(0)
n—oo n—oo

(ii) Let f € HP be an outer function. Then there exists a sequence of outer functions

fn € HP and 1n]1f))|fn(z)| >0,n>1,|fal \(|f] on T (and hence on D) and f(z) =
zE

lim f,(2), z € D.
n—oo
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Proof. (i) As the functions f,, are outer, we have

log |u(2)] = / P(=8) log | £,(6)dm(©).

To show the uniform convergence of f,, it is enough to show that f, is uniformly
Cauchy sequence. For this, we will show log |f,(2)| is a uniformly Cauchy.

g £u(2)] ~ gl = | [ P10 %dm@\

|fa(§)
’fn+p

= Cons O ’fn( )’ m
- t/1g|fn+p< emie)

— const ([ Tog |1 (€)ldm() ~ [ 108 fusp(€)ldm(©)).

The conclusion is followed by monotone convergence theorem.
Suppose that 1r>1f1 fn(0) = 0, then

lim /10g|fn|dm = lim log fr, = —

For a point zy € D, we have P(z¢) < 1+Iz°| Co. Hence,

log |fu(z0)] < Co [ log|f,dm.
T
We conclude that lim log|f,(z0)| = —oo and similarly for all z € D and we get
n—oo

f=0o.
If ugfi fn(0) > 0 and |f,| \yh on T, then
/loghdm— lim /10g|fn\dm> —00,
and hence log h € L. Now, it is obvious that Tim fn(2) = f(2) with f = [h].

(il) Without loss of generality, we may assume that f ( ) > 0. Set f, = [|f| + Jn], where
dn > 0 an appropriate sequence with lim §, = 0 and [ log(|f| + d,)dm < co. Then
n—o0

< Sup]sz\/’1

|z|I<R

|‘d

fn satisfies the desired properties.
O

6.3. The Nevanlinna (N) and Smirnov (/N;) classes. We know that Nevanlinna
class can be represented as

= {f € Hol(D) : there exist fi, fo € U H? such that f = fl/fg}
p>0
and let

= {f € Hol(DD) : there exist f1, fo € U HP? such that f = f1/fs and f is outer}

p>0
be the Smirnov class (sometimes denoted by N, ).
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Lemma 6.12. We have
N = {f € Hol(D) : there exist f1, f € H™ such that f = fi/f2} and
D = {f €Hol(D) : there exist fi, fo € H® such that f = f1/f> and fs is outer}.

Proof. Let f € N, f #Z0 and f = %, where f1, fo € HP’s have canonical factorizations
f1 = /\[fl]Blsl and f2 [fQ]SQ Set F1 = )\[Il’llIl(l, \f|)]BlSl and F2 [m1n(!f| 1 1)]52
Clearly Fy, Fy € H*® and since | f|. min(]f]7!, 1) = min(1, | f]), we also get f = F;

[1 1] [min(] f17", 1)} = [min(1, | f])]

— 1= 171 = AL

Almin(1, B1S
Now, I% - [1[rnin((\f||fp]1)]1521 = A[f]Bé_fl = Alf]B1Ss.

Hence f = % = )‘[{}i%fl = )\[fl]B1S3 = \[f]B1S3 = % U
Definition 6.13. (Outer in Nevanlinna class) A function f € N is called outer if there

exist two outer functions fi, f such that f = %

Properties 6.14. (of the class D and Nevanlinna outer functions)

(a) If f is outer, then f € D.

(b) If f; and f5 is outer, then so is fi fo.

(c) If fifo are outer, and fi, fo € D, then fi, fo are outer.
(d) If f1, fo € D, then f,f; € D.

(e) If F € Hol(D), G € D and |F| < |G| in D, then F' € D.

To verify (c), just let G = % with G1,Gs € H*, and G5 outer. By hypothesis |GoF| <
|G1| in D, and hence Gy F € H*. We conclude that F' = Géf €D

Theorem 6.15. (Generalized Maximum Principle) Let f € D and g be an outer function
in N. If | f| <lg| on T, then |f| < |g| on D.

Proof. Let f = }cl and g = gl where f5, g1 and g, are outer functions in H* and f; € H*.
By assumption | fig2| < [fog1| on T and hence [f1g2| < [[f1g2]| < |[f21]| = [fog1| in D. O
Remark 6.16. This result is not true in general if f € N \ D and/or if g is not outer.

Let us recall that by Fatou’s theorem every f € H* has a non-tangential limit a.e. on
T and the boundary function satisfies:

/log |fldm > —oo,
that means the non-tangential limitqsT of f are non-zero a.e. From here we see that:
Proposition 6.17. Fvery function in N class has a non-tangential limit a.e. on T.
Proposition 6.18. H? C N,
Proof. Hint: If f € HP\{0} then f = ABS|[f]| where

1) = e ([ -2 10g0amtc) )
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Now log = log™ —log™ and consider f;, f corresponding to functions log™ and log~. [

So we have the relation: H? C N, C N.

Theorem 6.19. (Smirnov Theorem) f € Ny and its boundary limit function belongs to
L? then f € H? 1.e. Ny N LP = HP.

Proof. The proof depends on the Arithmetic-Geometric Mean Inequality:

exp (/ log hda) < /hdcr,
T T

where h is a non-negative function on T which is integrable.

If f € Nt then f = g1/g2 where g1,92 € H® and g, is outer. Since the presence of an
inner factor in ¢; will not affect whether or not f € H?, we can also assume that ¢, is
also an outer. Using the definition of an outer function applied to functions g; and g, we

see that 4 141(0)]
ILiz) = “ log T1S g )
92 () = exp ( NET RG] m(¢)

Furthermore, for each r € (0,1) and w € T

9 | = exp ( / Pru(C) log '91(O'zdm<<)

P PG

Now apply the Arithmetic-Geometric Mean inequality to the function |g;/gs| and the

measure P.,dm: ,
a1
—(Tw)‘ < /
P T

(6.1)
[1reoam) = [ L) Pdmo)
-

Integrate both sides:
T 92
2
P
</ ( /]2 m<<>dm<<>> dm(w)

= [ ([ 15O Pata(@) ) amtu
= [1HOF ( [ Patmiu) ) am(o
= [ 1#Pdm

Thus supg.,.; Jp |f(rw)Pdm(w) < [ |f]*dm, which implies f € H?.
To prove the second statement of the theorem, observe that if f € N and f|r € L* then
as before we can assume f = g1/go and ¢y, g2 are bounded outer functions. By (6.1]) we

()| Prwdm(Q).

g2
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see that ) )

2 _ |91 g1

0P =[ 20w < [ |20 a0t
= [1HOPPu(Oim(©)
2 P..d

<12 / m(zeta)

— | Fhel2,
which implies f € H*™. O

Remark 6.20. Smirnov’s theorem is no longer true for f € N even when f is analytic
on D. For instance the function
1+2
f(z) =exp | T
which is the reciprocal of the atomic inner function described in Example belongs to
N class, analytic on D and has boundary values of unit modulus a.e. on T. However it
does not belongs to H? since as in Remark

= (10 ) or e 00

which does not satisfy the necessary growth condition for an H? function as described in
see[8](p. 59):
/]

V1=
The original definition of the Nevanlinna class is different from definition in[6.3] f € N
if and only if
sup [ log” |(r)dé < o

o<r<1.JT
The equivalence of the two definitions is not at all obvious; the proof can be found in

Nevanlinna and Nevanlinna (1922), Privalov (1941), Duren (1970) [12][p.16], and Koosis
(1998) [4] . We will state the theorem as follows:

V] < fem.

Theorem 6.21. [12]/p.16] A function analytic in the unit disk belong to the class N if
and only if it is the quotient of two bounded analytic function.

Proof. (<) Suppose first that f(z) = ¢(2)/¢(2) where ¢, 1 are analytic and bounded in

D. There is no loss of generality in assuming |¢(z)| < 1, |1(z)| < 1 and ¥(0) # 0. Then
2m 2m

]%ﬂﬂMWWS—/ log |4 (re')|do.
0

0
But by Jensen’s formula (see Ahlforse, p. 206)
r

1 27 )
— 1 91do =1 log ——
- [ tomlure) oulv(O) + 3 log o

where z, are zeroes of 1. This shows that [log|¢| increases with r, so f € N.
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(=) Let f(z) # 0 be of class N. Let f has a zero of multiplicity m > 0 at the origin,
so that 27" f(z) — a # 0 as z — 0. Let z, be the other zeroes of f, repeated according
to multiplicity and arranged so that 0 < |z1| < |23 < --- < 1. If f(2) # 0 on the circle
|z| = p < 1, the function
P p* = Zn2

F(z) = log {f<Z>Z_mH|Zn|<p (m) }
is analytic in |z| < p, and Re F(z) = log|f(z)| on |z| = p. Hence by analytic completion
of the Poisson formula:

F(z) = i/%lo f(pe) 2 2 dt+ iC.
o A pe’

0
This is sometimes called the Poisson-Jensen formula. After exponentiation, it takes of
the form f(z )— ( )/1,(z) where

ol = ) e
HZ - —— 1 dt 1C
o) = et 2 e { o [Thow (e 2 R
peit 4

1 2 ] P

o) =ep {5 [Trogt e 25 2}
Now choose a sequence {p;} increasing to 1 such that f(z) # 0 on the circles |z| = py.
Let ®4(2) = . (pr2;); Yi(2) = ¥, (prz). Then f(prz) = Pi(2)/¥i(2) in D. But the
functions are analytic in the unit disk, and |®x(2)| < 1, |VUk(2)| < 1. Hence {®;} and
{W,} are normal families, and there exists a sequence {k } such that @, (z) — ¢(z) and
Uy, (2) = 1(z) uniformly in each disk |z| < R < 1. The function ¢, v are analytic in unit
disk and |p(2)] < 1,|¢(2)] < 1. According to the definition of v, the fact that [log™ |f|
is bounded gives a uniform estimate |W,(0)| > 6 > 0, so 1(z) # 0. Thus f = ¢/1 and the
proof is completed. O

The importance of this theorem is that it allows properties of functions in N to be
deduced from the corresponding properties of bounded analytic functions. The
boundary behavior, for example, can now be discussed.

