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Probabilistic Approach:

A random variable X is a variable described by a probability distribution.

 The distribution specifies the chance that an observation x of the variable will fall in a specific range of X.

 A set of observations n1, n2, n3,…………., nn of the random variable is called a sample.

 It is assumed that samples are drawn from a hypothetical infinite population possessing constant statistical

properties.

 Properties of sample may vary from one sample to others.

The probability P (A) of an event is the chance that it will occur when an observation of the random variable is made.

𝑃(𝐴) = lim
𝑛→∞

𝑛𝐴

𝑛

nA --- number in range of event A.

n----- Total observations

1. Total Probability

𝑃 𝐴1 + 𝑃 𝐴2 + 𝑃 𝐴3 +. . ……………+ 𝑃(𝐴𝑛) = 𝑃(Ω) = 1

1. Complementarity

𝑃 𝐴 = 1 − 𝑃(𝐴)

1. Conditional Probability

𝑃
𝐵

𝐴
=

𝑃(𝐴∩𝐵)

𝑃(𝐴)



B will occur provided A has already occurred.

Joint Probability

𝑃 𝐴 ∩ 𝐵 = 𝑃(𝐴)𝑃(𝐵)

Example:

The probability that annual precipitation will be less than 120 mm is 0.333. What is the probability that there will be

two successive year of precipitation less than 120 mm.

P(R<35) = 0.333

P(C) = 0.3332 =0.111
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Frequency Histogram

Relative Frequency:

𝑓𝑠 𝑥𝑖 =
𝑛𝑖

𝑛

Which is equivalent to 𝑃 𝑥𝑖 − ∆𝑥 ≤ 𝑋 ≤ 𝑥𝑖 , the probability that the random variable X will lie in the interval [𝑥𝑖 −

∆𝑥,𝑥𝑖]

Cumulative Frequency Function:

𝐹𝑠 𝑥𝑖 =  

𝑗=1

𝑖

𝑓𝑠 𝑥𝑗

This is estimated as 𝑃 𝑋 ≤ 𝑥𝑖 , the cumulative probability of xi.

This is estimated for sample data, corresponding function for population will be



Probability density Function:

𝑓 𝑥 = lim
𝑛→∞
∆𝑥→0

𝑓𝑠(𝑥)

∆𝑥

Probability Distribution Function:

𝐹 𝑥 = lim
𝑛→∞
∆𝑥→0

𝐹𝑠 𝑥

Whose derivative is the probability density function

𝑓 𝛾 =
𝑑𝐹 𝛾

𝑑𝑥



The cumulative probability as 𝑃 𝑋 ≤ 𝑥 , can be expressed as

𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 =  

−∞

𝑥

𝑓 𝑢 𝑑𝑢

𝑃 𝑥𝑖 = 𝑃 𝑥𝑖 − ∆𝑥 ≤ 𝑋 ≤ 𝑥𝑖

=  

𝑥𝑖−∆𝑥

𝑥𝑖

𝑓 𝑥 𝑑𝑥

=  

−∞

𝑥𝑖

𝑓 𝑥 𝑑𝑥 −  

−∞

𝑥𝑖−∆𝑥

𝑓 𝑥 𝑑𝑥

=𝐹 𝑥𝑖 − 𝐹 𝑥𝑖 − ∆𝑥

=𝐹 𝑥𝑖 − 𝐹 𝑥𝑖−1



Sample

Pxi

fsxi

∆x
x xi

Population

Fsxi

x

Fsxi

dF(x)

dx



Probability density function

𝑓(𝑥)

𝑥

𝐹(𝑥)

