ME 101: Engineering Mechanics

Rajib Kumar Bhattacharjya

Department of Civil Engineering Indian Institute of Technology Guwahati

M Block : Room No 005 : Tel: 2428 www.iitg.ernet.in/rkbc

Concentrated Forces: If dimension of the contact area is negligible compared to other dimensions of the body \rightarrow the contact forces may be treated as Concentrated Forces

Distributed Forces: If forces are applied over a region whose dimension is not negligible compared with other pertinent dimensions \rightarrow proper distribution of contact forces must be accounted for to know intensity of force at any location.

Center of Mass

A body of mass m in equilibrium under the action of tension in the cord, and resultant W of the gravitational forces acting on all particles of the body.

- The resultant is collinear with the cord

Suspend the body from different points on the body

- Dotted lines show lines of action of the resultant force in each case.
- These lines of action will be concurrent at a single point G
 As long as dimensions of the body are smaller compared with those of the earth.
 - we assume uniform and parallel force field due to the gravitational attraction of the earth.

The unique Point G is called the Center of Gravity of the body (CG)

Determination of CG

Apply Principle of Moments

Moment of resultant gravitational force W about any axis equals sum of the moments about the same axis of the gravitational forces dW acting on all particles treated as infinitesimal elements. Weight of the body $W = \int dW$ Moment of weight of an element (dW) @ x-axis = ydWSum of moments for all elements of body = $\int ydW$ From Principle of Moments: $\int ydW = \bar{y} W$

→ Numerator of these expressions represents the sum of the moments; Product of W and corresponding coordinate of G represents the moment of the sum → Moment Principle.

Determination of CG

Substituting W = mg and dW = gdm

In vector notations:

Position vector for elemental mass:

Position vector for mass center G:

 $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ $\overline{\mathbf{r}} = \overline{x}\mathbf{i} + \overline{y}\mathbf{j} + \overline{z}\mathbf{k}$

The above equations are the

components of this single vector equation

Density *p* of a body = mass per unit volume

- → Mass of a differential element of volume $dV \rightarrow dm = \rho dV$
 - ightarrow
 ho may not be constant throughout the body

$$\overline{x} = \frac{\int x\rho dV}{\int \rho dV} \quad \overline{y} = \frac{\int y\rho dV}{\int \rho dV} \quad \overline{z} = \frac{\int z\rho dV}{\int \rho dV}$$

Center of Mass: Following equations independent of g

$$\overline{x} = \frac{\int x dm}{m} \quad \overline{y} = \frac{\int y dm}{m} \quad \overline{z} = \frac{\int z dm}{m} \qquad \overline{r} = \frac{\int r dm}{m} \qquad \overline{x} = \frac{\int x \rho dV}{\int \rho dV} \quad \overline{y} = \frac{\int y \rho dV}{\int \rho dV} \quad \overline{z} = \frac{\int z \rho dV}{\int \rho dV}$$

- \rightarrow They define a unique point, which is a function of distribution of mass
- \rightarrow This point is Center of Mass (CM)
- \rightarrow CM coincides with CG as long as gravity field is treated as uniform and parallel
- \rightarrow CG or CM may lie outside the body

CM always lie on a line or a plane of symmetry in a homogeneous body

G

Right Circular Cone CM on central axis

Half Right Circular Cone CM on vertical plane of symmetry

Half Ring CM on intersection of two planes of symmetry (line AB)

Centroids of Lines, Areas, and Volumes

Centroid is a geometrical property of a body

→ When density of a body is uniform throughout, centroid and CM coincide

Lines: Slender rod, Wire Cross-sectional area = A ρ and A are constant over L $dm = \rho A dL$; Centroid = CM

Volumes: Body with volume V ρ constant over V $dm = \rho dV$ Centroid = CM

Centroids of Lines, Areas, and Volumes Guidelines for Choice of Elements for Integration

Order of Element Selected for Integration

A first order differential element should be selected in preference to a higher order element \rightarrow only one integration should cover the entire figure

Centroids of Lines, Areas, and Volumes Guidelines for Choice of Elements for Integration

