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ABSTRACT

Harmonic analysis provides a powerful language for understanding functions through
their frequency content. This report surveys foundational tools of the subject—Fourier
series, the Fourier transform, convolution, and basic integral transforms—and illustrates
how these ideas lead to concrete methods for approximation and problem-solving. After
discussing convergence and approximation phenomena for Fourier series, we develop the
Fourier transform framework on classical function spaces and highlight inversion and energy
identities (Parseval/Plancherel). The exposition emphasizes the guiding principle that
many analytic and differential problems become simpler after passing to the frequency
domain, and includes representative examples that demonstrate applications such as

filtering, signal representation, and the solution of linear PDEs.
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Chapter 1

Introduction to Harmonic Function

1.1 Definition of Harmonic Function

Definition 1.1.1. Harmonic functions are real-valued functions that satisfy Laplace’s
equation in a given domain. These functions play a crucial role in various fields such
as physics, engineering, and complex analysis, especially in the study of heat flow,

electrostatics, and fluid dynamics.
A function u(x,y) is said to be harmonic in a domain D if:

o All second-order partial derivatives of u exist and are continuous in D,

» And it satisfies the Laplace equation:

’u  J%*u B

o2 "oy "

1.2 Relationship with Analytic Functions

1.2.1 Analytic Functions and Harmonicity

Theorem 1.2.1. Let f(z) = u(z,y) + iv(x,y) be an analytic function on an open set
D c C. Then both w and v are harmonic in D.

Proof. Since f(z) is analytic, it satisfies the Cauchy-Riemann equations:

Ou _ Ov
or oy’
du v
dy oz



We now prove that u is harmonic:
Pu_ 0 (o) _ 0 (0] _ o
0x2  Ox \0x) 0Ox\Oy) 0xdy
Pu_ 0 (o _ 0 ( o\_ o
oy2  oy\oy) oy\ 0x)  Oyox
Pu O%u 0%v 0%v

0x? + Oy? - 0xdy  dydx

Hence, u is harmonic.

Adding both:
=0=Au=0

Similarly, for v:

Adding both:
0%v N Pv _ Pu N 0%u
oz Oy*  Oxdy Oydxr

Therefore, both u and v are harmonic.

1.3 Example

Let f(2) = 22 = (x +iy)? = 2* — y? + 2ixy

Then,

2

u(r,y) =2" —y*, o(z,y) =2zy

Now, compute second derivatives:

Upe = 2, Uyy = —2 = Ugg + Uyy = 0

Vge =0, 0y =0 = vy + vy, =0

So both w and v are harmonic functions.

1.4 Properties of Harmonic Functions

e The sum or difference of two harmonic functions is also harmonic.
» Constant functions are trivially harmonic.

o However, the product of two harmonic functions is not necessarily harmonic.
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o The real and imaginary parts of an analytic function are harmonic.
o Harmonic functions are infinitely differentiable.

o They satisfy the mean value property and the maximum/minimum principle.



Chapter 2

Harmonic conjugate

2.1 Definition of Harmonic Conjugate

Let u(z,y) and v(x,y) be two real-valued functions that are harmonic in a region €. If
these functions satisfy the Cauchy-Riemann equations in €2, then v(x,y) is said to be the
harmonic conjugate of u(z,y). In other words, if the function f(2) = u(x,y) + iv(z,y) is
complex differentiable (analytic) in (2, then v is the harmonic conjugate of u, and the pair
(u,v) forms the real and imaginary parts of an analytic function.

This conjugate relationship holds under the condition that both functions u and v are
harmonic (i.e., they satisfy Laplace’s equation) and their domain 2 does not exclude any

essential singularities for f(z).

Example:

Show that the function © = 2xy+2z is harmonic and find the corresponding conjugate

harmonic function.

Solution:

Given that u(z,y) = 2zy + 2z

ou ou

— =2 2, — =2

Ox g dy ¢
2 2
‘2;:0, a—zzo
ox Jy
o ot
ox? 0 Oy

= u(x,y) is a harmonic function



To find v(zx,y):

Using Cauchy-Riemann equations:

Integrating w.r.t. y, we get:

v=1y"+2y+g(z)

= —¢(r)=2r=gx)=—-2"+c

:>v(m,y):y2+2y—x2+c

= v(z,y) is the conjugate harmonic function of u(x,y)

Verification: Show that v(z,y) satisfies Laplace’s equation.

ov 9%v

e 9y, 202 o

ox “ 0x2

Ov 9%

— =2 2 — =2
v 0%

=+ =242=0

ox? + oy? *

= v(z,y) is also a harmonic function

Corollary 2.2.1

A harmonic function defined on a region has continuous partial derivatives of all orders.



Chapter 3
Poisson Integral Formula

Let f be analytic within and on a circle C' defined by |z| = R, then

1 2r (R?—r2)f(Re®)

. d
2r Jo R?—2Rrcos(f — ¢) + r? ¢

f(re?)

where 0 < r < R.

