Manufacturing Technologies- II

Outline

- Contact details
- Course objectives
- Introductory remarks
- Grading policy
- Introduction to manufacturing processes

Sections / Instructors

Section I

Students with roll number:
200103002 – 200103071
and 190103021

• Instructor: Prof. R K Mittal

Classroom: 5003

Teaching Assistants (TAs):
Abhishek Punia

Kailas Dumane

Section II

Students with roll number:

200103073 – 200103136

and 180103041

Instructor: Prof. Biranchi Panda

Classroom: 5004

Teaching Assistants (TAs):

Vishwajeet Jaiswal

Devalla Tharun Kumar

Contact Details

Prof. R K Mittal

Room: FR21 (ME-Extension Building)

E-mail: rkmittal@iitg.ac.in

Tel: 3576

Office Hrs.: Monday 4-5 PM. (also by appointment)

Course Website: www.iitg.ac.in/rkmittal/me321

Contact Details

- Teaching Assistants :
 - Abhishek Punia (a.punia@iitg.ac.in)

Kailas Dumane (kailas.dumane@iitg.ac.in)

Class Timings: Tuesdays 3:00 PM – 3:55 PM

Wednesdays 3:00 PM - 3:55 PM

Thursdays 3:00 PM - 3:55 PM

Classroom: 5003 (Core 5 – Ground Floor)

Objective of Course

- Learn the principles of material removal mechanisms of conventional or non-conventional machining
- Develop first order mathematical descriptions for selected processes
- Understand the advantages and limitations of various processes in terms of quality productivity
- Apply this knowledge to manufacturing process selection, design and part quality

Objective of Course

- Emphasis on understanding the physical principles underlying these processes
- Encourage teamwork and group activity via group assignments and Project.

Grading Policy

Group Assignments	10%
Quizzes	10%
Project	15%
Midterm Exam	25%
End Semester Examination	40 %
Total	100 %

Attendance is <u>not optional</u>. FA grade will be awarded for attendance <u>less than 75%</u>

Important Instructions

- Lecture notes and homeworks will be posted on the course website or through shared folder
- Home assignments will be submitted in a self-selected group of three and are due in class on the submission date. No late submission will be accepted.
- Any form of uncanny similarity or copying on the homework will be severely penalized.
- Hands on projects which involves experimental analysis will be considered.

Important Instructions

- Students could opt for an <u>analysis project</u> either using Deform/commercial finite element code or analytical techniques.
- Surprise quizzes may be there in classes.
- No cellphones on the desk. Cell phones should be either in your bag or pocket.
- It would be good if we all learn together the more two-way interactions, the better for all of us. I will make mistakes, which you will be expected to correct, and vice versa!

Course Outline

- Metal cutting: mechanics, tools (geometry: single and multi-point, nomenclature and tool signature, material, temperature, wear, and life considerations), chip formation; cutting fluids and surface finish; economics of machining
- Machine tool: Generation and machining principles
- Basic machining operations: lathe, milling, shaping, drilling, boring, grinding, thread cutting, gear cutting
- Unconventional methods: electro-chemical, electro-discharge, ultrasonic, LASER, electron beam, water jet machining etc.
- Tooling: Jigs and fixtures, principles of location and clamping;
- Rapid manufacturing and rapid tooling
- Basic concepts of CAD/CAM and CAPP

Textbooks

- S. Kalpakjian and S. R. Schmid, Manufacturing Processes for Engineering Materials, 5th edition; Prentice Hall, 2003.
- A. Ghosh and A. K. Mallik, Manufacturing Science, East West Press, Second Edition, 2010.
- G. K. Lal, Introduction to Machining Science, New Age International Pvt Ltd., 2007.
- W. A. Knight and G. Boothroyd, Fundamentals of Metal Machining and Machine Tools, CRC Press, 2006.
- A. B. Chattopadhyay, Machining and Machine Tools, 2nd Edition, Wiley India, 2017

Reference Books

- J.A. Schey, Introduction to Manufacturing Processes, 3rd edition. McGraw Hill Co., 2000.
- A.Y.C. Nee, K. Whybrew, and N. Senthil Kumar, Advanced Fixture Design for FMS, Springer Verlag
- J. F. W.Galyer, and C. R. Shotbolt, Metrology for Engineers, ELBS
- Production Technology HMT, Tata McGraw Hill, 2001.
- M. C. Shaw, Metal Cutting Principles, Second Edition, Oxford University Press, 2005.
- P. K. Mishra, Nonconventional Machining, Narosa Publishing House, 2007.
- C. Donaldson, G. H. LeCain, V C Goold and J Ghose, Tool Design 4e (SIE), 4th Edition, TMH, 2012.
- M. P. Groover, Fundamentals of Modern Manufacturing, Materials, Processes and Systems, Second Edition, Wiley India, Reprint 2007.