• Continuity

Choose an element that can be integrated in one continuous operation to cover the entire figure \rightarrow the function representing the body should be continuous \rightarrow only one integral will cover the entire figure

Continuity in the expression for the width of the strip

Centroids of Lines, Areas, and Volumes Guidelines for Choice of Elements for Integration

• Discarding Higher Order Terms

Higher order terms may always be dropped compared with lower order terms

Vertical strip of area under the curve is given by the first order term $\rightarrow dA = ydx$ The second order triangular area 0.5*dxdy* may be discarded

Centroids of Lines, Areas, and Volumes Guidelines for Choice of Elements for Integration

Choice of Coordinates

Coordinate system should best match the boundaries of the figure \rightarrow easiest coordinate system that satisfies boundary conditions should be chosen

Boundaries of this area (not circular) can be easily described in rectangular coordinates

Boundaries of this circular sector are best suited to polar coordinates

Centroids of Lines, Areas, and Volumes Guidelines for Choice of Elements for Integration

Centroidal Coordinate of Differential Elements

While expressing moment of differential elements, take coordinates of the centroid of the differential element as lever arm (not the coordinate describing the boundary of the area)

Modified Equations $\overline{x} = \frac{\int x_c dA}{A}$ $\overline{y} = \frac{\int y_c dA}{A}$ $\overline{z} = \frac{\int z_c dA}{A}$

$\overline{x} = \int x_c dV$	$\overline{y} = \int y_c dV$	$\overline{z} - \int z_c dV$
x - V	y = V	$\sim - V$

Centroids of Lines, Areas, and Volumes Guidelines for Choice of Elements for Integration

- 1. Order of Element Selected for Integration
- 2. Continuity
- 3. Discarding Higher Order Terms
- 4. Choice of Coordinates
- 5. Centroidal Coordinate of Differential Elements

$$\overline{x} = \frac{\int x dL}{L} \quad \overline{y} = \frac{\int y dL}{L} \quad \overline{z} = \frac{\int z dL}{L}$$

$$\overline{x} = \frac{\int x_c dA}{A}$$
 $\overline{y} = \frac{\int y_c dA}{A}$ $\overline{z} = \frac{\int z_c dA}{A}$

$$\overline{x} = \frac{\int x_c dV}{V} \quad \overline{y} = \frac{\int y_c dV}{V} \quad \overline{z} = \frac{\int z_c dV}{V}$$

Examples: Centroids

Locate the centroid of the circular arc

Solution: Polar coordinate system is better Since the figure is symmetric: centroid lies on the x axis

Differential element of arc has length $dL = rd\Theta$ Total length of arc: $L = 2\alpha r$ *x*-coordinate of the centroid of differential element: $x=rcos\Theta$

$$\overline{x} = \frac{\int x dL}{L} \quad \overline{y} = \frac{\int y dL}{L} \quad \overline{z} = \frac{\int z dL}{L}$$
$$L\overline{x} = \int x dL \quad 2\alpha r \overline{x} = \int_{-\alpha}^{\alpha} (r \cos \theta) r d\theta$$
$$2\alpha r \overline{x} = 2r^2 \sin \alpha$$
$$\overline{x} = \frac{r \sin \alpha}{\alpha}$$

For a semi-circular arc: $2\alpha = \pi \rightarrow$ centroid lies at $2r/\pi$

Examples: Centroids

Locate the centroid of the triangle along h from the base

Solution:

dA = xdy $\frac{x}{(h-y)} = \frac{b}{h}$

Total Area A $=\frac{1}{2}bh$ $y = y_c$

$$\overline{x} = \frac{\int x_c dA}{A}$$
 $\overline{y} = \frac{\int y_c dA}{A}$ $\overline{z} = \frac{\int z_c dA}{A}$

$$A\bar{y} = \int y_c dA \quad \Rightarrow \frac{bh}{2}\bar{y} = \int_0^h y \frac{b(h-y)}{y} dy = \frac{bh^2}{6}$$
$$\bar{y} = \frac{h}{3}$$