𝑥

𝑓 𝑥 =
1

2𝜋
𝑒𝑥𝑝 −

𝑥 − 𝜇 2

2𝜎2

𝑓 𝑧 =
1

2𝜋
𝑒𝑥𝑝 −

𝑧2

2 𝑧 =
𝑥 − 𝜇

𝜎

𝐹 𝑧 =  

−∞

𝑧
1

2𝜋
𝑒−𝑢2/2𝑑𝑢

−∞ ≤ 𝑧 ≤ ∞



𝐹 𝑧 =  

−∞

𝑧
1

2𝜋
𝑒−𝑢2/2𝑑𝑢

Cumulative probability of standard normal distribution

𝐵 =
1

2
1 + 0.196854 𝑧 + 0.115194 𝑧 2 + 0.000344 𝑧 3 + 0.019527 𝑧 4 −4

𝐹 𝑧 = 𝐵 for 𝑧 < 0

𝐹 𝑧 = 1 − 𝐵 for 𝑧 ≥ 0



Ex. What is the probability that the standard normal random variable 𝑧 will be less than -2? Less than 1? 
What is 𝑃 −2 < 𝑍 < 1 ?

𝑃 𝑍 < −2 = 𝐹 −2 = 1 − 𝐹 2 = 1 − 0.9772 = 0.228

Solution

𝑃 𝑍 < 1 = 𝐹 1 = 0.8413

𝑃 −2 < 𝑍 < 1 = 𝐹 1 − 𝐹 2 = 0.841 − 0.023 = 0.818



Example 2:

The annual runoff of a stream is modeled by a normal distribution with mean and standard deviation of 5000 and 1000 ha-m

respectively.

i. Find the probability that the annual runoff in any year is more than 6500 ha-m.

ii. Find the probability that it would be between 3800 and 5800 ha-m.

Solution:

Let X is the random variable denoting the annual runoff. Then z is given by

𝑧 =
(𝑋−5000)

1000
N (0, 1)

(i) P (X≥6500) = P (z ≥
(6500−5000)

1000
)

= P (z≥1.5)

= 1-P (z≤1.5)

= 1- F (1.5)

F (1.5) = 0.9332

P (X≥6500) =1-0.9332 = 0.0688

P (X≥6500) =0.0688



(ii) P (3800≤X≤5800)

= P [
(3800−5000)

1000
≤ 𝑧 ≤ P

(5800−5000)

1000
]

= P [-1.2≤z≤0.8]

= F (0.8)-F (-1.2)

= F (0.8)-[1-F (1.2)]

=0.7881-(1-0.8849)

=0.673



Statistical parameter

Expected value

It is the first moment about the origin of the random 
variable, a measure of the midpoint or central tendency of 
the distribution 

The sample estimate of the mean is the average 

The variability of data is measured by the variance 𝜎2

𝐸 𝑥 − 𝜇 2 = 𝜎2 =  

−∞

∞

𝑥 − 𝜇 2𝑓 𝑥 𝑑𝑥

𝐸 𝑥 = 𝜇 =  

−∞

∞

𝑥𝑓 𝑥 𝑑𝑥

 𝑥 =
1

𝑛
 

𝑖=1

𝑛

𝑥𝑖

The sample estimate of the variance is given by 𝑠2 =
1

𝑛 − 1
 

𝑖=1

𝑛

𝑥𝑖 −  𝑥 2



A symmetry of distribution about the mean is a measured by the skewness. This is the third moment about 
the mean

𝐸 𝑥 − 𝜇 3 =  

−∞

∞

𝑥 − 𝜇 3𝑓 𝑥 𝑑𝑥

The coefficient of skewness 𝛾 is defined as

𝛾 =
1

𝜎3
𝐸 𝑥 − 𝜇 3

A sample estimate for 𝛾 is given by

𝐶𝑠 =
𝑛  𝑖=1

𝑛 𝑥𝑖 −  𝑥 3

(𝑛 − 1)(𝑛 − 2)𝑠3



Fitting a probability distribution

A probability distribution is a function representing the probability of occurrence of a random variable.  