Theorem 6.22. For cach f € N, the non-tangential limit f(e*) exists almost everywhere
and log | f(e")] is integrable unless f(z) = 0. If f € HP for some p > 0, then f(e?) € LP.

Proof. Assuming f(z) # 0, represent in the form (2)/¢(2), where |p(z)| < 1 and |[¢(2)| <
1. Since ¢ and v are bounded analytic functions, they have non-tangential limits ¢(e%)
and (e?) almost everywhere. Appleaing to Fatou’s Lemma we have

27 2
/ | log |¢(e)]|df < lim inf1 {—/ log |<p(7“ew)d9}
0 (i 0

But [log p(re)df increases with r, by Jensen’s theorem. Hence log |p(e?)] € L' and
similarly for ¢. In particular ¢(e?) cannot vanish on a set of positive measure. The radial
limit f(e®) therefore exists almost everywhere, and log | f(¢)| € L'. Another application
of Fatou’s lemma shows that f(e?) € L? if f € HP. O

The theorem says that if f € N and if f(¢’) = 0 on a set of positive measure, then
f(z) = 0. In other words, a function of class N is uniquely determined by its boundary
values on any set of positive measure.
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It is evident from the representation f = /1 that [log™ |f(re®)|df is bounded if
f € N. Hence f € N if and only if [ |log|f(re)|| d6 is bounded.

6.4. A conformably invariant framework. Here we consider the classes Nev(2) and
D(Q), where € is a simply connected domain (# C), that is, domains that are
conformably equivalent to the open unit D.

Definition 6.23. Define
H>*(Q) ={f € Hol(Q) : || fl|me = sug\f(z)\ < o0}
ze

and
N(Q) ={f € Hol(Q) : there exist fi, fo € H*(Q) such that f = f1/f2}.

For w : D — Q be an onto conformal map. A function f € Nev(Q) is called outer if f ow
is an outer in Nev(D). With this definition, we get
D(Q) = {f € Hol(Q) : there exist fi, fo € H*(Q) such that f = f1/f, and f> is outer}.
The following two results are simple factorization to {2 of the corresponding well known
facts in D. Note if w : Q — D extends to a homeomorphism of clos (€2) onto clos (D),
then we say €2 is Jordan domain.

Lemma 6.24. (Generalized Mazimum Principle) Let Q be a Jordan domain. Let \ €
9Q, f € D(Q)NC(clos()\{A}) and let g be an outer function such that g € C'(clos(2)\
{A\}) and | f] < |g| on OQ\{X}. Then |f| < |g| on Q.

Lemma 6.25. Let f € H*(Q2). Then f is outer if and only if there exists a sequence of
outer functions (fn)n>1 € H® () such that

E (o) >0, 0> 1, Tim fu(2) = (=), [fal2)] N F(2)], 2 €9

Corollary 6.26. Let 1 C Qs be two simply connected domains and f € N(§)).

(i) If f is outer on a, then flq, is outer on €.
(ii) If f € D(2), then flo, € D().

6.5. The generalized Fragmen-Lindlof principle. The result of Theorem and
Lemma are, in fact, the versions of the Fragmen-Lindlof principle. The difference is
that, in general, the mejorants are not given by analytic functions.

Let €2 be a Jardon Domain, let M and M, be two non-negative functions on €2, and let

w e C(0\ {\}), where A € Ow, @ > 0. Then M, is called Fragmen-Lindl6f majorant

for M and w if for every f € Hol(2) U C(clos(2) ~ {A}) with |f| < M on 9Q \ {\} we
have |f| < M..

Theorem 6.27. (Generalized Fragmen-Lindlof principle) Let f € D(Q) and G € N(Q)N
C(clos(Q2) \ {A}) be such that M < |F| on Q, w < |G| on 9Q ~ {\}. Then either there
exists an outer function |w o w| (and then M, = |[w o w] o w™ | is a Fragmen-Lindlof
magorant for M and w) or f =0 for all f € Hol(2)UC (clos(2) ~{A}) such that |f| < M
on Q and |f| < w on OQ{A} (and then M, =0).
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Proof. In view of (e) of Properties[6.14] the inequalities |[F| < M < |F| show that f € ().
If there exists f £ 0, f € N(Q) such that

fow| Swow < [Gouw
on T~ w™({A}), then we can define the outer function [wow]. Applying Lemma we
get |fow| <|wow]| on T\ w™({A\}) and hence the desired result. O

6.6. Exercises.

Exercise 6.28. Let b be a non-constant function in the closed unit ball of H*°. Put

=T
Then f is an outer in H?, for 0 < p < 1.

Proof. Since b € {||f|lcc < 1: f € H*®} by the maximal principle, |b(2)| < ||b]|c < 1 for
each z € . Hence f is analytic on ID. Moreover we have

1 1—Reb(z) _ 1—1[b(2)?
= d D).
BT~ T bep S Tobep e
Hence by Smirnov Theorem [6.8] f is an outer in H”. O

Exercise 6.29. If a polynomial p has no zero in the open disc D, then p is outer.

Proof. Consider p(z) = constH (1 - f) & > 1. As |z| < 1 and |§| > 1, we have

Re (1 — —) > 0. By applying Theorem . and the Property ( [vi ) U
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7. HARMONIC ANALYSIS IN L*(T, )

The main result of this section is the Helson- Szegd theorem characterizing those
L3(T, 1) in which the Fourier series of every function f € L?(T, i) converges in the norm
topology. This is one of the main results of harmonic analysis on the circle group T. It is
closely related to generalized Fourier series with respect to a minimal sequence; harmonic
conjugates, the Riesz projections, and weighted estimates for Hilbert singular integrals.

Definition 7.1. A sequence (z,),>1 in Banach Space X is called minimal if z,, ¢ M,, =

span{xy : k # n}, and is called uniformly minimal if iI;f dist (x_ ]\/[n> > 0.

n=1 [EAN
To proceed we need a corollary of the Hahn Banach Theorem.

Proposition 7.2. Let M be a linear subspace of a normed linear space X, and let xo € X.
Then xq € M if and only if there does not exists a bounded linear functional f on X such
that f(x) =0 Vz € M but f(xo) # 0 (in fact it is 1).

Proof. (<=)If zy € M, f is a bounded linear functional on X and f(x) = 0 Vo € M. The
continuity of f shows that f(z¢) = 0 (since 2o € M). So there does not exists a bounded
linear functional f on X such that f(z) =0 Vx € M.

(=) 70 ¢ M. Then 3 a § > 0 such that ||z — 20| > 6,Vx € M. Let M’ be the subspace
generated by M and xy and define f : M’ — C by f(z + A\xog) = Aif x € M and ) is a

scaler. Since 6|A| < [A[|lzo + Az|| = |[Azo + 2| = |f(z + Azo)| = [A| < $[Azo + x|
Also f(z) =0on M and f(z9) = 1. By the Hahn Banach Theorem there exists unique f
which extends f from M’ to X. d

Lemma 7.3. (i) A sequence (x,)n,>1 C X is minimal if and only if there exists f, € X*
such that (zg, fn) = Okn. Such a pair ((xn)n>1, (fr)k>1) will be called biorthonormal
and f,, n > 1 coordinate functionals.

(11) (xp)n>1 C X is uniformly minimal if and only if there exists a sequence (fy)n>1 of
coordinate functionals such that sup ||z, || || f.] < oo.

n>1

Proof. (i) By Hahn-Banach theorem, if z,, ¢ M,, then there exists a sequence f, € X~

with ||fn|| =1, fn($n> = Hanv fn(xN) =1, fu= %
(ii) Moreover for any subspace £ C X,
dist(z, ) = sup{|f(z)[ : f€ X", fle =0, [|f]| < 1}.
For this, if z € E then both sides are equal. So firstly we will show ”7<”. When
z ¢ I, by Hahn- Banach theorem there exists f € X* such that f(x) = dist(z, E),
and f(E) = 0 with [|f|| <1. Implies
dist(z, E) = [f(z)] < sup{|f(z)| : fe X7, fle=0, I/ <1}

For the other inequality, let y € E, then we have

[f(@)| = |f(z =y < [Flllle =yl < [l =yl
and hence |f(x)| < lg]g |z — y|| = dist(x, E). This implies
y

sup{|f(z)| : f € X" fle=0, |[f]l <1} < dist(z, E).
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Thus,

sup{| f(z)| : f € X", fle =0, [[f|| <1} =dist(x, E).
Now, replacing f by f/f(x), it follows that
1

wf {If]]: £ € X", fle =0, 1) = 1) = oo

Main Proof: Apply this to z = x,,, E = M, and let f,, € X* be the correspond-

ing coordinate functionals with minimal norm. Then,

, 1 11
dist (x—, Mn) = dist(z,, M,) = )
[e| e [znl [1.fn

Thus,

inf dist <&, Mn) > 0 if and only ifsup ||z, || || fn]] < oo.
n21 [l n>1

O

Definition 7.4. To a minimal sequence (z,) we associate the (formal) Fourier series

T~ Z((E, fn)Tn, v € X.
n>1
The operator x — P,z = (z, f,)z, is called the projection on the n'* Fourier component
(or the co-ordinate projection with respect to the biorthogonal pair ((x,)n>1, (fx)k>1)-

Remark 7.5. We have || P,|| = || fullllzx| (because f(x,) =1).

Proof. || Po(xn)|| = [fu(zn)|[|zall = L||lzall = ([ fallllzall (since fr(zn) = 1,and 1 = || fal]).
Also, since P,z = (z, f,)x, we have

P,(x
sup L 1z
w20 |||
= ([Pl = [l fallllznll,
because at the point z,, the function value attends its maximum. O

Definition 7.6. A sequence (z,) in Banach space X is called a basis of X if forall z € X

there exists a unique sequence (a,) C C such that x = Z axxy. Note that a, = a,(x) A
k>1
sequence x,, is called a basis sequence if it is basis in Spany{z, : n > 1}.

Theorem 7.7. (S. Banach, 1932) Let (xx) be a basis of the Banach space X. Then (xy)
is uniformly minimal and fi(x) = ax(z), © € X are the coordinate functionals.