Shape		\overline{x}	\overline{y}	Area
Triangular area	$\frac{1}{ } \frac{\overline{y}}{ } \frac{b}{2} + $		$\frac{h}{3}$	$\frac{bh}{2}$
Quarter-circular area		$\frac{4r}{3\pi}$	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{4}$
Semicircular area	$\begin{array}{c c} O \\ \hline \hline$	0	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{2}$
Quarter-elliptical area	$C \bullet \bullet C$	$\frac{4a}{3\pi}$	$\frac{4b}{3\pi}$	$\frac{\pi ab}{4}$
Semielliptical area $O \xrightarrow{\downarrow y} O \xrightarrow{\downarrow y} O \xrightarrow{\downarrow} O O \xrightarrow{\downarrow} O \to$ O \to O		0	$\frac{4b}{3\pi}$	$\frac{\pi ab}{2}$

Semiparabolic area	$a \rightarrow c$	$\frac{3a}{8}$	$\frac{3h}{5}$	$\frac{2ah}{3}$
Parabolic area	$\begin{array}{c c} & & & & & \\ O & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	0	$\frac{3h}{5}$	$\frac{4ah}{3}$
Parabolic spandrel	$O = \frac{a}{x} + \frac{a}{y} + $	$\frac{3a}{4}$	$\frac{3h}{10}$	$\frac{ah}{3}$
General spandrel	$a \xrightarrow{\qquad } \\ y = kx^n \xrightarrow{\qquad } \\ h \\ \hline \\ \hline$	$\frac{n+1}{n+2}a$	$\frac{n+1}{4n+2}h$	$\frac{ah}{n+1}$
Circular sector	r	$\frac{2r\sin\alpha}{3\alpha}$	0	$lpha r^2$

Shape		\overline{x}	\overline{y}	Length
Quarter-circular arc		$\frac{2r}{\pi}$	$\frac{2r}{\pi}$	$\frac{\pi r}{2}$
Semicircular arc	$O \left \begin{array}{c} y \\ \hline x \end{array} \right $	0	$\frac{2r}{\pi}$	πr
Arc of circle	$ \begin{array}{c} r \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\frac{r \sin \alpha}{\alpha}$	0	2ar

Composite Bodies and Figures

Divide bodies or figures into several parts such that their mass centers can be conveniently determined \rightarrow Use Principle of Moment for all finite elements of the body

of mass of the whole

$$(\overline{m_1 + m_2 + m_3})\overline{X} = \overline{m_1}\overline{x_1} + \overline{m_2}\overline{x_2} + \overline{m_3}\overline{x_3}$$

Mass Center Coordinates can be written as:

$$\overline{X} = \frac{\sum m\overline{x}}{\sum m} \quad \overline{Y} = \frac{\sum m\overline{y}}{\sum m} \quad \overline{Z} = \frac{\sum m\overline{z}}{\sum m}$$

m's can be replaced by L's, A's, and V's for lines, areas, and volumes Center of Mass and Centroids: Composite Bodies and Figures

Integration vs Appx Summation: Irregular Area

In some cases, the boundaries of an area or volume might not be expressible mathematically or in terms of simple geometrical shapes \rightarrow Appx Summation may be used instead of integration

Divide the area into several strips Area of each strip = $h\Delta x$ Moment of this area about x- and y-axis = $(h\Delta x)y_c$ and $(h\Delta x)x_c$

→ Sum of moments for all strips divided by the total area will give corresponding coordinate of the centroid

$$\overline{x} = \frac{\sum Ax_c}{\sum A} \quad \overline{y} = \frac{\sum Ay_c}{\sum A}$$

Accuracy may be improved by reducing the width of the strip

Center of Mass and Centroids: Composite Bodies and Figures

Integration vs Appx Summation: Irregular Volume Reduce the problem to one of locating the centroid of area \rightarrow Appx Summation may be used instead of integration

Divide the area into several strips Volume of each strip = $A\Delta x$ Plot all such A against x.

