Functions computed by TMs R. Inkulu

— every partial recursive function is Turing computable —

* DTMs can compute basic functions: successor, zero, projection
* proved that composition of functions can be implemented in DTMs

o if f is defined by primitive recursion from Turing computable functions g and h, then we proved f is
Turing computable as well

* unbounded minimalization of a Turing computable total predicate p(x1,...,zy,y) is Turing com-
putable: to solve f(x1,...,2,) = pz[p(x1,...,xn, 2)], successively substitute z = 0, 1,...; com-
putation terminates when the first z for which p(x1,...,z,,2) = 1, with the value of z written on
tape

— every Turing computable function is partial recursive —

nts - -~ nhp
. chp
cte E
S
ntc T
cs
s

[ctc (resp. ntc): Godel number representing nonblank part of the current tape (resp. tape updated); chp (resp. nhp): numerical representation
of current (resp. updated) tape head location; cts (resp. nts): numerical representation of symbol in tape cell pointed by chp (resp. nhp); cs (resp.

ns): numerical representation of current state (resp. new state)]

* assign a unique natural number to each element of I',
* encode every configuration into a Godel numbelﬂ: g = gn(cs, chp, ctc)

it is immediate note
cs = decode(0, g); chp = decode(1, g); cts = decode(decode(1, g), decode(2, g))EI

e suppose §(q, @) = (¢', &', L), 6(q,B8) = (¢", B, R) be the only transitions from ¢, then
ns = eq(cts, a).q' + eq(cts, §).q" + ne(cts, a).ne(cts, 8).cs

corresponding to §(q, o) = (¢, &', L),
nte = quo(cte, primenum(chp)t*). primenum (chp)™*!, where nts is numerical representation
of o

nhp = eq(cs, q).eq(cts, a).(chp—1)+eq(cs, q).eq(cts, 5).(chp+1)+ne(cs, q).ne(cts, a).ne(cts, 3).chp

(assuming these are the only transitions present)

Ygn(zo, ..., zn) = I gprimenum (i)™

2decode(i, ©) = p®z[complsgn(divides(z, primenum(i)*T1))] — 1

http://www.iitg.ac.in/rinkulu/

w|

* initial configuration with tape having string w: con fig(0) = gn(0, 0, HL \primenum (i)®?l+1)
subsequent configurations: con fig(y + 1) = gn(ns(config(y)), nhp(config(y)), ntc(config(y)))

computation terminates after it undergoes pz[eq(con fig(z), config(z + 1))] number of transitions

