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Ultrasonic Machining (USM)
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Process Description
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• A mechanical type non-traditional machining 
process.

• Balamuth first discovered USM in 1945 during 
ultrasonic grinding of abrasive powders. 

• The industrial applications began in the 1950s 
when the new machine tools appeared. 

• Removal of hard and brittle materials (both 
electrically conductive and non-conductive) 

• The tool, which is negative of the workpiece, is 
vibrated at low amplitude (0.01 to 0.1 mm) and 
high frequency (greater than 20 kHz)
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Process Description

3

• Abrasive slurry is continuously fed between a soft tool and the workpiece
• Abrasive particles are hammered into the workpiece surface and cause 

chipping of fine particles from it
• The slurry also carries away the debris from the cutting area
• The tool is gradually moved down maintaining a constant gap of 

approximately 0.1 mm between the tool and workpiece surface 
• Slight pressure on the tool to ensure the fracturing of workpiece
• Abrasive particles with a higher fracture strength than the workpiece, and 

the tool with higher fracture strength than abrasive particles 
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Mechanics of Cutting
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• Mechanical abrasion by localized direct 
hammering of the abrasive grains stuck 
between the vibrating tool and adjacent work 
surface.

• The microchipping by free impacts of particles 
that fly across the machining gap and strike 
the workpiece at random locations.

• The work surface erosion by cavitation in the 
slurry stream. 5% contribution in material 
removal

• Chemical corrosion due to slurry media 
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Mechanics of Cutting
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• The position A indicates the instant the tool 
face touches the abrasive grain.

• The period of movement from A to B 
represents the impact.

• The indentations, caused by the grain on the 
tool and the work surface at the extreme 
bottom position of the tool from the position 
A to position B is h (the total indentation).
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Main Components of USM
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• Ultrasonic Oscillator or 
Generator

• Transducer
• Tool holder
• Tool
• Abrasive slurry
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Components: Power supply and Transducer
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• Ultrasonic Oscillator or Generator: 
- Converts electrical energy from low frequency to high frequency

• Transducer: 
- Convert electrical energy to mechanical energy
- High frequency and low amplitude vibration
- Two types: piezoelectric or magneto-strictive type
- Piezoelectric crystals such as Quartz, barium titanate generate a small electric 

current when they are compressed and expands
- Magneto-strictive transducer also changes its length when subjected to a 

strong magnetic field. These transducers are made of nickel, or nickel alloy 
sheets.
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Components: Tool and Tool Holder
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• Tool holder: 
- holds and connects the tool to the transducer. 
- Transmits the energy and, in some cases, amplifies the 

amplitude of vibration
- The materials for toolholders are Monel, titanium, and 

stainless steel. 
- Good acoustic properties and high fatigue strength.
- Should avoid welding between holder and transducer

• Tool: 
- Must have high wear resistance and fatigue strength. 
- Usually made of relatively ductile materials (brass, stainless 

steel, mild steel, etc) so that the tool wear rate can be 
minimized. 
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Components: Abrasive Slurry
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• A mixture of fine abrasive grains and water. The abrasive slurry is 
circulated between the oscillating tool and workpiece.

• Abrasive grains: boron carbide (B4C), aluminum oxide (Al2O3), silicon 
carbide (SiC) 

• Abrasive Particles have random sharp edges

Silicon Carbide Aluminum Oxide Boron Carbide
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Components: Abrasive Slurry
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• B4C is the best and most efficient among the rest but it is 
expensive.

• SiC is used on glass, germanium and most ceramics.
• Diamond dust is used only for cutting Diamond and 

Rubies.
• Water is the most commonly used fluid although other 

liquids such as Benzene, Glycerol and oils are also used
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Assumptions
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• Abrasive particles as spherical in shape
• Abrasive particles are rigid and hard
• All abrasive particles are similar
• All impacts are identical
• Material removal due to cavitation and chemical erosion are ignored
• Material removed in hemispherical shape per impact
• MRR is proportional to frequency and number of abrasive particles 

making impact  and volume removed by particle per cycle 
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Volume of Material Removed/Particle
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Volume removed /particle 𝑽𝒑
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Total volume removed per cycle 𝑽
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Volume of Material Removed/Particle
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Estimation of Number of Active Abrasive Particles

• Concentration of abrasive particles = c   (volume by volume fraction )
• Cross section of the tool = A
• Total volume under the tool = Vs

• Total abrasive volume = c × Vs

• Assume there is monolayer of abrasive particles then
Volume of single layer of abrasives = c × A × d

• Volume of single abrasive = ସగ

ଷ

ௗ

ଶ

ଷ

• Number of Active Abrasive Particles per cycle  
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Material Removal Rate (MRR)

• Material removal rate , 

where Vp = volume removed by a single abrasive particle 
F = frequency of operation 
N = number of particles impacting per cycle 
η = constant (depend on diff parameters)
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(h is unknown)
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Estimation of Depth of Penetration

• Models proposed by Shaw (1965)
• There are two possibilities when the tool 

hits an abrasive particle. 
• Particle Throwing Model: When the size 

of the particle is small and the gap 
between the bottom of the tool and work 
surface is large enough

• Particle Hammering Model: When size of 
particle is large and gap between the 
bottom of the tool and work surface is 

• In the both cases, a particle after hitting 
the work surface generates a crater of 
depth ‘h’ and radius ‘D/2’. 
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Particle Throwing Model

• Displacement (Y) of the tool 

• Velocity of the tool  

• The maximum velocity of the tool

௫

• The Kinetic Energy
ଶ

17

Tool

a is amplitude
F is frequency
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Particle Throwing Model

• The Kinetic Energy
ଶ

ଷ


ଶ

• An abrasive particle penetrates to the depth equal to ‘h’ 
into the workpiece. Then the work done by a particle is 
given by
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Particle Throwing Model

• Kinetic Energy = Work Done
ଷ


ଶ

• Depth of penetration
ଷ ଶ ଶ ଷ



• Force in terms of mean stress of workpiece ௪

௪ ௪ ௪
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Particle Throwing Model

• Depth of penetration
ଷ ଶ ଶ ଷ
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• Material Removal Rate:

ଶ ଶ
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Particle Hammering Model
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• The position A indicates the instant the tool 
face touches the abrasive grain.

