Water Energy Nexus and Need of Research

Prof. Rajib Kumar Bhattacharjya Department of Civil Engineering Indian Institute of Technology Guwahati Guwahati 781039, Assam, India

Q. How much water is needed to make a cup of tea?

Ans. 27 litre per cup (250ml)

Q. How much water is needed to make a cup of coffee?

Ans. 132 litre per cup (125 ml)

FRESH WATER

Freshwater (2.5%)

Amount of renewable water resources of INDIA Surface Water: 1869 BCM

Groundwater: 433 BCM

Pressure on water 1582 m³/yr/capita

AREA DISTRIBUTION

2%

Source: Annual report 2014-15, Ministry of power, Govt. of India

Installed capacity2Thermal1Hydro1Nuclear0

2,61,006 MW

1,82,666 MW 40,867 MW 5,780 MW

31,692 MW

We use energy for water			
Source	Approx. Energy (kWh/Mgal)		
Surface water	1400		
Groundwater	1800		
Seawater	9780-16500		

We use energy for wastewater treatment

Treatment Type	Approx. Energy (kWh/Mgal)
Trickling filter	955
Activated sludge	1300
Advanced treatment without Nitrification	1500
Advanced treatment with Nitrification	1900

We use energy to reclaimed water

We need water for producing energy

Water plays a number of roles in energy production

Pumping crude oil out of the ground Remove pollutants from power plant exhaust Generating steam that turns turbines Flushing away residue after fossil fuels are burned Keeping power plants cool

If operate my Air conditioner (2000 watt) for 8 hours a day

Plant type	ML/year
CSP wet	2.10
Nuclear	1.73
coal	1.05
Gas	0.43

Note: Energy flows are shown in red and water flows are shown in blue. As shown in the residential community, electricity and water are both used for different purposes. Source: Courtesy of EPRI (prepared by EPRI for a US DOE Report to Congress in 2006).

Strained Energy-Water relationship

- Scarcity of one resource will put pressure on the other
- ✓ Drought can prohibit power plan production
- ✓ Blackout disrupts water treatment and distribution
- **Increase in population:** put pressure on demand of water and energy
- **Economic growth:** Increase in per capita demand of energy and water
- **Change in policy:** Water intensive energy and energy intensive water
- **Global climate change:** Spatial and temporal redistribution of global water
- ✓ 99.6% of all the water on earth is not available for human and animal consumption
- \checkmark 54% of India faces high to extreme high water stress
- ✓ 56.5% of our people do not have piped water in their house
- \checkmark 32.8% of our people do not have access to electricity

Depletion of water table

Moving towards energy intensive water

Seawater intrusion

Source: http://sabrinadoyle.com

Inter-basin transfer

Transboundary issue

This area has the potential for mega hydropower project

Installed capacity of 40,000 MW, almost double the Three gorge project

3935 m

2308 km

0.0%

GA. GEBCO

Elevation difference between two ends of the red line is around 2299 m

Google earth

GREAT BEND

Transboundary issue

Water Diversion Project of China

• Can divert 57 BCM water

Transboundary issue

Water Diversion Project of China

- Three ways to implement the project
 - Only hydropower generation
 - Divert water during monsoon
 - Divert water throughout the year

PER CAPITA WATER AVAILABILITY WILL REDUCE FARTHER

Impact of climate change

Change in annual mean surface air temperature (°C) for the period **2071-2100** with reference to the baseline of **1961-1990** (A2 scenario)

Changes in summer monsoon
rainfall (%) for the period 20712100 with reference to the baseline
of 1961-1990 (A2 scenario)

Projections of mean incremental annual number of rainy days for the period **2041 - 2060**

Impact of climate change

- Climate change may have significant impact on flow of river Brahmaputra
- Monsoon flow of the river may increase by twenty percent in future
- Lean period flow may decrease by fifteen to twenty percent
- Number of dry day may increase in future
- ✓ Temperature increase by 0.5 to 1.0 degree
- ✓ Shifting of Monsoon
- Reduction in Himalayan glacier/snow cover

Impact of climate change

- Warmer seasons
 - increases in both maximum as well as minimum temperatures
- Annual precipitation
 - Increased monsoon rainfall along the west coast, north Andhra Pradesh and north-west India
 - decreasing trends over east Madhya Pradesh and adjoining areas, north-east India and parts of Gujarat and Kerala
 - there is an overall decrease in the number of rainfall days
 - Himalayan foothills and in northeast India, the number of rainfall days may increase by 5-10 days
 - increase in rainfall intensity
- Water availability
 - reduction in the quantity of available runoff
 - severity of droughts and intensity of floods in various parts of India is likely to increase.
- Sea-level rise
 - 0.4-2.0 mm/year on average
 - 1 m of sea level rise will displace 7.1 million of people
 - increased saline intrusion

Trade of virtual water

	Agricultural products	Industrial products	Total
Export of domestically produced goods	1597	165	1762
Re-export of imported goods	441	117	558
Total	2038	282	2320

Country	Tea (MKG)	Water (ML)		Water (MCM)	
	14-15	13-14	14-15	13-14	14-15	13-14
Russian Fed	39.14	38.62	346780	342173	347	342
Ukraine	2.56	2.21	22682	19581	23	20
Kazakhstan	11.46	10.26	101536	90904	102	91
Other CIS	0.68	1.7	6025	15062	6	15
Total CIS	53.84	52.79	477022	467719	477	468
United Kingdom	18.58	17.64	164619	156290	165	156
Iran	17.53	22.9	155316	202894	155	203
Pakistan	15.01	19.92	132989	176491	133	176
U.A.E	13.95	23.33	123597	206704	124	207
U.S.A	13.54	14.09	119964	124837	120	125
Egypt (ARE)	7.54	7.45	66804	66007	67	66
Germany	7.05	7.77	62463	68842	62	69
Bangladesh	5.01	13.94	44389	123508	44	124
Poland	3.94	4.72	34908	41819	35	42
Japan	3.15	3.61	27909	31985	28	32
Australia	3.1	3.16	27466	27998	27	28
Saudi Arabia	3.03	2.63	26846	23302	27	23
China	3.01	4.14	26669	36680	27	37
Sri Lanka	2.88	1.55	25517	13733	26	14
Netherlands	2.78	3.26	24631	28884	25	29
Ireland	2.06	2.21	18252	19581	18	20
Afghanistan	1.95	2.46	17277	21796	17	22
Kenya	1.62	2.69	14353	23833	14	24
Canada	1.48	1.24	13113	10986	13	11
Singapore	0.4	0.34	3544	3012	4	3
Other countries	16.36	13.92	144950	123331	145	123
Total	197.81	225.76	17,52,597	20,00,234	1,753	2,000

Trade of virtual water

lakh million liters per

Trade of virtual water

Mitigation of water-energy nexus and need of research

The negative impacts of the water-energy nexus can be mitigated

- ✓ Optimize the freshwater efficiency of energy production, electricity generation, and end use systems
- ✓ Optimize the energy efficiency of water management, treatment, distribution, and end use systems

Reducing surface runoff

Producing less waste

Reuse of energy

Conservation of water Conservation of power Energy efficient appliances

Waste to energy

Mitigation of water-energy nexus and need of research

SAVE ENERGY TO SAVE WATER

SAVE WATER TO SAVE ENERGY

Let's work together and fulfill their dreams