By fitting a distribution function, we can extract the probabilistic information of the random variable 

Fitting distribution can be achieved by the method of moments and the method of maximum likelihood

Method of moments

Karl Pearson (27 March 
1857 – 27 April 1936) was 
an English mathematician

Developed by Karl Pearson in 1902

He considered that good estimate of the parameters of a 
probability distribution are those for which moments of 
the probability density function about the origin are 
equal to the corresponding moments of the sample data



𝐸 𝑥 − 𝜇 2 = 𝜎2 =  

−∞

∞

𝑥 − 𝜇 2𝑓 𝑥 𝑑𝑥

𝐸 𝑥 = 𝜇 =  

−∞

∞

𝑥𝑓 𝑥 𝑑𝑥 =  𝑥 =
1

𝑛
 

𝑖=1

𝑛

𝑥𝑖

= 𝑠2 =
1

𝑛 − 1
 

𝑖=1

𝑛

𝑥𝑖 −  𝑥 2

𝐸 𝑥 − 𝜇 3 =  

−∞

∞

𝑥 − 𝜇 3𝑓 𝑥 𝑑𝑥 =
𝑛  𝑖=1

𝑛 𝑥𝑖 −  𝑥 3

(𝑛 − 1)(𝑛 − 2)

The moments are



Method of moments

Developed by R A Fisher in 1922 Sir Ronald Aylmer 
Fisher (17 February 1890 –
29 July 1962), known as 
R.A. Fisher, was an English
statistician, evolutionary
biologist, mathematician,
geneticist, and eugenicist.

He reasoned that the best value of a parameter of a 
probability distribution should be that value which 
maximizes the likelihood of joint probability of 
occurrence of the observed sample

Suppose that the sample space is divided into 
intervals of length 𝑑𝑥 and that a sample of 
independent and identically distributed 
observations 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 is taken

The value of the probability density for 𝑋 = 𝑥𝑖 is 
𝑓(𝑥𝑖)

The probability that the random variable will occur 
in that interval including 𝑥𝑖 is 𝑓 𝑥𝑖 𝑑𝑥



Since the observation is independent, their joint probability of occurrence is 

𝑓 𝑥1 𝑑𝑥𝑓 𝑥2 𝑑𝑥𝑓 𝑥3 𝑑𝑥 …𝑓 𝑥𝑛 𝑑𝑥 =  

𝑖=1

𝑛

𝑓(𝑥𝑖)𝑑𝑥𝑛

𝑀𝑎𝑥 𝐿 =  

𝑖=1

𝑛

𝑓(𝑥𝑖)

Since 𝑑𝑥 is fixed, we can maximize

𝑀𝑎𝑥 𝑙𝑛𝐿 =  

𝑖=1

𝑛

𝑙𝑛𝑓(𝑥𝑖)



Example: The exponential distribution can be used to describe various kinds of hydrological data, such as 

inter arrival times of rainfall events. Its probability density function is 𝑓 𝑥 = 𝜆𝑒−𝜆𝑥 for 𝑥 > 0. Determine 
the relationship between the parameter 𝜆 and the first moment about the origin 𝜇.   

Solution:

𝜇 = 𝐸 𝑥 =  

−∞

∞

𝑥𝑓 𝑥 𝑑𝑥

=  

−∞

∞

𝑥𝜆𝑒−𝜆𝑥𝑑𝑥

𝜇 =
1

𝜆

Method of moments

Method of maximum likelihood

𝑙𝑛𝐿 =  

𝑖=1

𝑛

𝑙𝑛𝑓(𝑥𝑖)

𝑙𝑛𝐿 =  

𝑖=1

𝑛

𝑙𝑛 𝜆𝑒−𝜆𝑥𝑖

𝑙𝑛𝐿 =  

𝑖=1

𝑛

𝑙𝑛𝜆 − 𝜆𝑥𝑖

𝑙𝑛𝐿 = 𝑛𝑙𝑛𝜆 − 𝜆  

𝑖=1

𝑛

𝑥𝑖

𝜕𝑙𝑛𝐿

𝜕𝜆
=

𝑛

𝜆
−  

𝑖=1

𝑛

𝑥𝑖 = 0

1

𝜆
=

1

𝑛
 

𝑖=1

𝑛

𝑥𝑖

𝜆 =
1

 𝑥







Exponential, Pearson type III, Log-Pearson type III 

Normal family Normal, lognormal, lognormal-III

Generalized extreme value family EV1 (Gumbel), GEV, and EVIII (Weibull) 

Exponential/Pearson type family



𝑓 𝑥 =
1

𝜎 2𝜋
𝑒

−
1
2

𝑥−𝜇
𝜎

2

−∞ ≤ 𝑥 ≤ +∞
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Normal Distribution