• The period of movement from A to B 
represents the impact.

• The indentations, caused by the grain on the 
tool and the work surface at the extreme 
bottom position of the tool from the position 
A to position B is h (the total indentation).
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Particle Hammering Model

• Force f acting on particle for a short time T during 
cycle time T

• Mean Force on the particle   
ଵ

்

்

௧



• Total Penetration due to hammering
 ௧ ௪
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a is amplitude
F is frequency
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Particle Hammering Model

• The mean velocity of the tool during the quarter 
cycle (from O to B) = 

(்/ସ)

• Time ( ) required to travel from A to B:
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Particle Hammering Model

• Let ‘N ’ be the number of abrasive particles under the tool 
• Stress acting on the tool ( ௧) and the workpiece ( ௪):

௪ ௪

௧ ௧

௧ ௪ ௪ ௧
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Particle Hammering Model
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Material Removal Rate:
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Example

• Find out the approximate time required to machine a through hole of 
diameter equal to 6.0 mm in a tungsten carbide plate ( Flow strength 
of work material = 6.9 x 109N/m2 ) of thickness equal to one and half 
times of hole diameter. The mean abrasive particle size is 0.015mm in 
diameter and having density of 3.8x 103 kg/m3. The feed force is 
equal to 3.5 N. The amplitude of tool oscillations is 25 microns and 
the frequency is equal to 25 kHz. The tool material is copper having 
flow strength= 1.5 x 109 N/m2 . The slurry contains one part of 
abrasives to one part of water. Parameter =0.005. 

26
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Solved in Class
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Factors affecting the USM

28



ME688: Advanced Machining Processes
Instructor: R K Mittal

Effect of Frequency and Amplitude

• With an increase in frequency of the tool head the MRR should 
increase proportionally. However, there is a slight variation in the 
MRR with frequency.

• When the amplitude of the vibration increases the MRR is expected 
to increase.

29
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Frequency (f)
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Effect of Abrasive Size and Concentration 

• MRR should also rise proportionately 
with the mean grain diameter d. 

• When d becomes too large, the 
crushing tendency increases.

• Concentration of the abrasives directly 
controls the number of grains 
producing impact per cycle.

• MRR is proportional to C1/4 so after C 
rises to 30% MRR increase is not very 
fast

30

Abrasive size

MRR
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Effect of Feed Force

• MRR increases with increasing feed force but after a certain critical feed 
force it decreases because the abrasive grains get crushed under heavy 
load 

31

Feed force

MRR
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Effect of Grain Size on Surface Finish

• The surface finish is more sensitive to grain size in case of glass which 
is softer than tungsten carbide. 

• This is because in case of a harder material the size of the fragments 
dislodged through a brittle fracture does not depend much on the 
size of the impacting particles 

32
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Advantages

• Machining any materials irrespective of their conductivity
• Machining semi-conductor such as silicon, germanium etc.
• Suitable to precise machining of brittle materials.
• Can drill circular or non-circular holes in very hard materials
• Less stress because of its non-thermal characteristics
• USM does not produce electric, thermal, chemical damage.

33
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Disadvantages

•Low material removal rate
•Rapid tool wears
•Machining area and depth limitation
•Not economical for soft materials 

34
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USM Parts
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Holes in Glass (swiftglass.com)

Ceramic holes (mmsonline.com)

Ceramics (bullentech.com)

Graphite material
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USM Hybrid Processes
Rotary Ultrasonic Machining (RUM)

• Rotating diamond plated tools in USM process
• Drilling, milling, grinding operations
• The combination of rotational motion and axial vibrations 

provides uniform tool wear, a high degree of hole roundness, 
and rapid removal of material from the cutting zone

• Machining of  nonmetallic materials such as glass, alumina, 
ceramic, ferrite, quartz, zirconium oxide, ruby, sapphire, 
beryllium oxide, and some composite materials. 

36
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USM Hybrid Processes
Rotary Ultrasonic Machining (RUM)
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• High removal rates, lower tool 
pressures for delicate parts, 
improved deep hole drilling, 
less breakout or through holes, 
and no core seizing during core 
drilling

• Longer tool life
• High accuracy and less overcut
• Rotary USM are expensive
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Summary

Tool Vibration: 
Amplitude
Frequency

15-100 micron
15-30 kHz

Abrasive Material
Abrasive Size
Abrasive Medium

Al2O3, SiC, B4C, Diamond dust, Boronsilicarbide
15-150 micron
Water, Benzene, Glycerol and oils etc

Gap 25-40 micron

Tool Material Mild Steel, Stainless steel, Brass (ductile and high wear resistance)

Work Material Hardness> HRC 40
Carbide, Ceramics, Glass etc

38
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