Probability Distribution

CE, ITG Prof. (Dr.) Rajib Kumar Bhattacharjya Indian Institute of Technology Guwahati Guwahati, Assam Email: rkbc@iitg.ernet.in Web: www.iitg.ernet.in/rkbc Visiting Faculty NIT Meghalaya

Probabilistic Approach:

A random variable X is a variable described by a probability distribution.

- The distribution specifies the chance that an observation x of the variable will fall in a specific range of X. •
- A set of observations $n_1, n_2, n_3, \ldots, n_n$ of the random variable is called a sample. •
- It is assumed that samples are drawn from a hypothetical infinite population possessing constant statistical • properties.
- Properties of sample may vary from one sample to others. •

The probability P (A) of an event is the chance that it will occur when an observation of the random variable is made.

$$P(A) = \lim_{n \to \infty} \left(\frac{n_A}{n} \right)$$

 n_A --- number in range of event A.

n----- Total observations

1. Total Probability $P(A_1) + P(A_2) + P(A_3) + \dots + P(A_n) = P(\Omega) = 1$ 1. Complementarity $P(\overline{A}) = 1 - P(A)$ 1. Conditional Probability

$$P\left(\frac{B}{A}\right) = \frac{P(A \cap B)}{P(A)}$$

B will occur provided A has already occurred.

Joint Probability

 $P(A \cap B) = P(A)P(B)$

Example:

The probability that annual precipitation will be less than 120 mm is 0.333. What is the probability that there will be Rajib Bhattachariwa two successive year of precipitation less than 120 mm.

P(R < 35) = 0.333 $P(C) = 0.333^2 = 0.111$

This is estimated for sample data, corresponding function for population will be

 $\Delta x, x_i$]

Probability density Function:

$$f(x) = \lim_{\substack{n \to \infty \\ \Delta x \to 0}} \frac{f_s(x)}{\Delta x}$$

Probability Distribution Function:

$$F(x) = \lim_{\substack{n \to \infty \\ \Delta x \to 0}} F_s(x)$$

Whose derivative is the probability density function

a Function:

$$(x) = \lim_{\substack{n \to \infty \\ \Delta x \to 0}} F_{s}(x)$$
probability density function
$$f(\gamma) = \frac{dF(\gamma)}{dx}$$
Raiib Bhattacharitya

The cumulative probability as $P(X \le x)$, can be expressed as

$$P(X \le x) = F(x) = \int_{-\infty}^{x} f(u) du$$

$$P(x_i) = P(x_i - \Delta x \le X \le x_i)$$

$$= \int_{x_i - \Delta x}^{x_i} f(x) dx$$

$$= \int_{-\infty}^{x_i} f(x) dx - \int_{-\infty}^{x_i - \Delta x} f(x) dx$$

$$= F(x_i) - F(x_i - \Delta x)$$

$$= F(x_i) - F(x_{i-1})$$
Raiib Bhattacharina

Probability density function

Cumulative probability of standard normal distribution

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
	-									

 $B = \frac{1}{2} [1 + 0.196854|z| + 0.115194|z|^2 + 0.000344|z|^3 + 0.019527|z|^4]^{-4}$

Ex. What is the probability that the standard normal random variable z will be less than -2? Less than 1? What is P(-2 < Z < 1)?

Solution

P(Z < -2) = F(-2) = 1 - F(2) = 1 - 0.9772 = 0.228Rajib Bhattachariya @ CE, IITG P(Z < 1) = F(1) = 0.8413P(-2 < Z < 1) = F(1) - F(2) = 0.841 - 0.023 = 0.818

Example 2:

The annual runoff of a stream is modeled by a normal distribution with mean and standard deviation of 5000 and 1000 ha-m respectively.

- Find the probability that the annual runoff in any year is more than 6500 ha-m. i.
- ii. Find the probability that it would be between 3800 and 5800 ha-m.

