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ABSTRACT

In this report we discus the existence of the nontangential limits of func-

tions defined on open unit disc in the complex plane. The main result in that

direction is the Fatou theorem. As a consequence enough harmonic functions

are produced.
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Chapter 1

Introduction

We know that a continuous function on the unit circle Γ = {eit : t ∈ R} gives a

harmonic function by Poission Kernel. That is,

If f ∈ C(Γ), then P ∗ f is harmonic on the open unit disk D. Conversly, a

nonnegative harmonic function µ on D can be represented as Poission integral

of a nonnegative finite Borel measure on Γ. And by Herglotz-Riesz representa-

tion theorem every analytic function on unit disc D can be represented by the

Poission integral.

1.1 Absolute and continuous measure

Definition 1.1.1. [3] let µ be a positive measure on a σ-algebra M, and let λ

be an arbitrary measure on M (λ may be positive or complex). We say that λ is

absolutely continuous with respect to µ (denoted by λ ≪ µ) if for every E ∈ M

with µ(E) = 0 implies λ(E) = 0.

And if there exists a set A ⊂ M such that λ(E) = λ(A∩E) for every E ∈ M,

we say that λ is concentrated on A. This is equivalent to say that λ(E) = 0

whenever E ∩A = ∅.

Suppose λ1 and λ2 are two measures on M, and there exists a pair of disjoint

sets A1 and A2 such that λi is concentrated on Ai; i = 1, 2. In this case we say
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that λ1 is mutually singular to λ2 and is denoted by λ1 ⊥ λ2.

Theorem 1.1.2. (Radon-Nikodym decomposition) [1]

Let µ be a positive σ-finite measure on a σ-algebra M in a set X, and let λ

be a complex measure on M.

(i) Then there exists a unique pair of complex measures λa and λs on M such

that

λ = λa + λs, λa ≪ µ, λs ⊥ µ.

(ii) There is a unique h ∈ L1(µ) such that dλa = hdµ. Thus,

dλ = hdµ+ hdµs.

1.2 Harmonic functions

Definition 1.2.1. A complex value function h on an open subset Ω of the the

complex plane C is called harmonic function on Ω if h ∈ C2 and

∆h ≡ 0

on Ω. Here ∆h = ∂2h
∂x2 + ∂2h

∂y2 is the Laplacian of h.

Harmonic functions arise in the study of analytic functions. If a function f

is analytic on a region Ω, then by the Cauchy-Riemann equations each of the

functions f , f , Ref , Imf are harmonic on Ω.

Lemma 1.2.2. Let Ω be a bounded open set in the complex plane with boundary

∂Ω. Let h be a continuous complex-valued function on Ω = Ω ∪ ∂Ω, which is

harmonic on Ω. If h|∂Ω ≡ 0, then h|Ω ≡ 0.

2



1.3 The Poisson kernel

Let D = {z : |z| < 1} be the unit disk in the complex plane, and let Γ = {eit :

t ∈ R} be its boundary. The function

P (z, eit) = Re
eit + z

eit − z
=

1− |z|2

|eit − z|2

defined on D× Γ is called the Poisson kernel. In polar coordinates, we have,

P (reiθ, eit) =
1− r2

1− 2rcos(θ − t) + r2
=

∞∑
n=−∞

r|j|eij(θ−t),

where the infinite series converges uniformly for every real values of θ, t and

0 ≤ r ≤ R for every R ∈ (0, 1). For each fixed eit ∈ Γ, the function P (z, eit) is

harmonic on D.

And for every complex Borel measure µ on Γ, the function h defined by

h(z) =

∫
Γ

P (z, eit)dµ(eit), z ∈ D,

is harmonic on D.

Theorem 1.3.1. For every continuous complex-valued function f on Γ there

is a unique continuous function h on D = D ∪ Γ such that h|Γ ≡ f and h|D is

harmonic. The function h is given on D by

h(z) =

∫
Γ

p(z, eit)f(eit)dσ(eit), z ∈ D. (1.1)

In particular, for given continuous function h on D, whose restriction to D is

harmonic, then h|D is of the form (1.1).

1.4 Properties of harmonic function

For any complex number a and a positive real number R , set D(a,R) = { z :

|z − a| < R }. And D(a,R) = { z : |z − a| ≤ R }.
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If h is continuous function on D(a,R) and harmonic on D(a,R), then by theorem

(1.3.1)

h(a+ z) =

∫
Γ

P (z/R, eit)h(a+Reit)dσ(eit), |z| < R. (1.2)

Remarks:

(i) If h is real valued and harmonic function in a disk D(a,R), then h = Re(f)

for some function f which is analytic in D(a,R).

(ii) If h is harmonic function in a region Ω, then h ∈ C∞(Ω).

(iii) If h = limn→∞ hn uniformly on all compact subsets of a region Ω and each

hn is harmonic on Ω, then h is harmonic on Ω.

(iv) (Mean value property) If h is a harmonic function on a region Ω and

D(a,R) ⊆ Ω, then

h(a) =
1

2π

∫ 2π

0

h(a+Reit)dt. (1.3)

1.5 Weak compactness principle

Let {µn}∞n=1 be a sequence of complex Borel measures on Γ such that |µn|( Γ) ≤

M < ∞ for all n ∈ {1, 2, 3...}, and for some constant M.