Definition 7.8. Let X be a Banach space and let (x,),ez be a family in X. Then it is

called symmetric basis if for all z € X, there exists a unique (ag(z))gez C C such that

T = nh_}rxgo Z ag(x)zy. It is called non-symmetric if © = n}}gloo Z ag(x)zg.

k=—n k=—m

Lemma 7.9. Let x = (zx)rez and (fx)rez be a biorthogonal pair in a Banach space X.

Set P, = Z (., fx)zk, m,n € Z. Then

k=—m
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(1) x is a symmetric (respectively non-symmetric) basis if and only if sup || P-,..|| < oo
n>1
(respectively sup || Pr,,|| < 00) and x is complete.

(i1) If x is a (at least symmetric) basis, then ( fy)kez is total, i.e. fr(x) =0 for allk € Z
implies x = 0.

(i11) For o C Z, define x, = Span{zy : k € o} and x° = span{z € X : fi(x) =
0 for all k & o}. If x is a basis, then for all o C Z, we have x, = X°.

Proof. (i) Since x is a basis, lim P,,, ,x = « for all € Lin{zy : k € Z}. By the UBP

(uniform bounded principle: pt-wise bounded implies uniform bounded) sup,,, ,, | Pnnll <
0.

(ii) If fi(z) =0 for all k € Z, then P_, ,x = 0 for all n > 1. Hence x = 0.

(iii) The inclusion x, C x7 is clear (even for minimal families). On the other hand, if
x € X7, then z = lim P_, o with P_,, ,o € X,. Hence z € X,.

n—oo

O

7.1. Skew projections. Let L, M be two subspaces of a vector space X such that
LN M = {0}. Define P: L+ M — X by P(x +y) =z, then P> = P, P|; =id and
P|yr = 0. Then P is called skew projection onto L parallel to M and denoted as
P .= PL||M
Lemma 7.10. Let L, M be two subspaces of a Banach space X wverifying L N M = {0}.
Then
(i) Prya is continuous if and only if Pryy is well defined and continuous (here L =
clos L and M = clos M ).

Proof. Let x +y € L+ M,x € L,y € M. Then Py is continuous <= || Ppj(z +
)| = ||lz|| < ¢||lx+y| foreveryz € L,y € M < ||7|| < C||z+7Y||,T € L,and g € M
<= Pp3; 1s continuous. O

(ii) If L, M are closed, then Pp is continuous if and only if L+ M = clos (L + M).
Proof. Apply closed graph theorem for the operator T' = Pr ;. 0J

Definition 7.11. Let L, M be two subspaces of a Hilbert space H. Define angle a € [0, 7]
(or minimal angle) between L and M by

cos(L, M) =cosa = sup (@)l :
zer.yem [|z]l][y
NOTATION: We write av = (L, M).

Remark 7.12. L 1 M if and only if a = 7.
Lemma 7.13. With the above notations we have

cos{(L, M) = cos(L, M) = || Py Py||
and

sin(L, M) = sin(L, M) = ||PL\|M||_1a
where the symbols have obvious meaning.
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P_
Proof. Clearly, sup M = || Py;z||. Moreover, (z,y) = (Pyx,y) for y € M and
vernfoy Y
hence P
N 07 N7 ]
over, 02y |Z|[Y]l  oeer ozyens [lzllllyll
1 Py
L )
oteer [|7]] ozyerr |yl
1Pl
= sup .
otecr |2
But
[Pz | Py P 1Prbrell _ b p
Wl gy WaPoell gy DBl ).
oteer |2l ogaer |zl otoerr |||
Hence cos(L, M) = || Py; Pz ||
Now,
| Pryjne(z + )12
| Pyl = sup T
oeeL, 02yeM ||z +yl|
Edls

= sup —
0£wel, 04yeM ||z + yl|?

R
o£zer inforyens || + y||?

B
osats = Py)al?

|Pazl? _ 0= Py)el? 1
ower o2 " oher [alE TPyl

This now gives

sin®(L, M) =1 — cos*(L, M) =1 —

So sin(L, M) = O

”PLHMH

Corollary 7.14. The projection Pp is continuous if and only if ||PrPy|| < 1 (and

hence if and only if (L, M) > 0). Moreover, || Prm| = ||PM||L||.

Proof. Pp) is continuous < || Prjja|| exists and > 0 < 5-— exists and > 0 < sin(L, M) >

0< (L, M) > 0. Since sin(L, M) > 0 < cos(L, M) < 1 <:> ||P Pr|| <1 by Lemma [7.13]

U
7.2. Bases of exponentials in L*(T, u). Now, let X = L*(T, i), where y is a finite
Borel measure, and z;, = ¢**, k € Z (or, x), = 2*, k € 7).
Lemma 7.15. If (€*)cz is a basis of L*(u1) then us = 0.

Proof. Let 0, = {k : k > n}, let L7 =5§pan;z,){z* : k > n}, and let f; be coordinate
ikt

functionals associated to (€"")yez, then
() L2, = {x € L*(n) : fr(x) =0 for allk € Z} = {0}

n>1
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(rxe LP(p) = =23, fi)2F = >cp fu(@)z* and fi(z) = 0 since fi L
L?(oy) for all k > 1( by Proposition[7.2]) = z = 0 (by Banach theorem [7.7)). Clearly,

L2 is an invariant subspace, and 2" € L2 and z" # 0 on T. So it can be deduced (as in
Corollary that L2 = L2 (ua) + L*(us) for all n € Z. But then also ﬂ L2 D L*(us),

n>1

implies L*(us) = 0. O

Remark 7.16. For studying exponential basis in L?(T, u) one can restrict to measure

which is absolutely continuous with respect to the Lebesgue measure m, dy = wdm, w €
LY (T, m).
+ 5

Lemma 7.17. (Kolmogorov, 1941) Let w > 0, w € LL. Then (2")nez is a minimal
sequence in L*(wdm) if and only if + € L'(T).

Proof. Due to biorthogonality, we have
One = (2", i) L2 (wdm) = /z”fkwdm, n,k € Z.
So we deduce that fyw = zF, k € Z, that is fkT: %, k € Z. Hence
fx € L*(wdm) if and only if/T %wdm < 00.
O

7.3. Riesz Projection. Let P[P, be as earlier and P_ = span{e’** : k < 0}. Define the
Riesz projection P, by
Pof=) f(k)e™, feP.
k>0
Then
P+ - PP+||P_.
Let also

Ponf = Zf(k‘)@ikt, feP,mneZ m<n.
k=m

The following result gives the ﬂrinciple link between the problem of bases and the norm
estimation of the Riesz projection.

Lemma 7.18. Let w € Li. Then the followings are equivalent.

(i) (2¥)rez is a nonsymmetric basis of L*(wdm).
(11) sup || Punl < oco.
n,meZ
(iii) (2%)rez is a symmetric basis of L*(wdm).
(iv) SEIZ)HP,MLH < 00.
(v) The Riesz projection Py is continuous on L*(wdm).
(vi) (P, P_) >0 (or (H,H?) > 0, where H = clos 2 (ydm) Px.

Proof. In view of Lemma [7.9| we get (i) < (ii) and (iii) < (iv). It is also clear that (ii)
implies (iv). Using Lemma and Corollary we obtain (v) < (vi). Next, we verify
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that (iv) implies (v). Pick f € P, then for n = n(f) sufficiently large, we get (using

the relation: (k) = F(n + k), Pof = 2'Poynzf, 50 |[Pof]| = [ Ponzf] <

| P/l f]] implies || Py|| < sup ||[P-nn|l- It remains to show that (v) implies (ii). Note
n>1

that
Ppnf =2"" 1 = Py)y (A p omy o £ e P,
But then
1Prnfll = 11 = Pp)z" D P2 £ < | P[Pz FIF < PP
for all f € P, since ||1 — P;|| = ||P4]|, (by Corollary [7.14)). Hence the result follows. [

7.4. Harmonic conjugates. In order to get the desired characterization of exponential
type bases in L?(u1), we need a result of analytic type, namely, the so-called harmonic
conjugation on T (or D).

Theorem 7.19. Let u € L*(T) be a real valued function. Then there exist a unique real
valued function v € L*(T) such that 9(0) = 0 and u+ v € H?. The mapping u — v s
linear and continuous with ||v]| < ||u]|.

Proof. Let u = Z i(n)e™ € L?. Then u = Z a(n)e” ™. Since u is real valued, 4 = u <
nes nez

a(n) = @(—n), n € Z. Define
1(0) +2) " d(n)z

n>1

Then f € H? and
Ref— <f+f _u Z znt+z fznt

n>1 n>1
This means that v = Im f will satisfy the conclusion of the theorem. Next, we show that
vis unique. If u+iv = u+iv; € H?, then v—v; € H?. Asv—v; is real valued v — v; € H?.
But this is possible only if v —v; = ¢. Also ¢ = v(0) — v;(0) = 0(0) — v,(0) = O[since
for v,v; € H*> = v(0) = ©9(0),v;(0) = 11(0); and (0) = 1(0) = 0 from assumption.]
Finally, we have

— 1 , _ A 1 . ,
v=Imf = / o f_ T<Zﬁ(n)eznt - Zﬁ(n)e_’"t> = T<Zﬁ(n)eznt - Zﬁ(n)emt>.
g ¢ n>1 n>1 t n>0 n<0
The process u — v is linear and

loll* = [a(k)[* < Jlul?,

k40
and if (0) = 0, then |Jul| = ||v|]. O

Definition 7.20. The function v is called Harmonic conjugate of u. Let v = @. The
mapping H : L*(T) — L*(T), u — @ is called the Hilbert transform.

7.5. Different formula for <.

(a) We can translate the above formula for @ in terms of Riesz projections

1 1
U = —,(P+'LL — P,’U/> — —ﬁ(())
{2 7
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In particular, if @(0) = 0, then @ = 3(Pyu — P_u). Also, we have f = u + i1 =
2P, u — u(0).

