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ABSTRACT

In this report we discus the existence of the nontangential limits of func-
tions defined on open unit disc in the complex plane. The main result in that
direction is the Fatou theorem. As a consequence enough harmonic functions

are produced.
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Chapter 1

Introduction

We know that a continuous function on the unit circle I' = {e'* : t € R} gives a
harmonic function by Poission Kernel. That is,

If f € C(I"), then P « f is harmonic on the open unit disk D. Conversly, a
nonnegative harmonic function x4 on D can be represented as Poission integral
of a nonnegative finite Borel measure on I'. And by Herglotz-Riesz representa-
tion theorem every analytic function on unit disc D can be represented by the

Poission integral.

1.1 Absolute and continuous measure

Definition 1.1.1. [3] let 1 be a positive measure on a o-algebra M, and let A
be an arbitrary measure on M (A may be positive or complex). We say that A is
absolutely continuous with respect to p (denoted by A < p) if for every E € M
with p(FE) = 0 implies A(E) = 0.

And if there exists a set A C M such that A(E) = A\(ANE) for every E € M,
we say that A is concentrated on A. This is equivalent to say that A(E) = 0
whenever EN A = 0.
Suppose A1 and A; are two measures on M, and there exists a pair of disjoint

sets A1 and Ay such that A; is concentrated on A;;i = 1,2. In this case we say



that A\; is mutually singular to Ao and is denoted by A1 L As.
Theorem 1.1.2. (Radon-Nikodym decomposition) [1]

Let u be a positive o-finite measure on a o-algebra M in a set X, and let A

be a complex measure on M.

(i) Then there exists a unique pair of complex measures A, and Ay on M such
that
A= As + A, Ao K 1, As L.

(ii) There is a unique h € L' (i) such that d\, = hdu. Thus,

d\ = hdp + hdp,.

1.2 Harmonic functions

Definition 1.2.1. A complex value function h on an open subset €2 of the the

complex plane C is called harmonic function on € if » € C? and
Ah=0
on ). Here Ah = % + C‘%’; is the Laplacian of h.

Harmonic functions arise in the study of analytic functions. If a function f
is analytic on a region 2, then by the Cauchy-Riemann equations each of the

functions f, f, Ref, Imf are harmonic on €.

Lemma 1.2.2. Let Q) be a bounded open set in the complex plane with boundary
0. Let h be a continuous complex-valued function on Q = QU 0, which is

harmonic on Q. If h|0Q = 0, then h|Q2 = 0.



1.3 The Poisson kernel

Let D = {z : |z| < 1} be the unit disk in the complex plane, and let I = {e :
t € R} be its boundary. The function
et + 2 1—]z2

o B
P(z,e") = Reeit el T

defined on D x I' is called the Poisson kernel. In polar coordinates, we have,

oo

. . 1— 7’2 R
P 10 ity _ — 71,33 (0—1)
(re®, ") 1—2rcos(f —t) +r? Z e ’

n=—oo

where the infinite series converges uniformly for every real values of 6,¢ and
0 <7 < R for every R € (0,1). For each fixed e’ € T', the function P(z,e®) is
harmonic on D.

And for every complex Borel measure p on I', the function h defined by

he) = [ Plectdue®),  zeD,

is harmonic on D.

Theorem 1.3.1. For every continuous complex-valued function f on T' there
is a unique continuous function h on D = DUT such that h|r = f and h|D is

harmonic. The function h is given on D by

h(z) = /Fp(z,e“)f(eit)da(eit), z € D. (1.1)

In particular, for given continuous function h on D, whose restriction to D is

harmonic, then h|D is of the form (1.1).

1.4 Properties of harmonic function

For any complex number a and a positive real number R , set D(a,R) = { z :

|z —a| < R}. And D(a,R) ={z:]|z—a| <R}.



If h is continuous function on D(a, R) and harmonic on D(a, R), then by theorem

(1.3.1)
h(a + 2) :/FP(z/R,e”)h(a+Re”)da(e“), <R (12)

Remarks:

(i) If h is real valued and harmonic function in a disk D(a, R), then h = Re(f)

for some function f which is analytic in D(a, R).
(ii) If h is harmonic function in a region 2, then h € C*°(Q).