Solution:

Let X is the random variable denoting the annual runoff. Then z is given by

(ii) $P(3800 \le X \le 5800)$

 $= P\left[\frac{(3800-5000)}{1000} \le z \le P\left[\frac{(5800-5000)}{1000}\right]\right]$ $= P [-1.2 \le z \le 0.8]$ = F(0.8) - F(-1.2)= F(0.8) - [1 - F(1.2)]=0.7881-(1-0.8849) =0.673

Rajib Bhattachariya @ CE, IITG

Statistical parameter

Expected value

$$E(x) = \mu = \int_{-\infty}^{\infty} x f(x) dx$$

It is the first moment about the origin of the random variable, a measure of the midpoint or central tendency of the distribution

A symmetry of distribution about the mean is a measured by the skewness. This is the third moment about the mean

$$E[(x-\mu)^3] = \int_{-\infty}^{\infty} (x-\mu)^3 f(x) dx$$

The coefficient of skewness γ is defined as

$$\gamma = \frac{1}{\sigma^3} E[(x - \mu)^3]$$

A sample estimate for γ is given by

Fitting a probability distribution

A probability distribution is a function representing the probability of occurrence of a random variable.

By fitting a distribution function, we can extract the probabilistic information of the random variable

Fitting distribution can be achieved by the method of moments and the method of maximum likelihood

Method of moments

Developed by Karl Pearson in 1902

He considered that good estimate of the parameters of a probability distribution are those for which moments of the probability density function about the origin are equal to the corresponding moments of the sample data

Karl Pearson (27 March 1857 – 27 April 1936) was an English mathematician

The moments are

$$E(x) = \mu = \int_{-\infty}^{\infty} xf(x)dx = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$E[(x-\mu)^2] = \sigma^2 = \int_{-\infty}^{\infty} (x-\mu)^2 f(x)dx = s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

$$E[(x-\mu)^3] = \int_{-\infty}^{\infty} (x-\mu)^3 f(x)dx = \frac{n \sum_{i=1}^{n} (x_i - \bar{x})^3}{(n-1)(n-2)}$$
Raib

Method of moments

Developed by R A Fisher in 1922

He reasoned that the best value of a parameter of a probability distribution should be that value which maximizes the likelihood of joint probability of occurrence of the observed sample

Suppose that the sample space is divided into intervals of length dx and that a sample of independent and identically distributed observations $x_1, x_2, x_3, ..., x_n$ is taken

Sir Ronald Aylmer Fisher (17 February 1890 – 29 July 1962), known as R.A. Fisher, was an English statistician, evolutionary biologist, mathematician, geneticist, and eugenicist.

The value of the probability density for $X = x_i$ is $f(x_i)$

The probability that the random variable will occur in that interval including x_i is $f(x_i)dx$ Since the observation is independent, their joint probability of occurrence is

$$f(x_1)dxf(x_2)dxf(x_3)dx \dots f(x_n)dx = \prod_{i=1}^n f(x_i)dx^n$$

Since dx is fixed, we can maximize

Example: The exponential distribution can be used to describe various kinds of hydrological data, such as inter arrival times of rainfall events. Its probability density function is $f(x) = \lambda e^{-\lambda x}$ for x > 0. Determine the relationship between the parameter λ and the first moment about the origin μ .

Solution:

Method of maximum likelihood

Normal family

Normal, lognormal, lognormal-III

Generalized extreme value family

EV1 (Gumbel), GEV, and EVIII (Weibull)

Exponential/Pearson type family

Exponential, Pearson type III, Log-Pearson type III

Rajib Bhattachariya @ CE, IITG

Normal Distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \qquad -\infty \le x \le +\infty$$

Log-Normal Distribution

$$f(y) = \frac{1}{\sigma_y \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{y - \mu_y}{\sigma_y}\right)^2} \qquad x > 0 \text{ and}$$

$$x > 0$$
 and $y = \ln(x)$

Extreme value (EV) distributions

- Extreme values maximum or minimum values of sets of data
- Annual maximum discharge, annual minimum discharge
- When the number of selected extreme values is large, the distribution converges to one of the three forms of EV distributions called Type I, Rajib Bhattachariwa k (0)II and III

EV type I distribution

If M1, M2..., Mn be a set of daily rainfall or streamflow, and let X = max(Mi) be the maximum for the year. If Mi are independent and identically distributed, then for large n, X has an extreme value type I or Gumbel distribution.