(b) If u verify the conditions of the theorem, then f = u +iv € H?> and u = Re f. As f
extends to D so Re f does as well. For z € D, u(z) = Ref * P, = u % P,. Since the

Poisson kernel verify P,(¢) = Re (%), we get u(z) = Refi(z), where
ha) = [ Euan(c)

Note that f; € Hol(D)*! and Re fi = u, f1(0) = [ udm € R. By uniqueness, we have
T

J = /i and

t=Imf=Imf} = /Tlm (gj'z)U(C)dm(C) = /027T Qn(T — t)u(eit);j—;

where z = re** and

(+z 2rsint
(1) =1 = :
@(?) m((—z) 1—2rcost+r?
*1[
int 1 [T e +2 it
uad — —1+2226 — ( ) f(e™))dt

et — z

/fltdt—i-—/ Zzemt ztt
0)+22f(n)z_
-1

Since it has a power series it is analytic. (See [9] p.12 )]
sint
1 —cost
~ 27 dt
A7) = (u * cot(./2))(r) = / u(r ) ot (1/2) 5
7r

0
in the sense of Cauchy principle valued integral.

Remark 7.21. Forr — 1, Q, ~ = cot(t/2). In fact, one can show that

7.6. The Helson-Szego theorem.

Theorem 7.22. Let i be a finite Borel measure on T. Then the followings are equivalent.
(i) The family (2")nez is a (symmetric or nonsymmetric) basis of L*().
(ii) The Riesz projection Py is bounded on L*(p).
(i1i) The angle satisfies sin(Py, P_) > 0. B
h
(iv) dp = |h|*dm, where h € H? is an outer function such that dist <E’ HOO) <1

(v) dp = wdm, where w = €**° and u, v are real valued bounded functions and ||v]| <
(condition (HS)).

s
2

The proof of the theorem will be given in several steps based on the following lemmas.
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Lemma 7.23. The mapping j : H?> x H?> — H', (¢,%) — ¢ is continuous and sym-
metric. Moreover, j(B? x B?) = B!, where BP is the unit ball in HP.

Proof. The continuity follows from the Cauchy Schwarz inequality ||¢u]]; < ||d]l2]|?]|2-
For surjectively, let f € H!, then f = ABS[f]. Write ¢ = )\BS[f]% and ¢ = [f]% then
&) € H. O

Lemma 7.24. Let E be a subspace of the Banach space X, and ® € X*. Then
[®[z] =i x: V=0 on £} = x+: a € X" and alg = 0}

Proof. The inequality ”<” is clear. For ”>" apply Hahn-Banach theorem. Let ¥ = ®|g.
Then

¥l = sup [¥(z)] = ]| = Sg}gl‘l"(ﬁ)l = [|®[ell-
By Hahn-Banach theorem, there exists U € X* such that ||®|g|| = ||¥'||x+, and hence
the result follows. 0

Lemma 7.25. Let f € H' and suppose that f(T) C A C C. Then f(D) C conv A) (the
closed convex hull of A).

Proof. Observe that for z = rw € D, |w| = 1 we have f(z) = P, * f = f 1— \ZI ¢)d¢ €

conv(A). However, conv(A) = NH where the intersection is taken over all the half—planes:
H = {z € C: Re(az +b) > 0} containing A, a,b € C. Since P, > 0 and [, P.dm(§) = 1,
we see that the condition Re(af(¢ +b) > 0) for ae. ( € Tas f(() e AC H =
Re(af(z) +b) >0 = f(z) € conv(A) O

Lemma 7.26. (V. Smirnov, A. Kolmogorov) Let v € L*(T) be a real valued function
then e € L'(T) if M|v| < 3.

Proof. Tt is sufficient to show that ||ul| < 5 implies e* € L'. Set f = e+ which is

i 1—
well defined in D, since u + it € H?. Clearly |f| = €% and |arg f| = |u| < % for
some € > 0 (on T and hence on D in view of Lemma [7 [7.25). The same reasoning as in
(Theorem [6.8) now gives f € H' and hence |f| = ¢® € L(T). O

Proof. Implication (i) < (ii) < (iii) < (iv) of Helson-Szeg6 theorem.

Recall that we may restrict to du = wdm, w € L1 (T). By Lemma we get the
equivalence of (i),(ii) and (iii).

Next we show (i) and (ii) are equivalent to (iv) (See Fig 1): Note that if the sequence
(2")nez is a basis, then we can see from Banach’s (Theorem and Kolmogorov’s
(Lemma that = € L' and hence logw € L' (this can be justified without using
Banach theorem as z ¢ H?(u) we get logw € L'). In view of the later observation, we
suppose that there exists an outer function h € H? such that \h|2 = w. Thus,

(f.9)r —/fgwdm /fhghhzdm /fh (gh) dm /FG dm
for all f € P, and g € P_ and therefore,

11122 =/|fh|2dm= 1F W22y gllZegn = G Z2cr).
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FIiGURE 2. Figl

Clearly F = fh € H?, since g € P, we get G € Hj. By definition of outer function, it
follows that span{F = fh: f € P,} = H? and also A := {F = fh: f € P, ||[F] < 1}
is dense in the unit ball B of H2. For the same reason, we see that B := {G =gh: g €
P_,||G|| < 1} is dense in B* N HZ. We deduce that

cos(Py,P-) 2 = sup{|(f,9)| : f € Pi g € P_[IfIL(1) < 1, llgllL(p) <1}
h
:sup{’/FG—dm‘ cFeA Ge B}.
, 2 h
Set ®(k) = [k(£)dm, k € L'(T). As h/h € L>(T), we get ® € (L(T))*. By (Lemma
T
7.23)), we see that the angle (Py,P_) = [[®[4]], and by means of (Lemma [7.24)), we can

express it in terms of h:

(R b
cos(Ba, B}z = @yl = dist (5. (HO)*) = dist (7. 5).

L>(T) Lo (T
The last equality is the consequence of the relation

(H)*={geL>™: /gfdm =0 forall fe H}} = H™.
T
Now, we conclude that cos(P;,P_) < 1 if and only if logw € L', w = |h|* for an outer
function i € H? satisfying distye(r) (%, H*) < 1, that is (i) and (ii) are equivalent to (iv).
Proof of implication (iv) = (v):(See Fig 2) Suppose dist (%, H>) < 1, where
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FIGURE 3. Fig2

h is a outer and |h|? = w. Then there exists g € H> such that ||# — g||« < 1. That is for
e > 0, we have |2 — g| <1 —e€a.e. on T, and hence ||h> — gh?| < (1 —€)|h|* a.e. on T.
Setting a = |h(£)|? > 0 for £ € T, we see that |a — gh?| < (1 — €)a.

Geometrically, it means that if a € (0, F) is such that sinaw = 1—¢,and A = {z : |argz| <
a}, then we get gh*(T) C A (cf. Figure 1).

From (Lemma we get gh?(D) C A, so log gh? is analytic in D. We set v = — Im
log gh? = — arg gh® and get 0| = Re log gh? + ¢ = log |gh|? + ¢, where ¢ has to be chosen
such that 9(0) = 0. We obtain log gh? = © — iv — ¢ and gh® = ¢*~® ¢ on T, we have
|2 — g| < 1 — ¢, which implies that |1 — [g]] < 1 — ¢, hence ¢ < [g] < 2 — e. Finally,

v—C

e

|h|* =

= "7, where u = —log|g| — ¢ € L*(T) and ||v]|o < 5.

Proof of implication (v) implies (iv):

Let wdm = e**"dm, where u,v € L(T) are real valued and ||v||s < 5. Clearly logw =
u+7 € L' and by (Lemma[7.26) we have w € L'(T). Hence there exists an outer function
h € H? such that |h|> = w. Thus log|h|? = v + 0 and logh? = u+ o + i(u + )~ =
u+ 7+ i(i — v + ¢) for some constant ¢ € R. Setting g = e~ (@~ we obtain, in view
of |g| = e, a bounded holomorphic function g € H*. Moreover,

h
79= 1= exp(i(a — v +¢) —u—iu —ic) = exp(—u — iv),
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where [|v]|oc < §. This gives the following estimates on T.

—6)
5

e Mlullee < ‘Zg‘ < ellullee )arg(%)g‘ = |v| < 7T(1
(cf. Figure 2). The value of (#)g thus belongs to
D= {z e C: elulle <z <ellvlle ) arg 2| < 7r<1 ; ) }
For A sufficiently big and some § > 0 we have B(\, (1 — §)A) D clos D or A™'B(), (1 —
§)A) = B(1,1 —6) D A7 clos D. Then A~'2g € B(1,1—6) a.e. onT. In other words,
AH(%)g—1| <1—6dae onT,and Ay —( )] <1—4dae T.Asge H™, this gives
dlStLoo(T)( H°o> < 1. [

7.7. An example. Let w(e™) = [t|*, ¢t € (—m,7), @ € R. Then for o > 1 we have
1/w & LY(T) and (e™),ez cannot be uniformly minimal in view of Lemma [7.17 For
a < —1,w ¢ L' Thus, the only interesting case is |a| < 1.

First note that if the quotient w; /wy and wy/w; are bounded, then the sequence (€"),¢c7
is a basis of L*(wy) if and only if it is one of L?(wy). [ [#] < K and [%2| < K. By the
Lemma. e™) ez is a basis of L*(w) < wll € L'. Now

[its [I=x [ cos—erte
wn W2
(€™),ez is a basis of L?*(w,) by Lemma |7 j Similarly the other case follows.|
The identity map f — f is an isomorphism from L?(w;) to L*(ws).
Next, let w; = w and wy = (1 — €)®. Then
logwy = log |1 — €"|* = aRearg(1l — ") 1= w.
Necessarily, we get

int)

a(t) = aarg(l —e") = aarg(e®/?(e7/? — /2
= aarg(e/?(—2isint/2).
a(t/2—-m7/2) ift>0
a(n/2 —t/2) ift <O.
We deduce that ||i]| = |a|5 < 5 if |a| < 1. Hence (" )nez is a basis in
L3(|t|*dt) & |a] < 1.
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8. TRANSFER TO THE UPPER HALF-PLANE

In this section, we give an outline of the Hardy-space theory in the half-plane and on the
line. We restrict ourselves to the key results only: an isometric correspondence between
Hardy-space in the disc and in the half-plane, the canonical factorization, the Fourier
transform representation (Paley-Wiener theorem), and invariant subspaces.

