Manufacturing Technologies- II

Ball Point Pen Components

Source: Guanxin machinery

Piano Components

GRAND PIANO CABINET

- 1. Top Board Long Hinge
- 2. Music Rack
- 3. Music Shelf Guide Rail
- 4. Music Shelf
- 5. Fallboard
- 6. Side Arm
- 7. Key Block
- 8. Logo
- 9. Keys
- 10. Key Slip
- 11. Key Bed
- 12. Leg (Bass #1)
- 13. Lyre Post
- 14. Soft Pedal
- 15. Sostenuto Pedal
- 16. Sustaining Pedal
- 17. Pedal Box
- 18. Leg (Treble #2)
- 19. Pedal Rod

- 20. Lyre Brace
- 21. Leg Bolt
- 22. Music Rack Prop
- 23. Caster
- 24. Leg (Rear #3)
- 25. Leg Base
- 26. Top Board Prop (Short)
- 27. Top Board Butt Hinge
- 28. Top Board Prop (Long)
- 29. Top Board Rubber Tack
- 30. Top Board (Rear)
- 31. Top Bar
- 32. Top Board Prop Cup
- 34. Top Board (Front)
- 35. Brass Lid Catch
- 36. Lid Lock Bar
- 37. Key Block Wing Bolt
- 38. Stretcher Bar

Boeing 747-400

Production Cycle

Manufacturing

- A ball point pen: around dozen parts/components
- A lawn mover: around 300 parts/components
- A piano: 12000 parts/components
- Boeing 747-400: about 6 million parts/components

All are produced by a combination of various processes called manufacturing

Properties of Component

Geometry: Shape, size (dimensions), surface finish, tolerances etc.

Optical properties: Color, transparency, reflectivity

Thermal properties

Electrical and magnetic properties

Material Properties: Hardness, Strength, Toughness etc

Weight

Geometry influences most of these other properties significantly

Physical Realization of Geometry

What is Manufacturing?

- Derived from the Latin word manufactus
- manus = hand, factus = made
- Practical definition: process of converting or processing raw materials into usable products

Instructor: R K Mittal

Manufacturing Processes

Systems-Oriented Definition

- Manufacturing as a system or enterprise
 - "A series of interrelated activities and operations involving design, materials selection, planning, production, quality assurance, management, and marketing of discrete consumer and durable goods" (CAM-I)
 - A highly complex, interdependent activity that is dynamic in nature

Classification of Manufacturing Processes

• Based on:

- process type e.g., shaping vs. non-shaping
- state of workpiece material e.g., solid or liquid
- processing energy e.g., mechanical, electrical,...

Classification of Manufacturing Processes

- Shaping process classification
 - Mass conserving, dM ~ 0
 - examples: casting, bulk forming, powder processing
 - Mass reducing, dM < 0
 - examples: conventional and unconventional machining
 - Mass adding, dM > 0

examples: joining processes

Further sub-classification is possible based on processing energy and workpiece state considerations

Classification of Manufacturing Processes

Casting $(dM \sim 0)$

Cutting (dM < 0)

Welding (dM > 0)

Manufacturing Processes

Machining Processes

"Machining involves the removal of some material from the workpiece (machining allowance) in order to produce a specific geometry at a <u>definite degree</u> of accuracy and surface quality"

Drilling

Milling

Why Machining?

- Closer Dimensional and form accuracy
- Good surface finish
- External or Internal geometric features
- Requirement of additional finishing processes
- Economic viability

Machining to high accuracy and finish essentially enables a product

- Fulfill its functional requirements
- Improve its performance
- Prolong its service

Material Removal Processes

Conventional Machining

Chip formation by Tool

- Workpiece
- Cutting Tool
- Chip

Machining Requirement

Machine Tools and Processes

- Turning
- Drilling
- Milling
- Planing
- Shaping
- Broaching
- Filing

- Sawing
- Grinding
- Reaming
- Honing
- Tapping
- Boring

Lathe Machine

Lathe Operation

Lathe Operation

Cutting Tools for Lathe

Single point cutting tool

Insert cutting tool

Lathe Machine

Mini Lathe Machine

Lathe Operation

Stone Pillar

Wood Turning

Drilling Machine

ME312: Manufacturing Technologies - II
Instructor: R K Mittal

Drilling Operation

Milling Operations

Instructor: R K Mittal

Milling Machine

Horizontal Mill

Vertical Mill

ME312: Manufacturing Technologies - II
Instructor: R K Mittal

35

Milling Cutters

Boring

Broaching

Broaching Operation

ME312: Manufacturing Technologies - II
Instructor: R K Mittal

Reaming

bridge reamer

Honing

ME312: Manufacturing Technologies - II
Instructor: R K Mittal

Threading Tap and Dies

internal

external

Shaping/Planing

Shaping/Planing

Nontraditional Machining

- A machining process is called non-traditional if its material removal mechanism is basically different than those in the traditional processes
- Processes that remove excess material by various techniques involving mechanical, thermal, electrical or chemical energy or combinations of these energies
- These processes do not use a sharp cutting tools as those need to be used for traditional manufacturing processes
- Also called advanced machining processes

Why Nontraditional Machining?

- Engineering Materials
 - Metals and Alloys
 - Plastics and Composites
 - Ceramics

Getting more popularity and have advantages over others

- Demand of materials with ultrahigh strength, hardness, very high temperature resistance in industries
- The greatly improved thermal, chemical, and mechanical properties
- The high cost of machining of ceramics and composites and the damage generated during machining are major obstacles

Solution: Advanced Machining Process (AMP)

Why Nontraditional Machining?

Product Requirement

- Complex shapes
- Machining in inaccessible areas
- Low tolerances (less than 10 microns)
- Better surface quality (no defects such as microcracks)
- Increase demand of miniaturization of components

Solution: Advanced Machining Process (AMP)

Ceramics (bullentech.com)

Holes in Glass (swiftglass.com)