Distribution of annual maximum stream flow follows an EV1 distribution

EV type III distribution

If Wi are the minimum stream flows in different days of the year, let X = min(Wi) be the smallest. X can be described by the EV type III or Weibull distribution.

$$f(x) = \left(\frac{k}{\lambda}\right) \left(\frac{x}{\lambda}\right)^{k-1} e^{-\left(\frac{x}{\lambda}\right)^k} \qquad x > 0, \lambda, k > 0$$

Distribution of low flows (eg. 7-day min flow) follows EV3 distribution.

Exponential distribution

Poisson process – a stochastic process in which the number of events occurring in two disjoint subintervals are independent random variables.

In hydrology, the interarrival time (time between stochastic hydrologic events) is described by exponential distribution

$$f(x) = \lambda e^{-\lambda x}$$
 $x \ge 0; \lambda = \frac{I}{x}$

Interarrival times of polluted runoffs, rainfall intensities, etc are described by exponential distribution.

Gamma Distribution

- The time taken for a number of events (b) in a Poisson process is described by the gamma distribution
- Gamma distribution a distribution of sum of b independent and identical exponentially distributed random variables.

$$f(x) = \frac{\lambda^{\beta} x^{\beta-1} e^{-\lambda x}}{\Gamma(\beta)} \qquad x \ge 0; \Gamma = gamma \ function$$

Aity) can h Skewed distributions (eg. hydraulic conductivity) can be represented using gamma without log transformation.

Pearson Type III

Named after the statistician Pearson, it is also called three-parameter gamma distribution. A lower bound is introduced through the third parameter (ϵ)

$$f(x) = \frac{\lambda^{\beta} (x - \varepsilon)^{\beta - 1} e^{-\lambda(x - \varepsilon)}}{\Gamma(\beta)} \qquad x \ge \varepsilon; \Gamma = gamma \ function$$

It is also a skewed distribution first applied in hydrology for describing the pdf of annual maximum flows.

Log-Pearson Type III

If log X follows a Person Type III distribution, then X is said to have a log-Pearson Type III distribution

 $f(x) = \frac{\lambda^{\beta}(y-\varepsilon)^{\beta-1}e^{-\lambda(y-\varepsilon)}}{\Gamma(\beta)} \quad y = \log x \ge \varepsilon$ Rajib Bhattachariya

Frequency analysis for extreme events

Q. Find a flow (or any other event) that has a return period of T years

$$f(x) = \frac{1}{\alpha} \exp\left[-\frac{x-u}{\alpha} - \exp\left(-\frac{x-u}{\alpha}\right)\right] \quad F(x) = \exp\left[-\exp\left(-\frac{x-u}{\alpha}\right)\right] \quad \text{EV1 pdf and cdf}$$
$$\alpha = \frac{\sqrt{6}s_x}{\pi} \quad u = \bar{x} - 0.5772\alpha$$

Define a reduced variable y

$$y = \frac{x - u}{\alpha}$$

CE, ITG

$$F(x) = \exp\left[-\exp(-y)\right]$$

$$y = -\ln\left[-\ln(F(x))\right] = -\ln\left[-\ln(1-p)\right] \text{ where } p = P(x \ge x_T)$$

$$y_T = -\ln\left[-\ln\left(1-\frac{1}{T}\right)\right]$$

If you know T, you can find y_T , and once y_T is know, x_T can be computed by

$$x_T = u + \alpha y_T$$

Example 01

Given annual maxima for 10-minute storms. The mean and standard deviation are 0.649 in and 0.177 in. Find 5 & 50 year return period 10-minute storms

 $\bar{x} = 0.649 in$ s = 0.177 in $\alpha = \frac{\sqrt{6}s}{\pi} = \frac{\sqrt{6}*0.177}{\pi} = 0.138 \qquad u = \bar{x} - 0.5772 \,\alpha = 0.649 - 0.5772 * 0.138 = 0.569$ $x_{5} = u + \alpha y_{5} = 0.569 + 0.138 * 1.5 = 0.78 in$

Normal Distribution

Normal distribution

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

$$K_T = \frac{x_T - \overline{x}}{s} = z_T$$

So the frequency factor for the Normal Distribution is the standard normal variate