8.1. A unitary mapping from L?(T) to LP(R). Let w: D — C, w(z) = i1==, be the
usual conformal mapping of the disc D to the upper half-plane C, = {¢{ € (C Im £ >0}
The restriction to the boundary wly is a one to one correspondence between T \ {1} and

— 2
R. The inverse w™!, w™!(z) = x_—'—z has Jacobian |J(z)| = , € R. Hence the
T+
mapping
U=U,: [’(T) - I’(R)

Upf () = (my/pf(w‘l(:v)), reR,

is an isomorphic isomorphism (unitary for p = 2) of the space LP(T) onto LP(R).
First, we give three descriptions of the image under U of the Hardy-space
H?*(T) c L*(T), then pass to arbitrary p, 1 < p < oo. Clearly, U,H?(T) is a closed
subspace of LP(R).

8.2. Cauchy kernel and Fourier transform. The first description of Uy H*(T) is
straightforward.

Lemma 8.1.

1
U2H2(T) = mLQ(R){E : Im 12 > 0}

To prove this we first need the following proposition:

: A e D}

Proposition 8.2. H?(D) = span{c, =

Proof. From Corollary for f € H 2, and for each A € D the evaluation map ¢, is

bounded and by Riesz-representation theorem it takes of the form: v (f) = f(A) = (f, )

where ¢\, € H? is unique. We now calculate ¢, and see that it is %Z,z € D. For each

)
A € D, the function A — s+ E H?, since
= Z)\ 2" and (") € (2(Np)

n>0

1
n>0

n>0 n>0

and so

Furthure, if f = ano an2" € H? then

< 1—)\z> ZG”M_
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By the uniqueness of the Riesz-representation theory: ¢y = . Moreover, [c)||* =
(cr,cn) = an(N) = ﬁ ¢y is called the Cauchy Kernal or Szego Kernal. The space
H? is called the Reproducing Kernal Hilbert space.
It is easy to check that the set D = {cy : A € D} is linearly independent. Also if f € H?
is orthogonal to ¢y, VA € D then f = 0 ( since f(A\) = (f,cy)). Hence D is dense in H?.
(A set D in X is dense if and only if D+ = {0}.)

O

Proof of Lemma[8.1 Since H*(T) = spaan(T){ﬁ SN < 1}, and U, is an isometry, we
have

< C 1
H?*(T) = span {U 1—)\271:—:A€D}:span — :Impu > 0}.
(T) L2(T) o ) oy {z—,u H }
Clearly, 4 = w(A) runs over the entire upper half-plane C,. O

Now, we recall that Fourier transform F and its inverse F~!,

F()(z) = % / f(@)e =,
FUNE) = o= [ 1wy

are unitary mapping of L?(R) onto itself.
Lemma 8.3. U, H? = F'L*(R,), where L*(R,) = {f € L*(R) : f =0 on (—o0,0)}.

Proof. Compute the inverse Fourier transform of the function xg, e € L*(R.), where
ImA>0:

—1 AT 1 AT ixz 1 1 i 1
P unee) = o [ anee e = Var o= (N
where —\ = p runs, again, over the entire half-plane C... Since F~! is an isometry, Lemma
reduces to the proof of the following identity:
L*(R,) = span{xg, " Im\ > 0}.
The equality follows from the injectivity (classical Fourier uniqueness theorem) of the
Fourier transform F. Let f € L*(R,) and suppose that f Lxg, e”” for all A with Im A > 0.

/ f(@)xr, e Mdr =0

[iz(z + Moz =

R
- / f(2)xr, e e ¥ dr =0 (putting A =y + i)
R
= F(fxe,e")(y) =0 (Vy € R)
= fxr,e " =0 ae. onR [since ]?: 0 = f=0]

UJ

8.3. The Hardy space HY = H?(C+). Here we see from real line R to the half-plane
C.. We identify the subspace U,H? C L?(R) with the space of boundary values of a
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certain holomorphic space in the half-plane C',. Note that w™!(z) = Z—H is a conformal
mapping from C, to D.
Hence the same formula as above, U, : H?(C*) — H?(D)

0 = (=5 i))l/pfw%z)), tm = >0

defines a holomorphic function in C for all f € HP(C,).

Moreover, w™?! is still conformal at the boundary points » € R and transfers a Stolz
angle in C;, {z +iy: |z —r| < cy}, into a Stolz angle in D. Now, Fatou’s theorem
implies that the functions U, f, f € HP(D), have non-tangential boundary limits
(Up(f))r a.e. on R, Uy(fr) = (U, f)r. Hence in order to get another characterization of
U,H?(T), it remains to describe U, H?(D) in intrinsic terms as a subset of Hol(C, ). This
is done in the next theorem. But, first we define Hardy classes on C,.

Definition 8.4. Hardy space HY = H?(C,),0 < p < oo, is the class of functions
g € Hol(C,) such that

ol =sup ([ lote+ )P < oc,
y>0 R
with the usual modification for p = co. In order to compare H?(C; ) with U,H?(D), we

need the following simple result.

Lemma 8.5. (i) Let v be an arbitrary circle in D. Then
i@ <2 [ 17

for all f € H?(D), 1 < p < oo, here |dz| stands for the arc length measure.
(i1) Let g € HP(Cy), 1 <p < o0 and z € Cy, then

2y}
9] < (=) "llglla-

Proof. (i) First let p = 1. For u € L'(u), denote by u, be the harmonic extension of u in

the unit disc,
|2

u*(z)—/ (C)K Pdm(C),zED.

We show that u — w.|, is a bounded operator from L'(7) to L'(7) of norm at most 4.

Indeed, )
[l < [ ol

A / ,14‘_‘Z=2|dz| dm(Q)

= 2or [ O L am(o)

where v = (¢, r). In the last inequality, we have used the MVT for harmonic functions
applied to the Poisson kernel P.(¢) = Re (?_’4) Since 2rdm(z) = |dz| on T, r < 1 —|¢|
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and = ‘C}Q < ﬁﬂ < = | -, we get the desired inequality. For an arbitrary p, 1 < p < oo,

we have |us|? < (Ju|P)s, from Holder’s inequality, and the result follows.
(i) Using the MVT in the disc, D = {x +iy : |A — (z+iy)| < Im A}, Holder’s inequality,
and what is sometimes called the “rolling a disk” trick:

1
lg(N)] = m/})\gdl‘dm
1 1 1
< / oPdedy)?( [ 1dady)’
1
< P ” 2y4
< (=) ([ ooy (et )

(7? Im)\> -2 /ZImAdy/w x+zy)\pdy>

( o) ) gz -

IA

IN

The following theorem is one of the main result of this section.
Theorem 8.6. Let 1 < p < oco. Then U,H?(D) = HP(C,).
Proof. If g € Hol(Cy), y > 0, and Uf = g, then
ARy RVC TR

where C,, is the circle in D having the interval (L= ﬁ, 1] as diameter and being tangent to
the unit circle T at the point 1. A line on the upper half plane at a distance y parallel

to x-axis maps to the circle C, = {2z : |z — m = ﬁ}, i.e., to check! for a point
(x +1iyp) in the line parallel to z-axis in the upper half plane maps to C,, under w™'. i.e.,
wHz +iyy) = ij:—ZOJrZ satisfies |z — ol = yo+1 There are two points to be noted from
the above discussions (Fig 3): (i) Inﬁnite straight-line parallel to z-axis on the upper-half
plane wraps around the circle C),

(ii) The region Im z > y > 0 maps into the inside of the circle Cy, easily check that (0, 2y)

maps to center of the circle (;47,0). Now
1

+oo
/R|g( yO)’ e (I’+Zy0+2)
_/*w | T+ iyo — i
) (@ + yo+ T+ Yy + 1

- [ e R

So it remains to Verlfy that

sup /|f(r§)|”|d§| < @sgp/c |f[P|d| < 0o, Vf € Hol (D).

o<r<1 JT

|[f(w™ (@ + iyo)) P

p
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(=) Using Lemma [8.5| (i) == : for any closed curve v € D,
[lr@r <2 [ 1repra:
T

v

— swp [ |Pdz <250 [ Iz
Y
— sup/|f(z)|pdz< 00

:>sup/ |f(2)|Pdz < oo [for v = C,)]

( <= )To prove the converse, let g e H” . By Lemma (8.5 (ii), g is bounded on every half-
plane Im z > y > 0. Hence gow is bounded on the disc int(C’y). Since the function (1—z2) is

1
outer on the int(C),) (no-zero inside the interior) and f = (12;)2) "(gow) € LP(Cy),"
we get f € HP(C,) by the integral maximum principle [5.33| (iv). (We use the previous
theory for the following classes H?(D) over disc D = int (C))), instead of the unit disc D;
the corresponding modifications, including the very definition of H?(ID), do not cause any
difficulties and can be obtained by a linear change of variable). Now, applying Lemma

8.5(1) to the circle y(r) = {2z € C: |z| =r} C int(C}), we get
e < 2sup [ S

¥(r) y>0
In fact, the Poisson representation (Corollary [8.8 1mphes that for g € HY, the norms

/\g x4+ 1y \pda:)

are monotonically increasing in y > 0 and tend to ||g|r||z» as ¥y — 0 (to see this, use
approximate identity properties of the Poisson kernel). This shows that ||g|g||z» = ||g]/ a2 -
U

*1

)H)lgowlP(2)d f{hne passing through y} lgow|Pdw = [, |g(w)[Pdw < oo
since g € H?(C,) =

1

Sup</|g(x+z'y)|pdx>p <00 = Vy>0,/|g(a:+iy)|pdx<oo
y>0 R ] R

Theorem 8.7. (R. Paley and N. Wiener, 1954)
HP(Cy) = F'LA(Ry)

Proof. This is immediate from Lemma and Theorem [8.6] O

e, (7

8.4. Canonical factorization and other properties. The following properties are
straightforward consequences of the change of variables from Section [8.1, Theorem [8.6]
and the corresponding facts from H? theory in the disc D.