𝑓 𝑦 =
1

𝜎𝑦 2𝜋
𝑒

−
1
2

𝑦−𝜇𝑦

𝜎𝑦

2

𝑥 > 0 and 𝑦 = ln(𝑥)

Log-Normal Distribution
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Extreme value (EV) distributions

• Extreme values – maximum or minimum values of sets of data

• Annual maximum discharge, annual minimum discharge

• When the number of selected extreme values is large, the distribution 
converges to one of the three forms of EV distributions called Type I, 
II and III 



EV type I distribution
If M1, M2…, Mn be a set of daily rainfall or streamflow, and let X = 
max(Mi) be the maximum for the year. If Mi are independent and 
identically distributed, then for large n, X has an extreme value type I 
or Gumbel distribution.

Distribution of annual maximum stream flow follows an EV1 distribution
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0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x
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=1

=2

=3

=4

𝑓 𝑥 =
1

𝛽
𝑒− 𝑦+𝑒−𝑦

𝑦 =
𝑥 − 𝜇

𝛽

𝜇 =  𝑥 − 0.5772𝛽 𝛽 =
6𝑆𝑥

𝜋



EV type III distribution
If Wi are the minimum stream flows in different days of the year, 
let X = min(Wi) be the smallest.  X can be described by the EV type 
III or Weibull distribution.

Distribution of low flows (eg. 7-day min flow) follows EV3 distribution.
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x
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𝑘

𝜆

𝑥

𝜆

𝑘−1

𝑒
−

𝑥
𝜆

𝑘

𝑥 > 0, 𝜆, 𝑘 > 0



Exponential distribution

Poisson process – a stochastic process in 
which the number of events occurring in two 
disjoint subintervals are independent 
random variables. 

In hydrology, the interarrival time (time 
between stochastic hydrologic events) is 
described by exponential distribution 

x

1
 xexf x     ;0)(

Interarrival times of polluted runoffs, rainfall intensities, etc are described by exponential distribution.
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Gamma Distribution
• The time taken for a number of events (b) in a Poisson process is described by the gamma 

distribution

• Gamma distribution – a distribution of sum of b independent and identical exponentially 
distributed random variables. 

Skewed distributions (eg. hydraulic conductivity) can be represented using gamma without 
log transformation.

function gamma   x
ex

xf
x







;0
)(

)(
1



 



Pearson Type III 

Named after the statistician Pearson, it is also called three-parameter gamma 
distribution. A lower bound is introduced through the third parameter (e)  

function gamma   x
ex

xf
x









;
)(

)(
)(

)(1

e


e e

It is also a skewed distribution first applied in hydrology for describing 
the pdf of annual maximum flows.



Log-Pearson Type III

If log X follows a Person Type III distribution, then X is said to have a log-
Pearson Type III distribution

e


e e









x log y
ey

xf
y

)(

)(
)(

)(1
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Frequency analysis for extreme events 








5772.0
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expexp
1
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T
y

xP(xp    wherepxFy

yxF

T

T

1
1lnln

))1ln(ln)(lnln

)exp(exp)(

If you know T, you can find 𝑦𝑇, and once 𝑦𝑇 is know, 𝑥𝑇 can be computed by 

TT yux 

Q. Find a flow (or any other event)  that has a return period of T years

EV1 pdf and cdf

Define a reduced variable y
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Example 01

Given annual maxima for 10-minute storms. The mean and standard deviation are 0.649 in and 0.177 in.