Then there exists a subsequence {µnk
} and a complex Borel measure µ on Γ

such that |µ|( Γ) ≤ M < ∞, and

lim
k→∞

∫
Γ

fdµnk
=

∫
Γ

fdµ (1.4)

for every continuous complex-valued function f on Γ.

Theorem 1.5.1. Every nonnegative harmonic function h on the unit disk D

can be represented as

h(z) =

∫
Γ

P (z, eit)dµ(eit), z ∈ D, (1.5)
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where µ is a finite nonnegative Borel measure on Γ.

Proof. We know for any complex number a and positive real number R. If h is

continuous on D(a,R) and harmonic on D(a,R), then

h(a+ z) =

∫
Γ

P (z/R, eit)h(a+Reit)dσ(eit), |z| < R. (1.6)

Since here D is unit disk so R=1 and putting a=0 in the above equation we get

h(z) =

∫
Γ

P (z, eit)h(eit)dσ(eit), z ∈ D, (1.7)

for each r ∈ (0, 1), we have

h(rz) =

∫
Γ

P (z, eit)h(reit)dσ(eit), z ∈ D. (1.8)

Taking dµr = h(reit)dσ(eit) is nonnegative measure on Γ with total mass h(0).

Since h(0) = 1
2π

∫
Γ
p( reit) (by mean value property ) therfore, (1.8) becomes

h(rz) =

∫
Γ

P (z, eit)dµr(e
it), ∀z ∈ D. (1.9)

From weak compactness principle, we know there exists a sequence rn ↑ 1 and

a finite nonnegative measure µ on Γ such that

lim
n→∞

∫
Γ

fdµrn =

∫
Γ

fdµ (1.10)

for each continuous function f on Γ. By setting r = rn in 1.9 and rn ↑ 1 we

have

lim
rn→1

h(rnz) = lim
rn→1

∫
Γ

P (z, eit)dµrn(e
it) =

∫
Γ

P (z, eit)dµ(eit),∀z ∈ D. (1.11)

Since h is continuous, it follows that

h( z) =

∫
Γ

P (z, eit)dµ(eit), ∀z ∈ D. (1.12)
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1.6 Herglotz and Riesz representation theorem.

Let f be a analytic function such that Ref ≥ 0 on D. Then

f( z) =

∫
Γ

eiθ + z

eiθ − z
dµ( eiθ) + ic, z ∈ D, (1.13)

for some finite non negative Borel measure µ on Γ and some constant c.

Definition 1.6.1. Let h1(D) be the class of all real-valued harmonic function

h on the unit disk D such that

sup
0<r<1

∫
Γ

|h( reiθ) |dσ( eiθ) < ∞. (1.14)

Theorem 1.6.2. Let h be real valued harmonic function on D. Then the fol-

lowing statements are equivalent:

(i) h ∈ h1(D);

(ii) h = h+ − h− where h+ and h− are nonnegative harmonic function on D;

(iii) there exists a real-valued Borel measure µ on Γ such that

h( z) =

∫
Γ

P ( z, eiθ) dµ( eiθ) , z ∈ D; (1.15)

(iv) there exists a nonnegative harmonic function k on D such that

|h( z) | ≤ k( z) , z ∈ D. (1.16)

1.7 Non tangential limit

Definition 1.7.1. Let h be complex valued function on D, and let eiτ be a

point of Γ. We write “Limz→eiτh( z ) = A nontangentially” if for every open
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triangular sector S in D with vertex at eiτ , h( z) → A as z → eiτ whithin S.

We say that “limz→eith( z) = f( eit) nontangentially a.e.” if there exist a

Borel set N ⊆ Γ with σ(N) = 0 such that limz→eith( z) = f( eit) nontangen-

tially for each eit ∈ Γ\N.

1.8 Fatous’s theorem.

[2] Let µ be a complex Borel measure on Γ with Lebesgue decomposition

dµ = fdσ + dµs, (1.17)

where µs is singular with respect to σ. If

h( z) =

∫
Γ

P ( z, eit)dµ( eit), z ∈ D, (1.18)

then

lim
z→eit

h( z) = f( eit) (1.19)

nontangentially σ-a.e. on Γ.

Proof. Let α( t) be a distribution function for µ. To prove the result, it is

sufficien to show that (1.19) holds nontangentially at any point eit such that

α
′
(t) exists and equal to f( eit) /2π. Whithout loss of generally, we can assume

that t = 0 and α(0) = 0. Thus, from assumption that

α′(0) = lim
t→0

α(t)

t

exists, we prove that h(z) → 2πα′(0) nontangentially as z → 1. Fix a sector in

the unit disk with vertex at 1, say

S = {z : |y| < K(1− x), c < x < 1} (1.20)

where K > 0 and c is a positive and 0 < c < 1 but near to 1.
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Let ϵ > 0 be given. We have to show that there exists a δ > 0 such that the

inequality |h( z) − 2πα′(0)| < ϵ holds, whenever z ∈ S and |z − 1| < δ. To this

we write

h(z)− 2πα′(0) =

∫ π

−π

P ( z, eit) dα(t)−
∫ π

−π

d(α′(0)t)