70 HARDY SPACES

Eplanakims o G [As4d W
ol l(f)fw

Priootd Yo 1Lt VT P (Yotys)
ey B
i f P
/ \ —_— e
/ ‘/* P
./—J‘ﬂ\eﬂ
|/ |
w J/ ka \' q:d’
@ 75*\ \ 3
3 (o L

\
Q. F8 e maps mécjnémimmm‘ o ): e
delos =0 fiep o
%\ﬁawﬁf%; ; -

29| L[t - } hi DS
jc‘” %ot ({1 (y“\ f’—a*'m“)) 7”‘.’
3 Lo~ (Yot

= J—”’—
(mrimﬂ))(ém)) 7°;1—

FIcURE 4. Fig3

Corollary 8.8. (Poisson formula) If f € HP(C,), 1 < p < oo, then

1

Proof. f € HP(C,) = there exists g € Hp(]D) such that U,g(2) = f(z),z € C4
f(z)=( (z+z))1/pg(z+z) z € Cy. Now put w = 2= € D for z € C; then ( (5
hence f(z) can be re written as

1 1—w,\""
f(z) = (—( )2) g(w) for z € C; and w € D.

T 21

)2

z—l—z)

= h(w) € H?(D)

T 21

1 1—w,\'""
since (—( , )2) is bounded on D and g € H?(D)
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Now using Poisson formula for A on D :

e = sl i) = hw) = [ bl '“’:2 €

2 |€ —
1 [~ t—i 1—|=2 24t t—i —i
21 Jg t+z|HZ Z+l]21+t2 t+1 z+1
2y
dt
27T/f |t — 2|
——/—f(t)dt,y>0
T Jr (x —1)* +y?
[l

Corollary 8.9. (Boundary uniqueness theorem) If f € HP(C,), 1 < p < oo and f # 0,

then
[log | f()]]
R 1 + ZL’2

Proof. Let f € H?(C,) = f(2) = h(w) for z € C,,w € D and h € H?(D) By the
boundary uniqueness theorem for the disk:

1 2
— log |h d
5= | o llag] < o
1 ~ 2dt
L gl | 224
:>27T/R‘0g|f(>|1+t2<oo

o
/I oglfOI 5, _
R L4122

dx < 00.

O
Corollary 8.10. (Blaschke condition and Blaschke product) If f € HP(Cy), 1 < p < o0,

and f # 0, then
Z Im/\n < 00
L[>

where N\, are the zero of f in C, (counting multiplicities). The corresponding Blaschke
product (having similar properties as in D) is

Z— An
B(Z) = ]JCnﬁ, A (C+,

n

where €, = |:\\§—j:| (by definition, €, = 1 for A\, =1i).

Proof. Let f € HY(C,),1 < p < oo and f # 0. Then there exists g € HP(D) such that

1
Upg = F. Now, f(0) =0 = Upgh) =0 = (k) a5 =0 = g(3) =
0 where v, = ’\" : + €. So A};s are roots of f if and only if ;s are roots of g.
|An — \ s i At NP =i+ T+ AP — 2y,
Ay + i "= = Mt Ay =i M= i i, +1 T+ A2+ 2,
where y,, = Im(\,).

1Vn| = = |V
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2 _ 4y
Calculate 1 — |")/n’ = 1+|yn|—2n+2yn

We have g € HP(D). So |v,] — 1 when n — oo as 3 o (1 — |7.]) < oo since ) a, <

oo = lima, = 0.Solim, o (|A\n|—1) =0 = lim, o0 |An| = 1) since lim, o 11__||’\/\’;|‘2 =

limy, o0 (14 [An]) = 2(#£ 0). So D-(1— |7a]) < 00 < >(1— |7a/*) < oo (Limit comparison
Test of the series). Now consider the series: ) e
4yn
1— |77L’2 — 1+|yn|y2+2yn — 4(1 + |)\n|2)
(If|A\] 2 1in C4 = |\, = 2z axis = Im A\, fyn—>0)
Hence by Comparison Test > (1 — |v,]?) < c0 & T < oo. Hence the desired

Blaschke condition is: 3 12n) < o0,

14+|An |2
B The Blaschke factor for ¢ € HP(D) is IIb,, = for w € D and g(v,) = 0. Here
b — bml | 3ot _ Qutdda—i| _ P24H1Ontd) |A2+1\(An+z)()\n+z) _ D241t
T n e (An—=9)|An+i (A=) An+i|? (A2 4+1) (A +3) (An +4) A2 +1n+1
Now N ‘ — S
Wmow _ R 2i00— 20 —1) _ (= A)0at)

-3 w Qnutid(z=i) (N — N - j
YW ] — Cotiled) 2i( Ay — 2)(A\p + 1) (z = An) (A + 1)

n— z=An _ A2+
B(2) = by, 5% = e, 22 =
Now A\, =i = %:O — w is a factor of B(w),w € D = £ is a factor of B(z)
and obviously €, = 1. 0

Theorem 8.11. Fach function f € HP(C,); 1 < p < oo, has a unique factorization of
the form f = ABV[f], where A\ € T, B is the Blaschke pmduct constructed from the zeroes
of f, V is a singular inner function (an H*® function having no zeroes in Cy and with
unimodular boundary values on R) of the form

. . 141

V(z) = eV, (2) = """ exp <z/ t+ Zdv(t)) ,
R —Z
where a > 0, and v is a finite positive singular measure on R, [f] is the Schwarz-Herglotz
outer factor of the form
1 1412 dt
16 =exp (5 [ T o8 FOI ). =€ T

Proof. Let f € HP(C,). Then there exists g € HP(D) such that f(z) = g(w) for z € C,
and w € D. Now

27
i) = exp [ 5 [ £ el ]
Putting £ = —andw— = we have:
t—ziz—z_{tz+1+it—iz}j:{tz+1—i(t—z)}
t+i - z+i (t+i)(z +1)
£+w_ 1+tz
—tw ili-2)

Hence [£)(=) = [g)(5) = exp (4 fy H log |f(1)|1% ), = € €y
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B As g € H?(D), g can be written as g = ABS|[g]. Here S(w) = exp [— Jr H—wdu(f’)} for

E—w
weDand { € T and p L m. S(Zﬂ—exp[ Rzijtj) (tjr;)}

() =exp |~ o) - [ S aue)

& —w
()b [ (S

V(z) = e exp [/R %du(t)}
when o = p{1}, dv(t) (HZ) = 1+t2du( ). O

Remark 8.12. It is clear from the previous computations that other facts of the Hardy
Nevanlinna theory of Sections 3 and 4 in the disc can be transferred to the half-plane.
In particular, the properties of the inner outer factorization from subsections
still hold with corresponding modifications caused by the change of variables. For in-
stance, a function f € H?(C,) having an analytic continuation across a point x € R has
singular representing measure zero in a neighborhood of this point. To find the point
mass of the singular measure, the logarithmic residues of Section 4 (to be added) can
be redefined and computed and so on and so on. In particular, the point mass at oo is

1
a=— lim —log|f(iy)].
y—r00 Y

8.5. Invariant subspaces. Here we consider translation invariant subspaces of L*(R)
and their Fourier dual objects - character invariant subspaces.

8.6. Duality between translation and multiplication by characters. Define the
translation operator 7, by
(1sf)(x) = f(x — s), z € R, for s € R.

This is a group of unitary operators on L*(R). A subspace £ C L*(R) (closed, as
always) is said to be (translation) 2-invariant and if 7,F C E for all s € R, and
(translation) l-invariant if 7,£ C E for all s > 0 but not for (all) s < 0. The Fourier
image of the translation operator 7, is the multiplication operator by the corresponding
character e*** of the group R:

T(Ff) = F(e*f), for all f € L*(R).

Without any risk of confusion, we write e** both for the function z — €** and for the
multiplication operator by this function, f —— e**f. Hence, we have

— ‘/—_‘eisaszlj
that is, the groups (7,)scr and (e"%),cgr are unitarily equivalent (conjugate) via the
Fourier transform.
We use the same terminology as above for €*? -invariant subspaces. A subspace
E C L*(R) is (character) 2-invariant if ¢"**FE C F for all s € R, and (character)
l-invariant if e**F C E for s > 0 but for (all) s < 0. Hence, F is an 1- or 2- character
invariant if and only if its Fourier image FF is a 1- or 2- translation invariant subspace.
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Clearly, the Hardy space H%(C, ) is a character 1-invariant subspace, and
FH?*(C,) = L*R,) is translation 1-invariant.
Below, we will derive analogue of the Wiener theorem and Beurling Helson theorem
for character invariant subspaces. First, we prepare the transfer of these results to
L*(R) by means of the operator Us.

Lemma 8.13. Let uy, = exp (s%) s €R, and let E be a (closed) subspace of L*(R). The
E is a 2-invariant subspace (with respect to the shift operator f —— zf) if and only if
usEl C E, for all s € R, and E s 1-invariant subspace if and only if usE& C E, for all

s >0, but not for (all) s < 0.

Proof. If b € H*®, and E is a z-invariant subspace of L*(T), then bE C E. Indeed, by
DCT, we have

lin} |bf —b.fll2 =0, forall feE,

r—

where b,(z) = b(rz).

On the other hand, 2"f € E, for n > 0 and therefore, b,.f € E, since Taylor series of
b, is absolutely convergent on T. Hence bf € E. The same holds true for b € H> and
Z—invariant subspace E. These prove the “only if” part of the lemma.

By analogous reasoning, to prove the converse, it sufﬁceb& to sl)low that the function z
us, — (1 —s

us — (14 s)
Re(1 — us(¢)) > 0, and hence |¢p5(¢)| < 1, for ¢ € T. On the other hand, using the
standard formula

e =1+ sw+o(s) as s — 0, we easily get li_r)x(l)(bs(g) =(for (e T\ {1}. O

is the bounded pointwise limit of functions ¢, = as s — 0.. We have

Theorem 8.14. (P. Laz, 1959) Let E be a subspace of L*(R).

