IMPACT OF ANTHROPOGENIC DEVELOPMENT AT UPSTREAM OF THE RIVER BRAHMAPUTRA

DR. RAJIB KUMAR BHATTACHARJYA DEPARTMENT OF CIVIL ENGINEERING IIT GUWAHATI, ASSAM

CAUSES OF WATER RELATED HAZARDS

- Growth in population
 Urbanization/
 Unplanned
 urbanization
- Poverty/Unplanned settlement
- ✓ Industrialization
 ✓ Dams and reservoirs
 ✓ Over exploitation of groundwater

- Increase in imperviousness
 Environmental algorithms
- Environmental degradation (Deforestation)
- \checkmark Filling up of depression
- ✓ Increase in bare land
- Change in rainfall pattern and flow pattern
- \checkmark Depletion of groundwater table
- Leaching of natural
 - contamination
- Leaching from waste disposal site
- ✓ Leakage from septic tank

- Increase in surface runoff
- Reduction in infiltration
- Reduction in water storing capacity
- More erosion
- Reduction in time of concentration
- Reduction in initial abstraction
 - Contamination of groundwater

Flood, Erosion, Drought and Contamination

DAMS ON YARLUNG TSANGPO

ZANGMU HYDRO ELECTRIC PROJECT

- OPERATIONAL SINCE 23
 NOVEMBER 2014
- ROR PROJECT
- LOCATED AT LHOKHA, 140 KM SOUTHWEST OF LHASA
- INSTALL CAPACITY IS 510 MW (85 MWX6 TURBINES)

Potential hydro-power project sites

MEGA HYDRO ELECTRIC PROJECT AT GREAT BEND

- MEGA PROJECT WITH HUGE
 STORAGE
- CAN STORE WATER FOR
 LONGER PERIOD

50 m

INSTALLED CAPACITY OF
 40,000 MW, ALMOST DOUBLE
 THE THREE GORGE PROJECT

500 km

Elevation difference between two ends of the red line is around 2299 m

DAMS ON YARLUNG TSANGPO

WATER DIVERSION PROJECT OF CHINA

• CAN DIVERT 57 BCM WATER

WATER DIVERSION PROJECT OF CHINA

- THREE WAYS TO IMPLEMENT THE PROJECT
 - ONLY HYDROPOWER
 GENERATION
 - DIVERT WATER DURING
 MONSOON
 - DIVERT WATER THROUGHOUT THE YEAR

Average annual water availability

Sharing of Catchment Area

CHINA: 293000 sq km INDIA :195000 sq km BHUTAN: 45000 sq km BANGLADESH: 47000 sq km TOTAL: 580000 sq km

Google

China
India
Bhutan
Bangladesh

Image © 2012 DigitalGlobe Image © 2012 GeoEye

spot Image

Sharing of Length

CHINA: 1629 KM INDIA: 918 KM BANGLADESH: 337 KM

Total Length of the River 2880 KM

Google

China
India

Image © 2012 DigitalGlobe Image © 2012 GeoEye © 2012 Cnes/Spot Image

Bangladesh

Flow distribution at Pandu, Guwahati

HYDROPOWER POTENTIAL DISTRIBUTION OF INDIA

PROPOSED PROJECTS IN NE REGION

SI/ No	Name of Scheme River Basin/State	Installed Capacity(MW)
1	Siang Upper Dihang-Dibang/Ar.Pr.	11000
2	Etalin Dihang-Dibang/Ar.Pr.	3045
3	Demwe Luhit/Ar. Pr.	3000
4	Oju-II Subansiri / Ar.Pr.	2580
5	Kalai Luhit/Ar. Pr.	2550
6	Teesta High Dam Tista/WB	2505
7	Upper Subansiri Subansiri / Ar.Pr.	2500
8	Middle Subansiri Subansiri / Ar.Pr.	2000
9	Lower Subansiri Subansiri / Ar.Pr.	2000
10	Oju-I Subansiri / Ar.Pr.	1925
11	Siang Lower Dihang-Dibang/Ar.Pr.	1700
12	Tipaimukh Barak & Others/Man	1500