(iii) If h = lim,,— o Ay, uniformly on all compact subsets of a region €2 and each

h,, is harmonic on €2, then A is harmonic on €.

(iv) (Mean value property) If & is a harmonic function on a region  and

D(a, R) C Q, then

27
h(a) = %/O h(a + Re')dt. (1.3)

1.5 Weak compactness principle

Let {1, }22; be a sequence of complex Borel measures on I such that |pu,|(T) <
M < oo for all n € {1,2,3...}, and for some constant M.
Then there exists a subsequence {uy, } and a complex Borel measure p on I'

such that |u|(T) < M < oo, and

g [ fdus, = [ pa (1.4)

for every continuous complex-valued function f on T'.

Theorem 1.5.1. Every nonnegative harmonic function h on the unit disk D

can be represented as
h(z) = / P(z,eM)du(e™), z €D, (1.5)
r
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where 1 1s a finite nonnegative Borel measure on T.

Proof. We know for any complex number a and positive real number R. If h is

continuous on D(a, R) and harmonic on D(a, R), then
ha+2) = /F P(2/R,e")h(a + Re')do(e™), <R (L6)
Since here D is unit disk so R=1 and putting a=0 in the above equation we get
h(z) = /F Pz, e h(et)do(e™), 2eD, (1.7)
for each r € (0,1), we have
h(rz) = AP(z,eit)h(reit)da(eit), z € D. (1.8)

Taking du, = h(ret)do(e™) is nonnegative measure on I' with total mass h(0).

Since h(0) = 5= [ p(re') (by mean value property ) therfore, (1.8) becomes

h(rz) = AP(z,eit)duT(eit), Vz € D. (1.9)

From weak compactness principle, we know there exists a sequence r, T 1 and

a finite nonnegative measure y on I' such that

Jim /F Fdpn, = /F fdy (1.10)

n—0o0

for each continuous function f on I'. By setting r = r, in 1.9 and r, T 1 we

have

lim h(r,z) = lim [ P(z,e")du,, (") = / P(z,e")du(e™),Vz € D. (1.11)
r

rn—1 Trn—1 T

Since h is continuous, it follows that

h(z) = /FP(z,eit)du(eit), vz € D. (1.12)



1.6 Herglotz and Riesz representation theorem.

Let f be a analytic function such that Ref > 0 on D. Then

16
.ﬂ@::/zw+zmma%+4g €D, (1.13)
i

for some finite non negative Borel measure p on I' and some constant c.

Definition 1.6.1. Let h'(D) be the class of all real-valued harmonic function

h on the unit disk ID such that

sup /F\h(reigﬂda(ew) < 0. (1.14)

0<r<1

Theorem 1.6.2. Let h be real valued harmonic function on D. Then the fol-

lowing statements are equivalent:
(i) h e hi(D);
(i) h = h™ —h™ where h* and h™ are nonnegative harmonic function on D;

(iii) there exists a real-valued Borel measure p on T' such that
h(z) = / P(z e du(e?), z €Dy (1.15)
r
(iv) there exists a nonnegative harmonic function k on D such that

h(2)] < k(2), 2 eD. (1.16)

1.7 Non tangential limit

Definition 1.7.1. Let h be complex valued function on D, and let €™ be a

point of T'. We write “Lim,_,.i-h(z) = A nontangentially” if for every open



triangular sector S in D with vertex at €™, h(z) — A as z — €™ whithin S.

We say that “lim,_,.i+h(z) = f(e') nontangentially a.e.” if there exist a
Borel set N C T with o( N) = 0 such that lim,_,.:h(z) = f(e'*) nontangen-
tially for each e € '\ N.

1.8 Fatous’s theorem.

[2] Let p be a complex Borel measure on I' with Lebesgue decomposition

dp = fdo + dus, (1.17)

where p, is singular with respect to o. If

h(z) = /FP(z,e”)du(eit), z €D, (1.18)
then
lim h(2) = (") (1.19)

nontangentially o-a.e. on I'.