Proof

% so a lies inside the circle C. By Cauchy’s Integral Formula:

f@)= 5 [

2m Jo z —a

Let a = ré’

dz (1)

The inverse point of a with respect to the circle |z| = R is %2, which lies outside C.

Since % is analytic on and inside C', by Cauchy’s Theorem:

1 (2)
0= — > d
271 Cz—% :

(2)
Subtracting (2) from (1), we get:

fla) = = / (f(z) ~ f<z;2> i

a

1 1 1
:m/cvf(2)<z_a—z_}§2>d2

1 a—R;
:%/cf(z) (<z—a)(z—ff))dz




1 f(2)(R? — aa)
- %/C (z —a)(R? — za) dz (3)

Let 2= Re® and a=re? = a=re®, zZ=Re
Then,

Za= Rre'®% = R?>_za= R?— Rre'®9)

= R? — Rrcos(f — ¢) — iRrsin(0 — ¢)

and,
|z —a|®* = R* — 2Rr cos( — ¢) + r*

Using these, we arrive at:

1 f2r (R? — r?) f(Re™)

N d
2 Jo R?—2Rrcos(d — ¢) +1r? ¢

f(re”)

Note on Harmonic Functions
If f(2) is analytic, then u = Re(f(2)) is harmonic.
By Cauchy’s Mean Value Property:

1

2m
2—/ u(zo + 1 cos,yo + rsin ) dd = u(zo, yo)
7 Jo

Mean Value Property

Suppose u is harmonic on Br(0) and u(Re®) = f(¢), where f is 2r-periodic and piecewise

continuous. Then: .

T o

u0)= - [ r(0)ds

Examples

1. f(#)=1—cosf+sinf, R=1

u(r,0) =1—rcosf +rsind
2. f(f) =cosf — 3sin(20), R=1

2
u(r, ) = rcosf — % sin(26)



3. f(#) =50cos’0, R=2

Using identity:

1 + cos(20)
2

cos? f =

= f(0) = 25 + 25 cos(26)

Hence,

u(r, 0) = 25 + 2577 cos(26)

Theorem 3.0.1. (Mean Value Theorem). Let u : G — R be a harmonic function,
and let B(a;r) be a closed disk contained in G. If v is the circle |z —a|] =, then

1

27 .
u(a) = %/0 u(a + re') do.

Proof. Let D be a disk such that B(a;7) C D C G, and let f be an analytic function on
D such that u = Re(f).

By the Cauchy Integral Formula,

G dz

] \
—_

a—l—re

‘ ~

ire’ do

il
A

a—H“e’e )—a

[\ [\
‘Ha

/ (a+ 7’619 df.

Comparing the real parts, we get:



Chapter 4

Harmonic Functions and Fourier

Series

Let 0 <r < R, and all §. We have:

R+ re® > /r\"
P(r,0) = Re (R — rew) =1+2 Z_:l (R) cos(nf)

To see this, let z = re?. Then:

R+ 2z R+ z 1 z AN
= . :]_ p— J—
=) =052 (F)

2 (7 2@ =1en ()

Now using Euler’s identity 2" = r"e™ = 7"(cos(nf) + isin(n#)), we compare real

n

parts:

Therefore,

Fourier Coefficients

If f is piecewise continuous on [0, 27|, then its Fourier coefficients are given by:

G0 = — /02” £(6)do

" on



2
=2 [ F(6)cos(nf) db, n=1,23,...
7 Jo
1 2m
b, = — f(@)sin(nd)do, n=1,23,...
7 Jo

The coefficients a,, are called the cosine Fourier coefficients of f, and the b, are

the sine Fourier coefficients of f.

Theorem

Consider the Dirichlet problem with piecewise continuous boundary data f. Then the

solution is

Y(re?)y =ag+ > <;>n (a,, cos(nd) + by, sin(nh))

where a,, b, are the Fourier coefficients of f.

Proof:

We replace 6 by 6 — ¢ in Poisson integral. In 1D form,

R2 _ T‘2
R? —2Rrcos(0 — ¢) + 12

P(0,¢) =

wlr,0) =5 [ PO.6) f(6)do

= [ 1) [1 + 22 () costn(o - as))] o

=52 [ H@rdo+ =3 (5)" [ ) costuto — )y ao

Since f is piecewise continuous, it is bounded on [0,27]. Let A > 0 be such that
|f(#)] < A for all ¢. For fixed 0 <r < R, we have

() S@eosmio—op| <4 ()
So the series - .
3 () S10)costnl0 —0)

converges uniformly in ¢ on the interval [0, 27] by the Weierstrass M-test.
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Because - .
A"
2 <R> =
Integrate term by term, we get:
wre®) = oo [T r@do+ 3 ()" 1 [ 50 costn@ - 0o
=ag+ Z <7’ >n ! /o f(®) (cos(ne) cos(nf) + sin(ng) sin(nh)) do

= ap+ ni; <;>n [a,, cos(nf) + b, sin(nh)]

Proved
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