→ Area under the plotted curve represents volume of whole body and the x-coordinate of the centroid of the area under the curve is given by:

$$\overline{x} = \frac{\sum (A\Delta x)x_c}{\sum A\Delta x} \Longrightarrow \overline{x} = \frac{\sum Vx_c}{\sum V}$$

Accuracy may be improved by reducing the width of the strip

$$Q_y = \overline{X} \Sigma A = \Sigma \overline{x} A$$
$$Q_x = \overline{Y} \Sigma A = \Sigma \overline{y} A$$

x

For the plane area shown, determine (a) the first moments with respect to the x and y axes, (b) the location of the centroid.

 $\overline{Y} = 36.6 \text{ mm}$

Center of Mass and Centroids: Composite Bodies and Figures

Example:

Locate the centroid of the shaded area

Solution: Divide the area into four elementary shapes: Total Area = $A_1 + A_2 - A_3 - A_4$

PART	$A \ \mathrm{mm}^2$	\overline{x} mm	\overline{y} mm	$\bar{x}A$ mm ³	$ar{y}A \ \mathrm{mm}^3$
1	12 000	60	50	720 000	600 000
2	3000	140	100/3	420 000	100 000
3	-1414	60	12.73	-84 800	-18 000
4	-800	120	40	-96 000	$-32\ 000$
TOTALS	12 790			959 000	650 000

A uniform semicircular rod of weight W and radius r is attached to a pin at A and rests against a frictionless surface at B. Determine the reactions at A and B.

$$+ \gamma \Sigma M_{A} = 0; \qquad B(2r) - W\left(\frac{2r}{\pi}\right) = 0$$
$$B = +\frac{W}{\pi}$$
$$\stackrel{+}{\rightarrow} \Sigma F_{x} = 0; \qquad A_{x} + B = 0$$
$$A_{x} = -B = -\frac{W}{\pi} \qquad A_{x} = \frac{W}{\pi} \leftarrow$$
$$+ \gamma \Sigma F_{y} = 0; \qquad A_{y} - W = 0 \qquad A_{y} = W \uparrow$$
$$A = \left[W^{2} + \left(\frac{W}{\pi}\right)^{2}\right]^{1/2}$$
$$\tan \alpha = \frac{W}{W/\pi} = \pi$$
$$A = 1.049W \Sigma 72.3^{\circ} \qquad B = 0.318W \rightarrow$$

For the area shown, determine the ratio a/b for which $\bar{x} = \bar{y}$

	A	\overline{x}	\overline{y}	πA	ӯА
1	$\frac{2}{3}ab$	$\frac{3}{8}a$	$\frac{3}{5}b$	$\frac{a^2b}{4}$	$\frac{2ab^2}{5}$
2	$-\frac{1}{2}ab$	$\frac{1}{3}a$	$\frac{2}{3}b$	$-\frac{a^2b}{6}$	$-\frac{ab^2}{3}$
Σ	$\frac{1}{6}ab$			$\frac{a^2b}{12}$	<i>ab</i> ² 15

Then

or

 $\overline{X} \Sigma A = \Sigma \overline{X} A$ $\overline{X}\left(\frac{1}{6}ab\right) = \frac{a^2b}{12}$ $\overline{X} = \frac{1}{2}a$ $\overline{Y}\Sigma A = \Sigma \overline{y}A$ $\overline{Y}\left(\frac{1}{6}ab\right) = \frac{ab^2}{15}$ $\overline{Y} = \frac{2}{5}b$

or

Now

 $\overline{X} = \overline{Y} \Rightarrow \frac{1}{2}a = \frac{2}{5}b$ or $\frac{a}{b} = \frac{4}{5} \checkmark$

Theorems of Pappus: Areas and Volumes of Revolution

Method for calculating surface area generated by revolving a plane curve about a non-intersecting axis in the plane of the curve

Method for calculating volume generated by revolving an area about a non intersecting axis in the plane of the area

Surface Area

Area of the ring element: circumference times dL $dA = 2\pi y dL$

Total area, $A = 2\pi \int y dL$ $\overline{y}L = \int y dL$

$$A = 2\pi \bar{y}L$$

The area of a surface of revolution is equal to the length of the generating curve times the distance traveled by the centroid of the curve while the surface is being generated