Find 5 & 50 year return period 10-minute storms

138.0
177.0*66





s

569.0138.0*5772.0649.05772.0  xu

ins

inx

177.0

649.0





5.1
15

5
lnln

1
lnln5 







































T

T
y

inyux 78.05.1*138.0569.055  

inx 11.150 
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Normal Distribution
2

2

1

2

1
)(








 


 





x

X exf T
T

T
z

s

xx
K 




szxsKxx TTT 

054.2;02.0
50

1
;50 5050  zKpT

Normal distribution

So the frequency factor for the Normal Distribution is the 
standard normal variate

Example:  50 year return period



𝑃 𝑋 > 𝑥𝑇 =
1

𝑇
=  

𝑥𝑇

∞

𝑓 𝑥 𝑑𝑥

𝑥𝑇
𝜇

𝐾𝑇𝜎

𝑤 = 𝑙𝑛
1

𝑝2

1/2

0 < 𝑝 ≤ 0.5

𝑧 = 𝑤 −
2.515517 + 0.802853𝑤 + 0.010328𝑤2

1 + 1.432788𝑤 + 0.189269𝑤2 + 0.001308𝑤3
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EV-I (Gumbel) Distribution
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Example 02

Given annual maximum rainfall, calculate 5-yr storm using frequency factor





























1
lnln5772.0

6
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T
KT



719.0
15

5
lnln5772.0
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TK

in 0.78      

0.177  0.719  0.649      

sKxx TT









Distribution PDF CDF Range Mean

Normal 1

𝜎 2𝜋
𝑒

−
1
2

𝑥−𝜇
𝜎

2

Or

1

2𝜋
𝑒−

𝑧2

2 , 𝑧 =
𝑥−𝜇

𝜎

 

−∞

𝑥
1

𝜎 2𝜋
𝑒

−
1
2

𝑥−𝜇
𝜎

2

𝑑𝑥
−∞ ≤ 𝑥 ≤ +∞ 𝜇 and 𝜎

Lognormal
𝑦 = ln(𝑥)

1

𝜎𝑦 2𝜋
𝑒

−
1
2

𝑥−𝜇𝑦

𝜎𝑦

2

 

−∞

𝑦
1

𝜎𝑦 2𝜋
𝑒

−
1
2

𝑥−𝜇𝑦

𝜎𝑦

2

𝑑𝑦
−∞ ≤ 𝑦 ≤ +∞
0 ≤ 𝑥 ≤ +∞

𝜇𝑦 and 𝜎𝑦

Extreme value 
Type I
𝑦 = (𝑥 − 𝛽)/𝛼

1

𝛼
𝑒− 𝑦+𝑒−𝑦 𝑒−𝑒−𝑦 −∞ ≤ 𝑥 ≤ +∞ 𝛽 =  𝑥 − 0.5772𝛼

𝛼 =
6𝑆𝑥

𝜋

Extreme value 
Type III

𝛼𝑥𝛼−1𝛽−𝛼𝑒− 𝑥/𝛽 𝛼 1 − 𝑒− 𝑥/𝛽 𝛼 𝑥 ≥ 0 𝛽Γ 1 + 1/𝛼
𝛽 Γ 1 + 2/𝛼



Ex. Annual maximum values of 10 min duration rainfall at some place from 1913 to 1947 are presented in 
Table below. Develop a model for storm rainfall frequency analysis using Extreme Value Type I distribution 
and calculate the 5, 10, and 50 year return period maximum values of 10 min rainfall of the area. 

Year 1910 1920 1930 1940

0 0.53 0.33 0.34

1 0.76 0.96 0.70

2 0.57 0.94 0.57

3 0.49 0.80 0.80 0.92

4 0.66 0.66 0.62 0.66

5 0.36 0.68 0.71 0.65

6 0.58 0.68 1.11 0.63

7 0.41 0.61 0.64 0.60

8 0.47 0.88 0.52

9 0.74 0.49 0.64

Mean 0.649 SD 0.177

Solution

𝛼 =
6𝑠

𝜋
=

6 × 0.177

𝜋
= 0.138

𝑢 =  𝑥 − 0.5772𝛼 = 0.649 − 0.5772 × 0.138 = 0.569 
    























T
y

xP(xp    wherepxFy

yxF

T

T

1
1lnln

))1ln(ln)(lnln

)exp(exp)(
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𝐾𝑇 = −
6

𝜋
0.5772 + 𝑙𝑛 𝑙𝑛

5

5 − 1
= 0.719

𝑥𝑇 =  𝑥 + 𝐾𝑇𝑠 = 0.649 + 0.719 × 0.177 = 0.78



LOG – PEARSON TYPE III DISTRIBUTION

𝑦 = log(𝑥)

Calculate mean  𝑦, standard deviation 𝑠𝑦 and the coefficient of skewness 𝐶𝑠

The value of z can be calculated using the procedure described earlier.