=

∫ π

−π

P ( z, eit) d[α(t)− α′(0)t]

= {P (z, eit)[α(t)− α′(0)t]} π
t=−π

−
∫ π

−π

[α(t)− α′(0)t]
∂

∂t
P (z, eit)dt

=
1− |z|2

|1 + z|2
[α(π)− α(−π)− 2πα′(0)]

−
∫
|t|≤ξ

[α(t)− α′(0)t]
∂

∂t
P (z, eit)dt

−
∫
ξ<|t|≤π

[α(t)− α′(0)t]
∂

∂t
P (z, eit)dt

= I + II + III.

where ξ ∈ (0, π) such that∣∣∣∣α(t)t − α′(0)

∣∣∣∣< ϵ/M, M = 3(2π + 16K), (1.21)

for 0 < |t| ≤ ξ. Since I → 0 as z → 1, we can choose δ1 > 0 such that |I| < ϵ/3

if z ∈ S, |z − 1| < δ1.

In the integrand of the third term (III)

∂

∂t
P (z, eit) =

∂

∂t
Re

eit + z

eit − z
= Re

−2izeit

(eit − z)2
,

tends to 0 uniformly for ξ < |t| ≤ π as z → 1.

Hence we may choose δ3 > 0 such that |III| < ϵ/3 if z ∈ S, |z − 1| < δ3. Now
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we have to estimate only second (II) integrand. For any z ∈ S,

|II| =

∣∣∣∣ ∫ ξ

−ξ

[
α(t)

t
− α′(0)

]
t
∂

∂t
P (z, eit)dt

∣∣∣∣
≤ ϵ

M

∫ ξ

−ξ

∣∣∣∣t ∂∂tP (z, eit)

∣∣∣∣dt (from 1.21)

=
ϵ

M

∫ ξ

−ξ

∣∣∣∣ t(1− r2)2r sin (t− θ)

(1− 2r cos (θ − t) + r2)2

∣∣∣∣dt,
where z = reiθ. If we replace t by θ+ t in the last integral and asuume that c in

(1.20) is sufficiently near to 1, then we observe that the new range of integration

is contained in [−π, π]. Hence

|II| ≤ ϵ

M

∫ π

−π

∣∣∣∣(t+ θ)
(1− r2)2r sin (t)

(1− 2r cos (t) + r2)2

∣∣∣∣dt
≤ ϵ

M

∫ π

−π

∣∣∣∣t ∂∂tP (r, eit)

∣∣∣∣dt+ ϵ

M
|θ|

∫ π

−π

∣∣∣∣ ∂∂tP (r, eit)

∣∣∣∣dt.
Now

∫ π

−π

∣∣∣∣t ∂∂tP (r, eit)

∣∣∣∣dt =

∫ π

−π

t
∂

∂t
P (r, eit)dt

= [tP (r, eit)]π−π +

∫ π

−π

P (r, eit)dt

= 2π
1− r

1 + r
− 2π

< 2π.

and

|θ|
∫ π

−π

∣∣∣∣ ∂∂tP (r, eit)

∣∣∣∣dt = 2|θ|
∫ π

0

∣∣∣∣ ∂∂tP (r, eit)

∣∣∣∣dt
= −2|θ|[P (r, eit)]π0 =

8r|θ|
1− r2

≤ 8r|θ|
1− r

.
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By (1.20), for z = reiθ ∈ S,K(1− r cos θ) > |r sin θ|, so

K(1− r) +Kr(1− cos θ) > r| sin θ|

and hence

K(1− r) > r| sin θ| −Kr(1− cos θ)

= r|θ|
(

sin θ

θ
−K

1− cos θ

θ2
|θ|

)
,

where the functions on the right are defined by continuity, when θ = 0. Choose

δ2 > 0 so that z ∈ S, |z − 1| < δ2 implies that

sin θ

θ
−K

1− cos θ

θ2
|θ| >

1

2

=⇒ K(1− r) >
1

2
r|θ|

=⇒ 2K >
r|θ|
1− r

.

Then for such z, we get

8r|θ|
1− r

< 16K

=⇒ |θ|
∫ π

−π

∣∣∣∣ ∂∂tP (r, eit)

∣∣∣∣dt < 16K,

After combining both inequalities, we get

|II| < ϵ

M
(2π + 16K) =

ϵ

3
.

Setting δ = min(δ1, δ2, δ3), we obtain

|h(z)− 2πα′(0)| ≤ |I|+ |II|+ |III| < ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ

for all z ∈ S such that |z − 1| < δ, as was to be proved.
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Corollary 1.8.1. If f is analytic and bounded for the open unit disc D, then

f̃(eit) = lim
z→eit

f(z) (1.22)

exists nontangentially σ-a.e. on Γ.

The function f̃ is called boundary function of f.

Proof. Note that

f(z) = f ∗ p(z) =
∫
Γ

f(eit)p(z, eit)dσ(eit). (1.23)

Hence, the result for corollary follows from 1.18
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