This is Theorems 1 of Pappus

If area is revolved through an angle $\theta < 2\pi$, θ in radians

$$A = \theta \bar{y}L$$

Theorems of Pappus can also be used to determine centroid of plane curves if area created by revolving these figures @ a non-intersecting axis is known

<u>Volume</u>

Volume of the ring element: circumference times dA

 $dV = 2\pi y \, dA$

Total Volume,
$$V = 2\pi \int y dA$$
 $\overline{y}A = \int y dA$
 $V = 2\pi \overline{y}A$

The volume of a body of revolution is equal to the length of the generating area times the distance traveled by the centroid of the area while the body is being generated

This is Theorems 2 of Pappus

If area is revolved through an angle $\theta < 2\pi$, θ in radians

$$V = \theta \bar{y} A$$

- Previously considered distributed forces which were proportional to the area or volume over which they act.
 - The resultant was obtained by summing or integrating over the areas or volumes.
 - The moment of the resultant about any axis was determined by computing the first moments of the areas or volumes about that axis.

- Will now consider forces which are proportional to the area or volume over which they act but also vary linearly with distance from a given axis.
 - the magnitude of the resultant depends on the first moment of the force distribution with respect to the axis.
 - The point of application of the resultant depends on the second moment of the distribution with respect to the axis.

- Consider distributed forces $\Delta \vec{F}$ whose magnitudes are proportional to the elemental areas ΔA on which they act and also vary linearly with the distance of ΔA from a given axis.
- Example: Consider a beam subjected to pure bending. Internal forces vary linearly with distance from the neutral axis which passes through the section centroid.

 $\Delta \vec{F} = ky\Delta A$ $R = k \int y \, dA = 0 \quad \int y \, dA = Q_x = \text{first moment}$ $M = k \int y^2 \, dA \quad \int y^2 \, dA = \text{second moment}$

First Moment of the whole section about the x-axis = $\overline{y}A = 0$ since the centroid of the section lies on the x-axis.

Second Moment or the Moment of Inertia of the beam section about x-axis is denoted by I_x and has units of $(length)^4$ (never –ve)

Area Moments of Inertia by Integration

• *Second moments* or *moments of inertia* of an area with respect to the *x* and *y* axes,

$$I_x = \int y^2 dA \qquad I_y = \int x^2 dA$$

- Evaluation of the integrals is simplified by choosing *dA* to be a thin strip parallel to one of the coordinate axes.
- For a rectangular area, $I_x = \int y^2 dA = \int_0^h y^2 b dy = \frac{1}{3}bh^3$
- The formula for rectangular areas may also be applied to strips parallel to the axes,

$$dI_x = \frac{1}{3}y^3 dx \qquad dI_y = x^2 dA = x^2 y dx$$

Polar Moment of Inertia

• The *polar moment of inertia* is an important parameter in problems involving torsion of cylindrical shafts and rotations of slabs.

$$J_0 = I_z = \int r^2 dA$$

• The polar moment of inertia is related to the rectangular moments of inertia,

$$J_{0} = I_{z} = \int r^{2} dA = \int (x^{2} + y^{2}) dA = \int x^{2} dA + \int y^{2} dA$$
$$= I_{y} + I_{x}$$

Moment of Inertia of an area is purely a mathematical property of the area and in itself has no physical significance.

x

Radius of Gyration of an Area

Consider area A with moment of inertia I_x. Imagine that the area is concentrated in a thin strip parallel to the x axis with equivalent I_x.

$$I_x = k_x^2 A \qquad k_x = \sqrt{\frac{I_x}{A}}$$

 $k_x = radius of gyration$ with respect to the x axis

• Similarly,

$$I_{y} = k_{y}^{2}A \qquad k_{y} = \sqrt{\frac{I_{y}}{A}}$$
$$J_{o} = I_{z} = k_{o}^{2}A = k_{z}^{2}A \qquad k_{o} = k_{z} = \sqrt{\frac{J_{o}}{A}}$$
$$k_{o}^{2} = k_{z}^{2} = k_{x}^{2} + k_{y}^{2}$$

Radius of Gyration, *k* is a measure of distribution of area from a reference axis Radius of Gyration is different from centroidal distances

Example: Determine the moment of inertia of a triangle with respect to its base.