Ex. Calculate the 5 and 50 year return period maximum discharge of the Guadalupe River, Texas using 
lognormal and Log-Pearson Type III distribution.

Year 1930 1940 1950 1960 1970

0 55900 13300 23700 9190

1 58000 12300 55800 9740

2 56000 28400 10800 58500

3 7710 11600 4100 33100

4 12300 8560 5720 25200

5 38500 22000 4950 15000 30200

6 179000 17900 1730 9790 14100

7 17200 46000 25300 70000 54500

8 25400 6970 58300 44300 12700

9 4940 20600 10100 15200

SOLUTION

 𝑦 = 4.2743 𝑠𝑦 = 0.4027 𝐶𝑠 = −0.0696

𝐾50 for 𝐶𝑠 = 0 is 2.054

𝑦50 =  𝑦 + 𝐾50𝑠𝑦

= 4.2743 + 2.054 × 0.4027 = 5.101

𝑥50 = 10 5.101 = 126300 𝑐𝑓𝑠

𝑥5 = 41060 𝑐𝑓𝑠

Lognormal Distribution



Log-Pearson Type III Distribution

𝐾50 = 2.054 +
2.0 − 2.054

−0.1 − 0
−0.0696 − 0 = 2.016

𝑦50 =  𝑦 + 𝐾50𝑠𝑦 = 4.2743 + 2.016 × 0.4027 = 5.0863

𝑥50 = 10 5.0863 = 121990 𝑐𝑓𝑠

𝑥5 = 41170 𝑐𝑓𝑠



PLOTING POSITIONS

Plotting position refers to the probability value assigned to each piece of data to be plotted

𝑃 𝑋 ≥ 𝑥𝑚 =
𝑚

𝑛
California’s formula

𝑃 𝑋 ≥ 𝑥𝑚 =
𝑚 − 1

𝑛
Modified formula

𝑃 𝑋 ≥ 𝑥𝑚 =
𝑚 − 0.5

𝑛
Hazen (1930) formula

𝑃 𝑋 ≥ 𝑥𝑚 =
𝑚 − 0.3

𝑛 + 0.4
Chegodayev’s formula

𝑃 𝑋 ≥ 𝑥𝑚 =
𝑚

𝑛 + 1
Weibull formula

𝑃 𝑋 ≥ 𝑥𝑚 =
𝑚 − 𝑏

𝑛 + 1 − 2𝑏

𝑏 = 0.5 For Hazen (1930) formula

𝑏 = 0.3 For Chegodayev’s formula

𝑏 = 0 For Weibull formula

𝑏 = 3/8 For Blom’s formula

𝑏 = 1/3 For Tukey’s formula

𝑏 = 0.44 For Gringorten’s formula
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1936 5069 1 0.022 2.76 2.01 3.70 3.54
1967 1982 2 0.044 2.50 1.70 3.30 3.41
1972 1657 3 0.067 2.33 1.50 3.22 3.33
1958 1651 4 0.089 2.20 1.35 3.22 3.27
1941 1642 5 0.111 2.10 1.22 3.22 3.22
1942 1586 6 0.133 2.01 1.11 3.20 3.17
1940 1583 7 0.156 1.93 1.01 3.20 3.13
1961 1580 8 0.178 1.86 0.92 3.20 3.10
1977 1543 9 0.200 1.79 0.84 3.19 3.07
1947 1303 10 0.222 1.73 0.76 3.11 3.03
1968 1254 11 0.244 1.68 0.69 3.10 3.00
1935 1090 12 0.267 1.63 0.62 3.04 2.98
1973 937 13 0.289 1.58 0.56 2.97 2.95
1975 855 14 0.311 1.53 0.49 2.93 2.92
1952 804 15 0.333 1.48 0.43 2.91 2.90
1938 719 16 0.356 1.44 0.37 2.86 2.88
1957 716 17 0.378 1.40 0.31 2.86 2.85
1974 714 18 0.400 1.35 0.25 2.85 2.83
1960 671 19 0.422 1.31 0.20 2.83 2.81