(i) E is a (character) 2-invariant subspace if and only if E = x=L*(R) for a measurable
subset X C R.

(ii) E is a (character) 1-invariant subspace if and only if E = F,H?*(C,) for a measur-
able function q on R with |q| =1 a.e.

Proof. Lemma shows that E is 2 or l-invariant if and only if its preimage U, 'E C
L?(T) has the same property with respect to the shift operator on L?(R). The results thus

follow by applying theorems and Theorem [8.6] O

Corollary 8.15. Let E be a subspace of L*(R).

(1) E is translation 2-invariant if and only if E = FxsL*(R) for a measurable subset
Y C R

(2) E is translation 1-invariant if and only if E = FqH*(C,) for a measurable func-
tion q¢ on R with |q| =1 a.e.

Indeed, it suffices to use Theorem and duality of Subsection

Corollary 8.16. (i) If F C H*(Cy), then spanp: {e""F : s > 0} = O©H*(C,), where
© is the g.c.d of the inner factors of f € F.
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i) If F C L*(Ry), then span s {7.F : s > 0} = F(OH?(C,)), where © is the g.c.d
R4)
of the inner factors of F1f, f € F.
i) If f € L*(R), then span 2 1€ f : s € R} = L*(R) if and only if f #0 a.e. on R.
(R)
w) If f € L3(R), then Span a2 {e®f : s > 0} = L2(R) if and only if f # 0 a.e. and
R)

(1+2%)log|f|dr = —o0
R
(v) If f € L*(R), then Span 2y {7sf 1 s > 0} = L*(R) if and only if Ff #0 a.e. on R
(vi) If f € L*(R), then Spansgy{7sf : s > 0} = L*(R) if and only if Ff # 0 a.e. and

/(1 + 2°) log | F f|dx = —oc.
R

Indeed, it suffices to use Theorem and Corollary and the corresponding
properties of z-invariant subspaces of L*(R).
Theorem 8.17. (Cauchy Representation) Assume that 1 < p < oo.

(i) Let F(z) belongs to HP(C,) and let F(x) be its boundary function. Then F(z) €
LP(—00,00). F(z) =

1> P
1 — —=dt d
(8.1) 27T/oot—z ,y >0 an
L[ R
8.2 0=— —=,y <0.
(82) 27ri/_oot—z’y

(ii) Let F(x) be any function in LP(—o0, 00) satisfying (6.2). Then (6.1) and the Poisson
representation (Corollary[8.8 ) define one and the same function F(z) on C. F(z)
belongs to HP(C..) and the non-tangential boundary function is equal to F(z) a.e.

Proof. (i) By Fatou’s lemma and the definition of H?(C, ), we have:

|F(z)Pdz < lirr(l)inf/ |F(x + iy)[Pde < co = F € LP(—00,00).
o Y= —0oQ
Let G(z) = ﬁffooo 1:7(2) dt,y # 0 Then G(z) is homomorphic separately for y > 0 and
y <0.Fory >0
m)—am—»l/m L rwa
© Z_2m' o t—2 =%
_Y / POy
T J -0 (t—l‘>2+y2
= F(z).
Since F'(z) and G/(z) are homomorphic on Cy so is G(2),z € C;. But
1 F(t
GZ)=—— ()dt,ZE(C+

2t Jpt — 2
is also homomorphic. Since G(Z) and G(Z) are both holomorphic, hence G(Z) is constant
on C,. Since G(—iy) — 0 as y — 0o, G(Z # 0) on C,. Thus and (6.2) holds.
(ii) Assuming
1 [ F(t) L[> F(t)

= — —2dt,Vy <0 — 0= —— —=dt,Vy >0 = 0=G(2),Vy >0
21t J_t— 2 2m J_t—7Z
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In (i) we have proved: G(z) — G(Z) = F(z) fory > 0 = G(z) = F(z). Applying
Holders inequality:

F y)|Pdx =
| iFrasira= [

P

—2———F(t)dt| dz

2

dx

/ s
S/ [
<[ ([ / o) ()|
<[ (o) (=) |
R y/” T irrar) o
<[ [ t_f/” | F ()P dedt
This shows that F 5 H/p&ozj( " 0

8.7. Cauchy kernels and LP- decomposition.

1
Theorem 8.18. (i) Show that H?(C,) = spaan(R){—f cImop > O} forl <p<oo.
z— [
(Hint: Use H?(C,) = U,H? and solve U, f = ﬁ)

(ii) Let 1 < p < oo. Show that LP(R) = HP(C,) & HP(C_), where @& stands for the
orthogonal sum for p =2 and direct sum for p # 2.

(iii) Let
=5 Z/ ) t, z€ C\R

be the Cauchy integral of f e L’(R), 1< p < 00, then the followings are equivalent.
(a) f € HP(C,).

(b) Cf = f., where f. stands for the Poisson integral extension.

(¢c) Cf(z) =0 for Im z < 0.

Proof. Previously solved. l

Theorem 8.19. (The Paley Wiener theorem) An entire function E is called of exponential
type if
— log |E
z

the limit itself is the type of E. Let £, = set of all entire functions of exponential type
< a. For a > 0, show that the followings are equivalent.

(i) E € & and Elg € L*(R).
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(ii) There exists f € L*(R) such that Ff = E and supp f € [—a, al.

Hint: For (ii) = (i), estimate the exponential type of E applying the Cauchy
inequality to the Fourier transform of f :

z)| = ’/z e—ifﬂzf<x)dx’ < ||f|12<%> (QG)Qeaumz\

Moreover, ||E||2 = ||f||2 by Plancherel’s theorem:
(i) = (ii): First suppose that F|g € L*(R) N L>°(R). Then by Phragmén-Lindelof
theorem |E(2)| < ||E||lsoe®™*!, for 2z € C, implies
A
B = —2 e E(z) € HY(CL), A> 0.
The Paley Wiener theorem (8 - 7| entails that F(E)) = 0 a.e. on (—00,0) and hence
F(e**E) =0 on (—o0,a) (because /\lim |Ex — e E||r2®) = 0). Therefore,
—00
F(E) = 1,F(e*E) = 0 a.e on (—o0, —a). Similarly F(E) = 0 a.e. on (a,c0.) and we get
(ii)
In general case, replace E by E(z) = [ E( c(t)dt, where ¢(t) = e '@(%), ¢ > 0'is

compaetly supported in R. It is easy to see that £° € &, and
supp (E€) C [—a — €,a + €], and we have liII(l) |E— E||12@®) = 0.
€E—

Question 8.20. (a) Show that f € H?(C,) if and only if f € L*(R) and F(f) =
0 a.e. on R.

(b) Find f € L'(R) N L*(R) such that L*(R) = Span g (7.f : s € R) and L'(R) #
span i gy {7sf : s € R} (Hint: Consider f = X(ap).)

(c) Riesz Brother’s theorem for R: Let u be a complex Borel measure on R such that
Jg €®'du(t) = 0 for all s > 0. Show that p << m.

8.8. Exercises.
Exercise 8.21. H!(C,) = H*(C,)H?*(C,)
Proof. We know that w : D — C, is a conformal map.
FeH(C,) = F-uw e H(D)
— F-w' =G, -Gy where G1,Gy € H*(D)

= F =[G ()G (w))]
Now define two functions ¢, go by the following forms:
gew=G- (w')fl/2

gow=_Gy (w )1/2
— (91°w)( ' =Gi e H(D)
— (gpow)(w)V? =Gy € HY(D)
— g1,92 € H*(Cy)
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and
F=(gew)(gew)
_— F.w_lzgl.gQ
= f=01"g.
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9. PROBLEM SETS
9.1. Problem Set 1.

. Determine the validity (TRUE/FALSE) of each of the following statements, providing
rigorous justification in every case.

(a) Every subspace of L?(T,m) of dimension greater than one is simply invariant.

(b) Let H? =span{z" : n > 0}. Is it true that H? | 2H??

(c) If 0 # f € H?, then Ey =span{z"f : n > 0} is a reducing subspace of H?.

(d) Let p be a finite measure on T. Is E; necessarily a reducing subspace of L*(p)?
)

(e) If © € H? is an inner function, does it follow that
span{z"© :n >0} = OH??

(f) Is H*(T,m) N L>(T,m) dense in L*(T,m)?

(g) Let p be a finite Borel measure on T. If 22 € H?(u), does it follow that H*(u) =
22 H?(p)?

(h) Let f = xpo,z). Does it follow that

span{z"f:n >0}

is a non-reducing subspace of H*(T,m)?

(i) Suppose 0 < u < m. Can it happen that H?(u) is a proper reducing subspace of
L*(p)?

. Let p be a finite Borel measure on T. Prove or disprove that
L*(p) = L*(p) - L*().

. Let p be a finite Borel measure on C. Prove or disprove that for every f € L*(C, p)
there exist g, h € L?(C, p1) such that f = gh.

. Let w € LL(T,m) = {g € L*(T,m) : g > 0}. Suppose there exists f € H? such
that |f|> = w a.e. on T. Show that there exists a unique outer function f, satisfying
|fo|> =w a.e. on T.

. Let u be a finite Borel measure on T. Define HZ (1) = zH?(u). Show that

Hg(:u) = HS(N@) 57 L2(/~LS)7
where 1 = g + ps is the Lebesgue decomposition of pu.

. Let p be a finite Borel measure on T. Prove that the following are equivalent:

(i) There exists a non-reducing subspace E C L*(u) with zF C E.
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10.

11.

12.

13.

14.

15.
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(ii) There exists a nonzero complex measure v absolutely continuous with respect to
1 and orthogonal to P, i.e.

dy=0 Vn>1.

T
Let p be a finite measure on T. Show that
:ECECL*y) = zE=E
if and only if m is not absolutely continuous with respect to .

Let i be a compactly supported finite measure on C. Show that every reducing subspace
E of L*(p) is of the form

E = XULQ(,U)a
for some Borel set o C C.

. Let L*°(T, m) denote the space of essentially bounded measurable functions on T. Prove

the following;:

(i) If f € H? N L*, then fH? C H.

(ii) If f € H* N L*™ with || f]|ec < 1, then 1 + f is an outer function.
(iii) If f € H2N L*™, then e/ € H? is an outer function.