Example: 50 year return period

$$x_T = x + K_T s = x + z_T s$$

$$T = 50; p = \frac{1}{50} = 0.02; K_{50} = z_{50} = 2.054$$

Raijb Bhattach

EV-I (Gumbel) Distribution

$$F(x) = \exp\left[-\exp\left(-\frac{x-u}{\alpha}\right)\right] \quad \alpha = \frac{\sqrt{6s}}{\pi} \quad u = \overline{x} - 0.5772 \,\alpha \qquad y_T = -\ln\left[\ln\left(\frac{T}{T-1}\right)\right]$$
$$= \overline{x} - 0.5772 \,\frac{\sqrt{6}}{\pi} s + \frac{\sqrt{6}}{\pi} s \left\{-\ln\left[\ln\left(\frac{T}{T-1}\right)\right]\right\}$$
$$= \overline{x} - \frac{\sqrt{6}}{\pi} \left\{0.5772 + \ln\left[\ln\left(\frac{T}{T-1}\right)\right]\right\} s$$
$$x_T = \overline{x} + K_T s$$
$$K_T = -\frac{\sqrt{6}}{\pi} \left\{0.5772 + \ln\left[\ln\left(\frac{T}{T-1}\right)\right]\right\}$$

Example 02

Given annual maximum rainfall, calculate 5-yr storm using frequency factor

$$K_{T} = -\frac{\sqrt{6}}{\pi} \left\{ 0.5772 + \ln \left[\ln \left(\frac{T}{T - 1} \right) \right] \right\}$$

$$K_{T} = -\frac{\sqrt{6}}{\pi} \left\{ 0.5772 + \ln \left[\ln \left(\frac{5}{5 - 1} \right) \right] \right\} = 0.719$$

$$K_{T} = \overline{x} + K_{T} S$$

$$= 0.649 + 0.719 \times 0.177$$

$$= 0.78 in$$
Ref.

Distribution	PDF	CDF	Range	Mean
Normal	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$ Or $\frac{1}{\sqrt{2\pi}}e^{-\frac{z^{2}}{2}}, z = \frac{x-\mu}{\sigma}$	$\int_{-\infty}^{x} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} dx$	$-\infty \le x \le +\infty$	μ and σ
Lognormal $y = \ln(x)$	$\frac{1}{\sigma_y \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu_y}{\sigma_y}\right)^2}$	$\int_{-\infty}^{y} \frac{1}{\sigma_y \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu_y}{\sigma_y}\right)^2} dy$	$-\infty \le y \le +\infty$ $0 \le x \le +\infty$	μ_y and σ_y
Extreme value Type I $y = (x - \beta)/\alpha$	$\frac{1}{\alpha}e^{-(y+e^{-y})}$	e^{-e-y}	$-\infty \le x \le +\infty$	$\beta = \bar{x} - 0.5772\alpha$ $\alpha = \frac{\sqrt{6}S_x}{\pi}$
Extreme value Type III	$\alpha x^{\alpha-1}\beta^{-\alpha}e^{-(x/\beta)\alpha}$	$1-e^{-(x/\beta)\alpha}$	$x \ge 0$	$\beta\Gamma(1+1/\alpha)$ $\beta[\Gamma(1+2/\alpha)$
	Ra	jo -		

Ex. Annual maximum values of 10 min duration rainfall at some place from 1913 to 1947 are presented in Table below. Develop a model for storm rainfall frequency analysis using Extreme Value Type I distribution and calculate the 5, 10, and 50 year return period maximum values of 10 min rainfall of the area.

atte

Year	1910	1920	1930	1940
0		0.53	0.33	0.34
1		0.76	0.96	0.70
2		0.57	0.94	0.57
3	0.49	0.80	0.80	0.92
4	0.66	0.66	0.62	0.66
5	0.36	0.68	0.71	0.65
6	0.58	0.68	1.11	0.63
7	0.41	0.61	0.64	0.60
8	0.47	0.88	0.52	
9	0.74	0.49	0.64	
Mean	0.649		SD	0.177
				-