PROPOSED PROJECTS IN NE REGION

SI/ No	Name of Scheme River Basin/State	Installed Capacity(MW)
13	Niare Subansiri / Ar.Pr.	1405
14	Naba Subansiri / Ar.Pr.	1290
15	Kameng Kameng/Ar. Pr.	1100
16	Dibang Dihang-Dibang/Ar.Pr.	1000
17	Hutong Luhit/Ar. Pr.	950
18	Emra-II Dihang-Dibang/Ar.Pr.	870
19	Siang Middle Dihang-Dibang/Ar.Pr.	700
20	Lunglang Stor. Barak & Others/Miz	690
21	Boinu Stor. Barak & Others/Miz	635
22	Kaldan Stor. Barak & Others/Miz	545
23	Kimi Kameng/Ar. Pr.	535
24	Teesta St. IV Tista / Sikkim	495

PROPOSED PROJECTS IN NE REGION

SI/ No	Name of Scheme River Basin/State	Installed Capacity(MW)
25	Naying Dihang-Dibang/Ar.Pr.	495
26	Dikhu Dam P.H. U.Brahmaputra/Naga.	470
27	Teesta St. II Tista / Sikkim	450
28	Tizu Barak & Others/Nag	365
29	Teesta St. VI Tista / Sikkim	360
30	Tato-II Dihang-Dibang/Ar.Pr.	360
31	Malinye Dihang-Dibang/Ar.Pr.	335
32	Bhareli Lift Dam-II Kameng/Ar. Pr.	330
33	Teesta St. I Tista / Sikkim	320
34	Emini Dihang-Dibang/Ar.Pr.	295
35	Kynshi-I Stor. Barak & Others/Megh	295
36	Emra-I Dihang-Dibang/Ar.Pr.	275

DOWNSTREAM IMPACT ANALYSIS

Peak Discharge analysis

Peak Flow Hydrograph at NH Crossing

0

Time in Month

Flow duration curve

Flow Duration Curve (1990-2008)

Flow duration curve before and after construction at NH crossing

Flow duration curve

Flow duration curve before and after construction at Dam site

Peak flow duration curve

Monthly peak flow duration curve before and after construction at NH crossing

Peak flow duration curve

Monthly peak flow duration curve before and after construction at Dam site

RESERVOIR SIMULATION

Reservoir inflow and flow at d/s of the reservoir

RESERVOIR SIMULATION

Run time of turbine of RHEP-II

SOME KEY ISSUES OF FLOOD DISASTER MITIGATION

STRENGTHENING MONITORING, FORECASTING AND EARLY WARNING CAPACITIES

ENHANCING PUBLIC AWARENESS PROGRAMMES

UNDERSTANDING RISK AND VULNERABILITY

IMBALANCE BETWEEN PREVENTION AND RESPONSE RESOURCES

FRAGMENTED INSTITUTIONAL STRUCTURES

Monitoring hazards is an essential component. Efficient early warning system should deliver accurate information on the likely events in a timely manner.

Introduction of formal educational programmes including curricula revision, social awareness programme, teacher training and development of resource centres.

Risk and vulnerability assessments involving all sections of society to be done to identify the areas at greatest risk.

It is always cheaper to invest in longer-term prevention, mitigation and preparedness than in post disaster emergency response.

Lack of coordination among institutions at national and local levels is a major constraint to implement effectively disaster risk reduction. This has resulted in narrow, sectoral approaches and poor planning.

INTEGRATED PLANNING

- ASSESSMENT OF THE FUTURE WATER DEMAND CONSIDERING SEASONAL WATER NEED IN ALL SECTORS
 - SOCIO-CULTURAL CONSIDERATION AND ECOLOGICAL NEED
 - REGIONAL AND NATIONAL DEMAND
- MULTIPURPOSE RESERVOIRS TO MEET WATER DEMAND AND TO REDUCE FLOOD
 - JUDICIOUS USE OF RESERVOIR TO REDUCE SPATIOTEMPORAL VARIATION OF THE AVAILABLE WATER TO HAVE BETTER WATER UTILIZATION
 - WIN-WIN POLICY FOR ALL THE INVOLVED STATES/COUNTRIES
 - <u>TO HAVE FLOOD CUSHIONING TO REDUCE FLOOD</u>
 - TO TAKE UP INNOVATIVE MEASURES TO MAINTAIN ECOLOGICAL WATER NEED
 - FLOW FORECASTING MODEL AND INFRASTRUCTURE FOR BETTER OPERATION