1945 623 20 0.444 1.27 0.14 2.79 2.78
1949 583 21 0.467 1.23 0.08 2.77 2.76
1946 507 22 0.489 1.20 0.03 2.70 2.74
1937 487 23 0.511 1.16 -0.03 2.69 2.72
1969 430 24 0.533 1.12 -0.08 2.63 2.69
1965 425 25 0.556 1.08 -0.14 2.63 2.67
1976 399 26 0.578 1.05 -0.20 2.60 2.65
1950 377 27 0.600 1.01 -0.25 2.58 2.62
1978 360 28 0.622 0.97 -0.31 2.56 2.60
1944 348 29 0.644 0.94 -0.37 2.54 2.58
1951 348 30 0.667 0.90 -0.43 2.54 2.55
1953 328 31 0.689 0.86 -0.49 2.52 2.53
1962 306 32 0.711 0.83 -0.55 2.49 2.50
1959 286 33 0.733 0.79 -0.62 2.46 2.48
1966 277 34 0.756 0.75 -0.68 2.44 2.45
1971 276 35 0.778 0.71 -0.75 2.44 2.42
1970 260 36 0.800 0.67 -0.83 2.42 2.39
1954 242 37 0.822 0.63 -0.91 2.38 2.36
1943 218 38 0.844 0.58 -0.99 2.34 2.33
1948 197 39 0.867 0.53 -1.08 2.30 2.29
1964 162 40 0.889 0.49 -1.19 2.21 2.25
1955 140 41 0.911 0.43 -1.30 2.15 2.20
1939 140 42 0.933 0.37 -1.43 2.15 2.15
1963 116 43 0.956 0.30 -1.60 2.06 2.08
1956 49 44 0.978 0.21 -1.83 1.69 1.99



1.50

2.00

2.50

3.00

3.50

4.00

0.0020.2020.4020.6020.802

Lo
g(

Q
)

Exceedence probability



RELIABILITY OF ANALYSIS

Confidence Limits: Statistical estimate often presented with a range, or confidence interval within which the true value 
can be expected to lie.

Confidence Level 𝛽

Significant Level 𝛼 𝛼 =
1 − 𝛽

2
i.e. is 𝛽 = 90%, then 𝛼 = 0.05

For a return period 𝑇, the upper limit 𝑈𝑇,𝛼 and lower limit 𝐿𝑇,𝛼 may be specified as

𝑈𝑇,𝛼 =  𝑦 + 𝑠𝑦𝐾𝑇,𝛼
𝑈

𝑈𝑇,𝛼 =  𝑦 + 𝑠𝑦𝐾𝑇,𝛼
𝐿

𝐾𝑇,𝛼
𝑈 =

𝐾𝑇 + 𝐾𝑇
2 − 𝑎𝑏

𝑎
𝐾𝑇,𝛼

𝐿 =
𝐾𝑇 − 𝐾𝑇

2 − 𝑎𝑏

𝑎

𝑎 = 1 −
𝑧𝛼

2

2 𝑛 − 1
𝑏 = 𝐾𝑇

2 −
𝑧𝛼

2

𝑛

𝑧𝛼 is the standard normal variable with exceedence probability 𝛼



Problem: Determine 90% confidence limits for the 100 year discharge using the following data

Logarithmic mean =3.639, standard deviation = 0.4439, coefficient of skewedness = -0.64 for 16 years of data 

𝛽 = 0.9 𝛼 = 0.05

Solution:

𝑧𝛼has the exceedence probability of 0.05. This cumulative probability is 0.95.