SOLUTION:

• A differential strip parallel to the *x* axis is chosen for *dA*.

$$dI_x = y^2 dA$$
 $dA = l dy$

• For similar triangles,

$$\frac{l}{b} = \frac{h - y}{h} \qquad l = b\frac{h - y}{h} \qquad dA = b\frac{h - y}{h}dy$$

• Integrating dI_x from y = 0 to y = h,

Example: a) Determine the centroidal polar moment of inertia of a circular area by direct integration.

b) Using the result of part a, determine the moment of inertia of a circular area with respect to a diameter. <u>SOLUTION</u>:

• An annular differential area element is chosen,

$$dJ_O = u^2 dA \qquad dA = 2\pi u \, du$$
$$J_O = \int dJ_O = \int_0^r u^2 (2\pi u \, du) = 2\pi \int_0^r u^3 du$$
$$J_O = \frac{\pi}{2} r^4$$

• From symmetry, $I_x = I_y$,

$$J_O = I_x + I_y = 2I_x$$
 $\frac{\pi}{2}r^4 = 2I_x$

$$I_{diameter} = I_x = \frac{\pi}{4}r^4$$

Determine the area of the surface of revolution shown

$$\overline{x} = 2r - \frac{2r}{\pi} = 2r\left(1 - \frac{1}{\pi}\right)$$

$$A = 2\pi\overline{x}L = 2\pi\left[2r\left(1 - \frac{1}{\pi}\right)\right]\left(\frac{\pi r}{2}\right)$$

$$A = 2\pi r^{2}(\pi - 1)$$

(a) Determine the moment of inertia of the shaded area shown with respect to each of the coordinate axes. (Properties of this area were considered in Sample Prob. 5.4.) (b) Using the results of part a, determine the radius of gyration of the shaded area with respect to each of the coordinate axes.

$$y = \frac{b}{a^2} x^2 \qquad A = \frac{1}{3}ab$$

$$dI_x = \frac{1}{3}y^3 \, dx = \frac{1}{3} \left(\frac{b}{a^2} x^2\right)^3 \, dx = \frac{1}{3} \frac{b^3}{a^6} x^6 \, dx$$
$$I_x = \int dI_x = \int_0^a \frac{1}{3} \frac{b^3}{a^6} x^6 \, dx = \left[\frac{1}{3} \frac{b^3}{a^6} \frac{x^7}{7}\right]_0^a$$
$$I_x = \frac{ab}{2}$$

$$dI_{y} = x^{2} dA = x^{2}(y dx) = x^{2} \left(\frac{b}{a^{2}}x^{2}\right) dx = \frac{b}{a^{2}}x^{4} dx$$
$$I_{y} = \int dI_{y} = \int_{0}^{a} \frac{b}{a^{2}}x^{4} dx = \left[\frac{b}{a^{2}}\frac{x^{5}}{5}\right]_{0}^{a}$$
$$I_{y} = \frac{a^{3}b}{5}$$

Radii of Gyration k_x and k_y . We have, by definition,

$$k_x^2 = \frac{I_x}{A} = \frac{ab^3/21}{ab/3} = \frac{b^2}{7}$$
 $k_x = \sqrt{\frac{1}{7}b}$

and

$$k_y^2 = \frac{I_y}{A} = \frac{a^3 b/5}{ab/3} = \frac{3}{5}a^2$$
 $k_y = \sqrt{\frac{3}{5}}a$

Q. No. 1 Locate the centroid of the plane shaded area shown below.

Q. No. 2 Determine *x*- and *y*-coordinates of the centroid of the trapezoidal area

Q. No. 3 Determine the volume V and total surface area A of the solid generated by revolving the area shown through 180° about the *z*-axis.

Q. No. 4 Determine moment of inertia of the area under the parabola about x-axis. Solve by using (a) a horizontal strip of area and (b) a vertical strip of area.