WAY FORWARD FOR HOLISTIC PLAN

- STRUCTURAL AND NON STRUCTURAL MEASURES FOR MITIGATING FLOOD AND EROSION.
 - ECOLOGICAL MANAGEMENT PRACTICES (EMPS) FOR LIMITING SEDIMENT YIELD AND PEAK DISCHARGE FROM THE UPPER CATCHMENTS
 - WATERSHED MODELING AND RIVER MODELING CONSIDERING SPECIAL CHARACTERISTICS OF THE BASIN LIKE EXISTENCE OF PIEDMONT ZONE
 - LINKED-SIMULATION OPTIMIZATION MODEL TO DETERMINE OPTIMAL PROTECTION MEASURES IN A VULNERABLE RIVER REACH OF BRAHMAPUTRA RIVER
 - FLOW FORECASTING MODEL AND INFRASTRUCTURE
 - FLOOD PLAIN ZONING BY DELINEATING POTENTIAL FLOOD PRONE AREA THROUGH MODEL STUDY AND FIELD INFORMATION AND DECLARING INSURANCE PACKAGE ETC ACCORDINGLY.

RIVER MONITORING SYSTEM

River migration study

Centerline migration study

Delineation of Floodplain

Determination river width

Dey Aveedibya, and **Bhattacharjya Rajib Kumar** (2013), "Monitoring River Center Line and Width - A Study on River Brahmaputra", <u>Journal of the Indian</u> <u>Society of Remote Sensing</u>, 42(2),475-482.

RIVER MODLING AND MANAGEMENT SYSTEM

Simulation-optimization based model to find obtain cost effective combination of river training works

River Training Work using GA Based Linked Simulation Optimization Approach, WARM, 2014

Kalita H.M., Bhattacharjya R.K and Sarma, A,K. Linked simulation optimization model for evaluation of optimal bank protection measures (Under review)

Brahmaputra

Google ear

BRAHMA: BRAIDED RIVER AID: HYDRODYNAMIC AND MORPHOLOGICAN ANALYZER

Application of the model

Hypothetical straight channel

Formulation II, target speed 0.3 m/s

Formulation II, target speed 0.2 m/s

Hypothetical meandering channel

Model application Brahmaputra River

Study area

The study area is located on Nagaon and Marigaon district in Assam, where the erosion affected areas located on south bank of Brahmaputra extend from the hillock of Burha Mayang at Lat 26^o 16' 30"N & Long 92^o 01' 00"E upto the Lat 26^o 24' 16"N & Long 92^o 13' 00"E towards upstream.

Bank on the verge of erosion

Author discussing with local people

 $\Omega = 0.5 \text{ m/s}$

Impact of climate change

- Climate change may have significant impact on flow of river Brahmaputra
- Monsoon flow of the river may increase by twenty percent in future
- Lean period flow may decrease by fifteen to twenty percent
- Number of dry day may increase in future
- ✓ Temperature increase by 0.5 to 1.0 degree
- ✓ Shifting of Monsoon
- Reduction in Himalayan glacier/snow cover

CONCLUSIONS

• A BASIN LEVEL PLANNING IS NECESSARY FOR A LONG TERM SUSTAINABLE SOLUTION OF FLOOD AND EROSION PROBLEM OF ASSAM.

- HOLISTIC APPROACH HAS TO BE ADOPTED CONSIDERING ANTHROPOGENIC
 DEVELOPMENT AT THE UPSTREAM AND CLIMATE CHANGE
- STUDY TO ASSESS THE POSSIBLE IMPACTS OF THE UPSTREAM PROJECTS ON THE INDIAN SIDE OF RIVER BRAHMAPUTRA
- SHARING HYDROLOGICAL DATA OF RIVER BRAHMAPUTRA BETWEEN THE STAKEHOLDERS
- WATER SHARING TREATY AMONG THE STAKEHOLDERS FOR SUSTAINABLE USE OF THE
 WATER RESOURCES OF THE RIVER