Proof. Let «(t) be a distribution function for u. To prove the result, it is
sufficien to show that (1.19) holds nontangentially at any point e such that
o (t) exists and equal to f(e*) /2r. Whithout loss of generally, we can assume

that ¢ = 0 and «(0) = 0. Thus, from assumption that

exists, we prove that h(z) — 2mwa’(0) nontangentially as z — 1. Fix a sector in

the unit disk with vertex at 1, say
S={z:ly < KQ—-2z),c<z<1} (1.20)

where K > 0 and c is a positive and 0 < ¢ < 1 but near to 1.



Let € > 0 be given. We have to show that there exists a § > 0 such that the
inequality |h(z) — 2ma’(0)| < € holds, whenever z € S and |z — 1] < §. To this

we write

hz) = 2ma/(0) = /j P(z,e")da(t) — /j d(a’(0)t)

P(z,e") d[a(t) — o' (0)t]

—T

= {P(ze")at) - o' (0]} =

_ L " () - a’(O)t]%P(z, ¢ dt
= B - a(em) - 2000)
= TP
/ ﬁ ~ eit
=l 015 PG
/ 8 it
— /5<|t|§7r[a(t) -« (O)t]aP(z,e )dt
— [ IT+TIT.
where & € (0,7) such that
%t) - 0/(0)’< e/M, M =302r+16K), (1.21)

for 0 < [t| < &. Since I — 0 as z — 1, we can choose d; > 0 such that |I| < ¢/3
if z€ S5, |z —1| < 01.
In the integrand of the third term (III)
9 _ et 4z —2ize't

9 ity _ —
aP(z,e ) = —Re— = Re

ot et —z (et — 2)2’

tends to 0 uniformly for £ < [t| <7 as z — 1.

Hence we may choose d3 > 0 such that [I[I]| < ¢/3if z € S, |z — 1| < §3. Now



we have to estimate only second (IT) integrand. For any z € S,

_ 9 it
11| = ‘/ [ )]tatP(z,e )dt‘
< M/ ‘tP 2, et
B / t(1 —r?)2rsin (t — 0)
T M 1—2Tcos(9 t) +12)?

where z = re'?. If we replace t by #+t in the last integral and asuume that ¢ in

)| dt (from 1.21)

dt,

(1.20) is sufficiently near to 1, then we observe that the new range of integration

is contained in [—m, 7]. Hence

e (7 (1 —r?)2rsin (t)
Il < —
il = M J_, (t+0)(1—2rcos()+r2)2 dt
e (71 0 0 ,
< o =P — —P(r,e™)|dt.
< tat (r,e™)|dt + |9| & (r,e™)|dt
Now
"9 it _ "0 it
/_Tr taP(r,e )dt = /_ﬂtatP(r,e )dt
= [tP(r,eit)]Lr+/ P(r,e™)dt
= 27r1 - 2m
1+7r
< 2.
and
6] i QP(T eHldt = 2|0|/” —P(r,e")|dt
Lot o |0
. 0 0
— 2l e = 19 < 3719



By (1.20), for z = re?® € S, K(1 —rcosf) > |rsinf|, so
K1 —7r)+ Kr(1l—-cosf) > r|sinf|
and hence

K(l—-7r) > r|sinf]— Kr(l—cos#)

sin 6 1 —cosf
= r|9|< 7 - K 02 |¢‘)|>7

where the functions on the right are defined by continuity, when # = 0. Choose

d2 > 0 so that z € S, |z — 1| < d2 implies that

sin 0 1 —cos@ 1
_K 0 z
0 02 10 2
1
= K(1-r) > 3 6]
= 2K > rlél .
1—r
Then for such z, we get
0 ek
1—r
"o it
= |0] &P(r,e )|dt < 16K,

After combining both inequalities, we get
11| < < (27 + 16K) = =
— (27 = _.
M 3
Setting 6 = min(d1, d2,d3), we obtain
h(2) — 2ma (0)] < |I| + |I1| + |I11] < % + g + % =

for all z € S such that |z — 1] < §, as was to be proved. O

10



Corollary 1.8.1. If f is analytic and bounded for the open unit disc D, then

f(e) = lim f(2) (1.22)

z—reit

exists nontangentially o-a.e. on T'.

The function f is called boundary function of f.

Proof. Note that

fz) = Fep(z) = / F(€)p(z ét)do(e™). (1.23)

Hence, the result for corollary follows from 1.18 O
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