	A (cm²)	$ar{x}$, cm	$ar{x}$ A, cm ³
1	$\frac{\pi(16^2)}{4}$ = 201.06	$\frac{4(16)}{3\pi}$ = 6.7906	1365.32
2	-(8)(8) = - 64	4	-256
Σ	137.06		1109.32

Then
$$\bar{X} = \frac{\sum \bar{x}A}{\sum A} = \frac{1109.32}{137.06} = 8.09 \text{ cm}$$

 $\bar{Y} = 8.09 \text{ cm} (\bar{Y} = \bar{X} \text{ by symmetry})$

Solution of Q. No. 2

Dividing the trapezoid into a rectangle of dimensions $(a \times h)$ and a triangle of base width (b-a).

Total
$$x = x_1 + x_2 = a + (b - a) - \frac{(b - a)}{h} \cdot y$$

 $x = \left(\frac{a - b}{h}\right)y + b$
 $dA = xdy = \left[\left(\frac{a - b}{h}\right)y + b\right]dy$
Total area $A = \left(\frac{a + b}{2}\right)h = \frac{h}{2}(a + b)$

Centroid of differential element $x_c = \frac{x}{2}$; $y_c = y$

$$\int x_c \, dA = \int_0^h \frac{x}{2} \left[\left(\frac{a-b}{h} \right) y + b \right] dy$$
$$= \frac{1}{2} \int_0^h \left[\left(\frac{a-b}{h} \right) y + b \right]^2 dy$$

$$\int x_c dA = \frac{1}{2} \int_0^h \left[\left(\frac{a-b}{h} \right)^2 y^2 + 2b \left(\frac{a-b}{h} \right) y + b^2 \right] dy$$
$$= \frac{1}{2} \left[\left(\frac{a-b}{h} \right)^2 \frac{y^3}{3} + 2b \left(\frac{a-b}{h} \right) \frac{y^2}{2} + b^2 y \right]_0^h$$
$$= \frac{h}{6} (a^2 + b^2 + ab)$$

$$\int y_c dA = \int_0^h y \left[\left(\frac{a-b}{h} \right) y + b \right] dy = \int_0^h \left[\left(\frac{a-b}{h} \right) y^2 + by \right] dy$$

$$= \left[\left(\frac{a-b}{h} \right) \frac{y^3}{3} + b \frac{y^2}{2} \right]_0^h = \frac{h^2}{3} (a + \frac{b}{2})$$

$$\bar{x} = \frac{\int x_c dA}{A} = \frac{\frac{h}{6} (a^2 + b^2 + ab)}{\frac{h}{2} (a + b)} = \frac{a^2 + b^2 + ab}{3(a + b)}$$

$$\bar{y} = \frac{\int y_c dA}{A} = \frac{\frac{h^2}{3} (a + \frac{b}{2})}{\frac{h}{2} (a + b)} = \frac{h(2a + b)}{3(a + b)}$$

Solution of Q. No. 3

Let A_1 be the surface area excluding the end surfaces And A_2 be the surface area of the end surfaces Using Pappus theorem: $A_1 = \pi \bar{r}L = \pi (75 + 40) (2 \times 30 + 80 + (\pi \times 40))$ = 96000 mm²

End areas
$$A_2 = 2 \left(\frac{\pi}{2} \times 40^2 + 80 \times 30\right)$$

= 9830 mm²
Total area $A = A_1 + A_2 = 105800$ mm²

Again using Pappus theorem for revolution of plane areas: $V = \pi \bar{r}A = \pi (75 + 40) (30 \times 80 + \pi \times \frac{40^2}{2}) = 1775 \times 10^6 \text{ mm}^3$

Solution of Q. No. 4

(a) Horizontal strip

$$I_x = \int y^2 dA \qquad I_x = \int_0^3 4y^2 \left(1 - \frac{y^2}{9}\right) dy = 14.40$$

(b) Vertical strip

$$dI_x = \frac{1}{3}(dx)y^3 \qquad y = \frac{3\sqrt{x}}{2}$$

$$I_x = \frac{1}{3} \int_0^4 \left(\frac{3\sqrt{x}}{2}\right)^2 dx = 14.40$$