𝑧𝛼 = 1.645

Considering log-normal distribution, the 𝐾100 = 1.843

𝑎 = 1 −
𝑧𝛼

2

2 𝑛 − 1
= 1 −

1.6452

2 16 − 1
= 0.909799

𝑏 = 𝐾𝑇
2 −

𝑧𝛼
2

𝑛
= 1.8432 −

1.6452

16
= 3.227522

𝐾𝑇,𝛼
𝑈 =

𝐾𝑇 + 𝐾𝑇
2 − 𝑎𝑏

𝑎
=

1.843 + 1.8432 − 𝑎𝑏

𝑎
= 2.7714

𝐾𝑇,𝛼
𝐿 =

𝐾𝑇 − 𝐾𝑇
2 − 𝑎𝑏

𝑎
=

1.843 − 1.8432 − 𝑎𝑏

𝑎
= 1.2804

𝑈𝑇,𝛼 =  𝑦 + 𝑠𝑦𝐾𝑇,𝛼
𝑈 = 3.639 + 0.4439 × 2.7714 = 4.869225

𝐿𝑇,𝛼 =  𝑦 + 𝑠𝑦𝐾𝑇,𝛼
𝐿 = 3.639 + 0.4439 × 1.2804 = 4.207211



Testing the Goodness of Fit 

𝜒2 test is used to test the goodness of fitting

𝜒2 =  

𝑖=1

𝑚
𝑛 𝑓𝑠 𝑥𝑖 − 𝑝 𝑥𝑖

2

𝑝 𝑥𝑖
Where 𝑚 is the number of interval

𝑛𝑓𝑠 𝑥𝑖 is the observed number of occurrence and 𝑛𝑝 𝑥𝑖 is 
the corresponding expected number of occurrence in the 
interval 𝑖.

For describing 𝜒2 test, 𝜒2 probability distribution must be defined 

𝑓 𝑥 =
1

2𝑘/2Γ 𝑘/2
𝑥

𝑘
2−1𝑒−𝑥/2

F 𝑥 =
1

Γ 𝑘/2
𝛾 𝑘/2, 𝑥/2



Degree of freedom 𝑣 = 𝑚 − 𝑝 − 1



Check the goodness of fit on Normal Distribution Interval Range 𝑛𝑖

1 20 1

2 25 2

3 30 6

4 35 14

5 40 11

6 45 16

7 50 10

8 55 5

9 60 3

10 65 1

69

Mean 39.77

SD 9.17

𝐵 =
1

2
1 + 0.196854 𝑧 + 0.115194 𝑧 2 + 0.000344 𝑧 3 + 0.019527 𝑧 4 −4

𝐹 𝑧 = 𝐵 for 𝑧 < 0

𝐹 𝑧 = 1 − 𝐵 for 𝑧 ≥ 0



Interval Range 𝑛𝑖 𝑓𝑠(𝑥𝑖) 𝐹𝑠(𝑥𝑖) 𝑧𝑖 B 𝐹(𝑥𝑖) 𝑝(𝑥𝑖) 𝜒2

1 20 1 0.0145 0.0145 -2.1559 0.0154 0.0154 0.0154 0.004084

2 25 2 0.0290 0.0435 -1.6107 0.0535 0.0535 0.0380 0.147864

3 30 6 0.0870 0.1304 -1.0654 0.1436 0.1436 0.0901 0.007632

4 35 14 0.2029 0.3333 -0.5202 0.3012 0.3012 0.1577 0.895245

5 40 11 0.1594 0.4928 0.0251 0.4901 0.5099 0.2087 0.801553

6 45 16 0.2319 0.7246 0.5703 0.2840 0.7160 0.2061 0.22287

7 50 10 0.1449 0.8696 1.1156 0.1325 0.8675 0.1515 0.01965

8 55 5 0.0725 0.9420 1.6609 0.0482 0.9518 0.0843 0.115501

9 60 3 0.0435 0.9855 2.2061 0.0136 0.9864 0.0346 0.159163

10 65 1 0.0145 1.0000 2.7514 0.0032 0.9968 0.0104 0.108361

69 1 2.481923

Mean 39.77

SD 9.17

Degree of freedom 𝑣 = 𝑚 − 𝑝 − 1 = 10 − 2 − 1 = 7 𝜒7,1−0.95
2 = 14.067

Since 𝜒7,1−0.95
2 is greater than 𝜒𝑐

2, the null hypothesis can not be rejected 

𝑧𝑖 =
𝑥𝑖 − 𝜋

𝜎