Solution

$$\alpha = \frac{\sqrt{6s}}{\pi} = \frac{\sqrt{6} \times 0.177}{\pi} = 0.138$$

$$u = \bar{x} - 0.5772\alpha = 0.649 - 0.5772 \times 0.138 = 0.569$$

$$y_T = -\ln\left[-\ln\left(1 - \frac{1}{T}\right)\right]$$

$$y_T = -\ln\left[\ln\left(1 - \frac{1}{T}\right)\right] = 1.5$$

$$x_T = u + \alpha y_T = 0.569 + 0.138 \times 1.5 = 0.78$$

$$K_T = -\frac{\sqrt{6}}{\pi} \left\{ 0.5772 + \ln \left[\ln \left(\frac{T}{T-1} \right) \right] \right\}$$

$$K_{T} = -\frac{\sqrt{6}}{\pi} \left\{ 0.5772 + ln \left(ln \left(\frac{5}{5-1} \right) \right) \right\} = 0.719$$

$$x_{T} = \bar{x} + K_{T} s = 0.649 + 0.719 \times 0.177 = 0.78$$
Rajib Bhattachariya

$$x_T = \bar{x} + K_T s = 0.649 + 0.719 \times 0.177 = 0.78$$

LOG – PEARSON TYPE III DISTRIBUTION

 $y = \log(x)$

Calculate mean \bar{y} , standard deviation s_y and the coefficient of skewness C_s

$$K_{T} = z + (z^{2} - 1)k + \frac{1}{3}(z^{3} - 6z)k^{2} - (z^{2} - 1)k^{3} + zk^{4} + \frac{1}{3}k^{5} \quad (k) = \frac{C_{s}}{6}$$

The value of z can be calculated using the procedure described earlier.

Rajib Bhai

			Recu	arrence inte	erval (years)			
21	1.0101	2	5	10	25	50	100	200
coef.			-	Percent cha	ance (≥)			
CS	99	50	20	10	4	2	1	0.5
3.0	-0.667	-0.396	0.420	1.180	2.278	3.152	4.051	4.970
2.9	-0.690	-0.390	0.440	1.195	2.277	3.134	4.013	4.904
.8	-0.714	-0.384	0.460	1.210	2.275	3.114	3.973	4.847
2.7	-0.740	-0.376	0.479	1.224	2.272	3.093	3.932	4.783
6	-0.769	-0.368	0.499	1.238	2.267	3.071	3.889	4.718
2.5	-0.799	-0.360	0.518	1.250	2.262	3.048	3.845	4.652
.4	-0.832	-0.351	0.537	1.262	2.256	3.023	3.800	4.584
2.3	-0.867	-0.341	0.555	1.274	2.248	2.997	3.753	4.515
2.2	-0.905	-0.330	0.574	1.284	2.240	2.970	3.705	4.444
2.1	-0.946	-0.319	0.592	1.294	2.230	2.942	3.656	4.372
2.0	-0.990	-0.307	0.609	1.302	2.219	2.912	3.605	4.298
.9	-1.037	-0.294	0.627	1.310	2.207	2.881	3.553	4.223
.8	-1.087	-0.282	0.643	1.318	2.193	2.848	3.499	4.147
.7	-1.140	-0.268	0.660	1.324	2.179	2.815	3.444	4.069
.6	-1.197	-0.254	0.675	1.329	2.163	2.780	3.388	3.990
.5	-1.256	-0.240	0.690	1.333	2.146	2.743	3.330	3.910
.4	-1.318	-0.225	0.705	1.337	2.128	2.706	3.271	3.828
.3	-1.383	-0.210	0.719	1.339	2.108	2.666	3.211	3.745
.2	-1.449	-0.195	0.732	1.340	2.087	2.626	3.149	3.661
1.1	-1.518	-0.180	0.745	1.341	2.066	2.585	3.087	3.575
1.0	-1.588	-0.164	0.758	1.340	2.043	2.542	3.022	3.489
.9	-1.660	-0.148	0.769	1.339	2.018	2.498	2.957	3.401
).8	-1.733	-0.132	0.780	1.336	1.993	2.453	2.891	3.312
0.7	-1.806	-0.116	0.790	1.333	1.967	2.407	2.824	3.223
0.6	-1.880	-0.099	0.800	1.328	1.939	2.359	2.755	3.132
).5	-1.955	-0.083	0.808	1.323	1.910	2.311	2.686	3.041
).4	-2.029	-0.066	0.816	1.317	1.880	2.261	2.615	2.949
0.3	-2.104	-0.050	0.824	1.309	1.849	2.211	2.544	2.856
1.2	-2.178	-0.033	0.830	1.301	1.818	2.159	2.472	2.763
0.1	-2.252	-0.017	0.836	1.292	1.785	2.107	2.400	2.670
0	-2.326	0	0.842	1.282	1.751	2.054	2.326	2.576