Show that z — A is an outer function if and only if |A|] > 1. Hence, deduce that a
polynomial p is outer if and only if p has no zero in the open unit disc D = {z € C :
|z| < 1}.

Let p be a finite measure on T. If H?(u) is a proper subspace of L?(p), show that
dist(1, H3 (i) > 0.

If f € H? is an outer function, prove that
span{z"f :n > 1} = zH”.

Let p be a finite Borel measure on T and define
H3(u) =span{z" :n > 1} C L*(n).
For f € L*(u), compute dist(f, HZ(u)).
Let f € H(T, m)NL>(T, m). Show that there exist f; € L*(T,m) (j = 1,2) such that
Ef2 = flEf27
where E, :=span{z"g : n > 0}.
Let f(z) = ¢* and suppose g € H?(T,m) satisfies f * g = 1. Show that g must be
constant.

9.2. Problem Set II.

. Determine whether each of the following statements is TRUE or FALSE, providing

rigorous justification in each case.
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(a) An infinite Blaschke product has only finitely many repeated factors.

(b) For functions in H?(D) with 0 < p < 1, non-tangential limits coincide with radial
limits.

(c¢) Can anon-zero function f € HP(T), 0 < p < 1, vanish on a set of positive measure?

(d) If f € H'(D) is outer, then necessarily log|f| € L'(T).

(e) If f € L*(T), then there exist inner functions 6,0, and a sequence of polynomials
P, such that P,(0,6,) — f uniformly.

(f) For p > 0, let f € HP(D) with f # 0. Does this imply that log|f| € L*(T)?

(g) Let f € Hol(D). Does the existence of non-tangential limits of f at a.e. £ € T
imply the existence of radial limits at a.e. £ € T?

(h) If © is an inner function in H*(T,m) such that @ H*(m) = H?*(m), does it follow
that © is constant a.e. with respect to m?

(i) Suppose f,g € H*(T,m) are two non-zero functions with §(0) = 0. Does it follow
that (fg)(0) =07

(j) Let f € H*(T) satisfy % € H>(T). Does it follow that % € Ey?

(k) For f € H>*(D), define

foy(z) = flrz), |zl <t 0<r<l.
Does it follow that
| flloo = [1£ 1l ()7

Let S ={2€D: |z—1] <c¢(l —|z|)}. For z =re’™, |7| < 7, 0 < r < 1, show that

% is uniformly bounded on S;.

Prove that P is dense in H? for 1 < p < oo, and also dense in H* N C(D).

Prove that H* is not separable.

Show that H? \ H? # {0} whenever ¢ < p.

For £ € D and 1 < p < 00, define

e HP = C,  @e(f) = f(§).

e/ HP|| = (1 — [¢*) 7.
The Nevanlinna class is defined as
N(D) = {f € Hol(D) : sup /1og+ \f, | dm < oo},
T

0<r<1
where log™ t = max(0, logt) for ¢t > 0 and f,.(z) = f(r2).

(i) Let f € N(D) with f # 0. Set h,(§) = max(1,|f.(§)|) for £ € T, 0 < r < 1, and

define &, = [h,]. Show that
max(L,1f,(2))) < [8,(:)] (: €D), B,(0) <",
where ¢ = supg_, ., [plog" | f| dm.

(ii) Deduce that f, = 1,./p,, where ¢, = 1/®, € H*® with |¢,| < 1, ||¢,|| < 1 in D,
and |, (0)] > e~ for all 0 < r < 1. Applying Montel’s theorem, conclude that
there exist ¢, v € H® with f =/p.

(ili) Show that

Show that

ND) = {¢/p: p,7p € H*} NHol(D).
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Hence, for every f € N(D), the non-tangential limits exist a.e., log|f| € L', and
f=ABV,[h], (h=|f]),

where V,,(2) = exp(fT ¢z g (C)) for |z] < 1 and p is a singular measure on T.

(iv) Conversely, ABV,,[h] € N(]D)) for every \, B, V,,, and every h > 0 with logh € L'.
Moreover, H? C LP N N(D) for every p > 0, and H? = LP N N, where
N, = {ABV,[h] € N(D) : > 0}.
(v) Let fr. € L*(T) (1 < k < n) and define
E =span{z"fr: m>0,1 <k <n}.
Show that E is simply invariant (i.e., zE' C FE) if and only if
a) [plog|fi| dm > —oo for all k, and
(b) 0% € N(D) for all j, k, where 6 is an inner function.
8. Let f € N(D) with f(0) # 0, and let (\,)n,>1 = Z(f) be its zero sequence. Suppose f

satisfies y B Cts
W) =exp( [ 2 du(o)).

2 /(0)] + Y- los o+ u(T) = [ 1ogl ] am.

n>1
(ii) Let f € H* with |f(2)] < 1in D and f(0) > 0. Show that f is a Blaschke
product if and only if

(i) Show that

llm/log|fT|dm— 0.
T

—1

(iii) Let f € Hol(D) with f(0) > 0. Show that f is a Blaschke product if and only if
llm/10g|fr| dm = 0.
T

(iv) Let f € Hol(Dg), R > 0, with zero set (A,)n,>1 (counted with multiplicities).
Define
n(s) = card{\g : |A\x| < s}, s>0.
(a) Assuming f(0) # 0, prove
"
ogls )+ [ s = [roglsce)|ame). r<n
(b) Suppose f(0) # 0. For 0 < a < R, show that
/ nis) ds < /log|f(r§)|dm( )+C, a<r<R,
s

where C' = C(f, a) depends only on f and a.
9. Let p be a finite Borel measure on T singular with respect to m. Define

f(Z)ZeXp<— Tgtzdu(€)>, zeD.
Show that |f| =1 a.e. on T.

10. Let f be holomorphic on D with f(0) > 0. If
lim/|log]fr|\dm:0,
r—1 T
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prove that f is a Blaschke product.
Let f € Hol(D). Show that there exists g € L>(T) such that

% <1 a.. onT.

Let f € H*®. Show that there exists g € N(ID) such that

Z(HiND={zeD: g(z) =1}.
Let {©;, € H?: i € I} be a family of inner functions. Show that

span {0;H?: i € I} = OH?

where © = ged{©, : i € I}.
Show that a polynomial p(z) is outer in H*(T) if and only if Z(p) C {z € C: |z| > 1}.
For w € L(T), define

E, =span{z"w: n > 0}|L1(T).
Does there exist w € L'(T) such that z € E,? Determine all such w.
Let M(T) denote the space of all complex Borel measures on T, and define

W ={pe M(T): (k) =0 for k < 0}.

Suppose p, € W converges to u € M(T) in the weak* topology of M(T). Show that
there exists h € H'(T) such that fi(k) = h(k) for all k € Z.
Let f,g € H*(T,m). Show that fg € H'(T,m). Does the same conclusion hold if
f € L*T,m)?
Using the identification of H*(D) with H'(T), show that convergence in H'(T) implies
uniform convergence on every disc in D. B
Let f € H*(D). Show that f() converges to f in the weak* topology of L>(T).

9.3. Problem Set III.

. (a) Let p > 0 and suppose f € H?(D) with f # 0. Does it follow that log |f| € L'(T)?

(b) Let f € Hol(D). Does the existence of non-tangential limits of f at almost every
¢ € T imply the existence of radial limits of f at almost every & € T?

. Let p be a finite Borel measure on T, singular with respect to m. Define

+z
f(z) = exp <— gTsz(é)) ; z e D.
T
Show that |f| = 1 almost everywhere on T.

. Let f be holomorphic on the open unit disc D with f(0) > 0. If

lim/ | log | f|| dm =0,
r—1 T
then show that f is a Blaschke product.

. Let f € Hol(D). Show that there exists a function g € L*°(T) such that

M <1 ae onT.

f

. Let f € H*. Show that there exists a function g € Nev(D) such that

Z(f)ND={z€eD:g(z) =1}



84

. Show that the function
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Additional Exercises. The following exercises are from N. Nikolskii, Operators,
Functions, and Systems: An Fasy Reading, Vol. 1.
Chapter 4, Exercises: 4.8.1-4.8.3

9.4. Problem Set IV.

. Determine whether the following statements are true or false, providing rigorous justi-

fication in each case:

(a) Can a Blaschke product be an outer function?

(b) Does the generalized Jensen inequality hold for H? when 0 < p < 17

(c¢) Can an inner function arise as the uniform limit of Blaschke products with distinct
zeros?

(d) If f € Nev(DD) is outer on D, does it follow that f is outer on 1D?

(e) If u € L*>®(T) is real-valued, does this imply that its Hilbert transform w also
belongs to L>(T)?

. Let f € Hol(D). Suppose there exists a non-negative harmonic function g on D such

that |f(2)] < g(z) for all z € D. Show that f € H'(T).

. Prove that

{gELOO(T):/gfdm:Ofor allfGH&} = H*™.
T

is outer in D) whenever |A| > 1.

A

-z
5. Let p,q,r > 1 and let f € HP(D). Suppose that for any ¢ € H? the condition

10.

g/f € L"(T) implies g/f € H". Prove that f must be outer.

. Let 0 C T have positive Lebesgue measure. Define

fn=nxo+ EXT\U’ n > 2.

Show that 1 < |f,(z)| <n for all z € D and that |f,[(T) C {%, n}.
Let
E =span{z"fi: fr € L*(T), m > 0,1 <k <n}.
Show that if zE # E, then for some inner function 6 we have ;—i € Nev(D) for all j, k.

. If f € HY(C,) and f # 0, show that

[ Loslrtoll o,
R 1+ZE2

. Let f € Hol(D), f # 0, and suppose f = fi/fo with f, fo € H'. Show that there exist

91,92 € H*® such that f = g1/gs.
Prove that

1
H?*(T) = spamsp {1 5 |A] < 1} .

Additional Exercises. The following problems are taken from N. Nikolskii, Operators,

Functions, and Systems: An Fasy Reading, Vol. I:
e Chapter 5, Exercises 5.7.1-5.7.2
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e Chapter 6, Exercises 6.6.1-6.6.3
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