TABLE D.6 FREQUENCY FACTOR FOR THE PEARSON TYPE III DISTRIBUTION WITH POSITIVE SKEW COEFFICIENTS (AFTER WATER RESOURCES COUNCIL, 1967)

Ex. Calculate the 5 and 50 year return period maximum discharge of the Guadalupe River, Texas using lognormal and Log-Pearson Type III distribution.

Year	1930	1940	1950	1960	1970					
0		55900	13300	23700	9190					
1		58000	12300	55800	9740					
2		56000	28400	10800	58500					
3		7710	11600	4100	33100					
4		12300	8560	5720	25200					
5	38500	22000	4950	15000	30200					
6	179000	17900	1730	9790	14100					
7	17200	46000	25300	70000	54500					
8	25400	6970	58300	44300	12700					
9	4940	20600	10100	15200						
Rajib										

SOLUTION

Lognormal Distribution

 $\bar{y} = 4.2743$ $s_y = 0.4027$ $C_s = -0.0696$ K_{50} for $C_s = 0$ is 2.054 $y_{50} = \bar{y} + K_{50}s_y$ $= 4.2743 + 2.054 \times 0.4027 = 5.101$ $x_{50} = (10)^{5.101} = 126300 \ cfs$

 $x_5 = 41060 \ cfs$

Log-Pearson Type III Distribution

$$K_{50} = 2.054 + \frac{2.0 - 2.054}{-0.1 - 0} (-0.0696 - 0) = 2.016$$

$$y_{50} = \bar{y} + K_{50}s_y = 4.2743 + 2.016 \times 0.4027 = 5.0863$$

$$y_{50} = \bar{y} + K_{50}s_y = 4.2743 + 2.016 \times 0.4027 = 5.0863$$

 $x_{50} = (10)^{5.0863} = 121990 \, cfs$
 $x_5 = 41170 \, cfs$
Rajib Bhattachariva

PLOTING POSITIONS

Plotting position refers to the probability value assigned to each piece of data to be plotted

$$P(X \ge x_m) = \frac{m}{n}$$
California's formula $P(X \ge x_m) = \frac{m-b}{n+1-2b}$ $P(X \ge x_m) = \frac{m-1}{n}$ Modified formula $b = 0.5$ For Hazen (1930) formula $P(X \ge x_m) = \frac{m-0.5}{n}$ Hazen (1930) formula $b = 0.3$ For Chegodayev's formula $P(X \ge x_m) = \frac{m-0.3}{n+0.4}$ Chegodayev's formula $b = 3/8$ For Blom's formula $P(X \ge x_m) = \frac{m}{n+1}$ Weibull formula $b = 1/3$ For Tukey's formula

	– 0)		e >						1945	623	20 0.444	1.27	0.14	2.79	2.78
Ľ	num arg(/s)	¥	enc			ð	froi rm; utic		1949	583	21 0.467	1.23	0.08	2.77	2.76
Yea	aim sch: m3,	Rar	eed	3	И)gc	c O ribi		1946	507	22 0.489	1.20	0.03	2.70	2.74
	Disi Disi		Exc.			-	Log Loε dist		1937	487	23 0.511	1.16	-0.03	2.69	2.72
1026	5060	1	0.022	2 76	2 01	2 70	2 5 4		1969	430	24 0.533	1.12	-0.08	2.63	2.69
1067	1003	ר ב	0.022	2.70	2.01	2.70	2.04		1965	425	25 0.556	1.08	-0.14	2.63	2.67
1967	1982	2	0.044	2.50	1.70	3.30	3.41		1976	399	26 0.578	1.05	-0.20	2.60	2.65
1972	1657	3	0.067	2.33	1.50	3.22	3.33		1950	377	27 0.600	1.01	-0.25	2.58	2.62
1958	1651	4	0.089	2.20	1.35	3.22	3.27		1978	360	28 0.622	0.97	-0.31	2.56	2.60
1941	1642	5	0.111	2.10	1.22	3.22	3.22		1944	348	29 0.644	0.94	-0.37	2.54	2.58
1942	1586	6	0.133	2.01	1.11	3.20	3.17		1951	348	30 0.667	0.90	-0.43	2.54	2.55
1940	1583	7	0.156	1.93	1.01	3.20	3.13		1953	328	31 0.689	0.86	-0.49	2.52	2.53
1961	1580	8	0.178	1.86	0.92	3.20	3.10		1962	306	32 0.711	0.83	-0.55	2.49	2.50
1977	1543	9	0.200	1.79	0.84	3.19	3.07		1959	286	33 0.733	0.79	-0.62	2.46	2.48
1947	1303	10	0.222	1.73	0.76	3.11	3.03		1966	277	34 0 756	0.75	-0.68	2.10	2.10
1968	1254	11	0.244	1.68	0.69	3.10	3.00		1971	276	35 0 778	0.73	-0.75	2.11	2.13
1935	1090	12	0.267	1.63	0.62	3.04	2.98		1970	260	36 0 800	0.71	-0.83	2.44	2.42
1973	937	13	0.289	1.58	0.56	2.97	2.95	X	105/	200	37 0 822	0.67	_0.05	2.72	2.55
1975	855	14	0.311	1.53	0.49	2.93	2.92	*20'	10/2	242	28 0 844	0.05	0.91	2.50	2.50
1952	804	15	0.333	1.48	0.43	2.91	2.90	atto	1040	107		0.50	1 00	2.54	2.55
1938	719	16	0.356	1.44	0.37	2.86	2.88	10	1948	197	39 0.807	0.55	-1.08	2.50	2.25
1957	716	17	0.378	1.40	0.31	2.86	2.85		1904	140	40 0.889	0.49	-1.19	2.21	2.25
1974	714	18	0.400	1.35	0.25	2.85	2.83		1922	140	41 0.911	0.43	-1.30	2.15	2.20
1960	671	19	0.422	1.31	0.20	2.83	2.81		1939	140	42 0.933	0.37	-1.43	2.15	2.15
									1963	116	43 0.956	0.30	-1.60	2.06	2.08

1956 49 44 0.978 0.21 -1.83 1.69 1.99

RELIABILITY OF ANALYSIS

Confidence Limits: Statistical estimate often presented with a range, or confidence interval within which the true value can be expected to lie.

Confidence Level β

 z_{lpha} is the standard normal variable with exceedence probability lpha

Problem: Determine 90% confidence limits for the 100 year discharge using the following data

Logarithmic mean =3.639, standard deviation = 0.4439, coefficient of skewedness = -0.64 for 16 years of data

Solution:

 $\beta = 0.9$ $\alpha = 0.05$

 z_{α} has the exceedence probability of 0.05. This cumulative probability is 0.95.

 $K_{T,\alpha}^{U} = \frac{K_T + \sqrt{K_T^2 - ab}}{a} = \frac{1.843 + \sqrt{1.843^2 - ab}}{a} = 2.7714$ $z_{\alpha} = 1.645$ $a = 1 - \frac{z_{\alpha}^{2}}{2(n-1)} = 1 - \frac{1.645^{2}}{2(16-1)} = 0.909799$ $b = K_{T}^{2} - \frac{z_{\alpha}^{2}}{n} = 1.843^{2} - \frac{1.645^{2}}{16} = 3.227522$ $K_{T,\alpha}^{L} = \frac{K_{T} - \sqrt{K_{T}^{2} - ab}}{a} = \frac{1.843 - \sqrt{1.843^{2} - ab}}{a} = 1.2804$ $U_{T,\alpha} = \bar{v} + s K^{U} - 2.020$ $U_{T,\alpha} = \bar{y} + s_y K^U_{T,\alpha} = 3.639 + 0.4439 \times 2.7714 = 4.869225$ $L_{T,\alpha} = \bar{y} + s_y K_{T,\alpha}^L = 3.639 + 0.4439 \times 1.2804 = 4.207211$

Testing the Goodness of Fit

χ^2 test is used to test the goodness of fitting

 $\chi^{2} = \sum_{i=1}^{m} \frac{n[f_{s}(x_{i}) - p(x_{i})]^{2}}{p(x_{i})}$

Where *m* is the number of interval

 $nf_s(x_i)$ is the observed number of occurrence and $np(x_i)$ is the corresponding expected number of occurrence in the interval *i*.

For describing χ^2 test, χ^2 probability distribution must be defined

$$f(x) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{\frac{k}{2} - 1} e^{-x/2}$$

 $F(x) = \frac{1}{\Gamma(k/2)} \gamma(k/2, x/2)$

Degree of freedom v = m - p - 1

TABLE IV

Chi-Square (χ^2) Distribution

Area to the Right of Critical Value

	Degrees of													
	Freedom	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01					
	1 2 3 4 5	0.020 0.115 0.297 0.554	0.001 0.051 0.216 0.484 0.831	0.004 0.103 0.352 0.711 1.145	0.016 0.211 0.584 1.064 1.610	2.706 4.605 6.251 7.779 9.236	3.841 5.991 7.815 9.488 11.071	5.024 7.378 9.348 11.143 12.833	6.635 9.210 11.345 13.277 15.086					
	6	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812					
	7	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475					
	8	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090					
	9	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666					
	10	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209					
	11	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725					
	12	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217					
	13	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688					
	14	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141					
	15	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578					
	16	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000					
	17	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409					
	18	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805					
	19	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191					
	20	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566					
	21	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932					
	22	9.542	10.982	12.338	14.042	30.813	33.924	36.781	40.289					
	23	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638					
	24	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980					
	25	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314					
3	26	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642					
	27	12.879	14.573	16.151	18.114	36.741	40.113	43.194	46.963					
	28	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278					
	29	14.257	16.047	17.708	19.768	39.087	42.557	45.722	49.588					
	30	14.954	16.791	18.493	20.599	40.256	43.773	46.979	50.892					

Check the goodness of fit on Normal Distribution	Interval	Range	n_i
	1	20	1
	2	25	2
F(z) = B for $z < 0$	3	30	6
	4	35	14
$F(z) = 1 - B$ for $z \ge 0$	5	40	11
	6	45	16
$B = \frac{1}{2} [1 + 0.196854 z + 0.115194 z ^{2} + 0.000344 z ^{3} + 0.019527 z ^{4}]^{-4}$	7	50	10
	8	55	5
riva	9	60	3
chars	10	65	1
attac			69
Bha	Mean	39.77	
	SD	9.17	
Rai			

Interval	Range	n_i	$f_s(x_i)$	$F_s(x_i)$	Zi	В	$F(x_i)$	$p(x_i)$	χ^2				
1	20	1	0.0145	0.0145	-2.1559	0.0154	0.0154	0.0154	0.004084				
2	25	2	0.0290	0.0435	-1.6107	0.0535	0.0535	0.0380	0.147864				
3	30	6	0.0870	0.1304	-1.0654	0.1436	0.1436	0.0901	0.007632				
4	35	14	0.2029	0.3333	-0.5202	0.3012	0.3012	0.1577	0.895245				
5	40	11	0.1594	0.4928	0.0251	0.4901	0.5099	0.2087	0.801553				
6	45	16	0.2319	0.7246	0.5703	0.2840	0.7160	0.2061	0.22287				
7	50	10	0.1449	0.8696	1.1156	0.1325	0.8675	0.1515	0.01965	3			
8	55	5	0.0725	0.9420	1.6609	0.0482	0.9518	0.0843	0.115501				
9	60	3	0.0435	0.9855	2.2061	0.0136	0.9864	0.0346	0.159163				
10	65	1	0.0145	1.0000	2.7514	0.0032	0.9968	0.0104	0.108361				
		69	1						2.481923				
Mean	39.77												
SD	9.17				- 20 2 4	-							
Deg	Degree of freedom $v = m - p - 1 = 10 - 2 - 1 = 7$ $\chi^2_{7,1-0.95} = 14.067$												

 $z_i = \frac{x_i - \pi}{\sigma}$

Since $\chi^2_{7,1-0.95}$ is greater than χ^2_c , the null hypothesis can not be rejected