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Description
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C(u) per unit length
C(300) + C(100) ≥ C(400)
C(100) ≤ C(300) ≤ C(400)

Given an undirected graph G(V,E) with the following:

length L : E → R+,

k source-sink pairs; each associated with a demand di > 0.
capacity u can be purchased at C(u) per unit length on any edge, and

function C : R+ → R+ is both non-decreasing and subadditive

Find a minimum cost multicommodity unsplittable flow c
(i.e., min

∑
(u,v)∈E C(cuv)luv)

that meets the demands of all the source-sink pairs.
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Lower Bounds

• NP-hard problem —no proof provided

• No O(lg
1
2−ε n) apprx algo possible unless NP ⊆ ZPTIME(npolylog(n))

—not proof provided

Herewith, we design a randomized apprx algo with O(lg n) apprx factor in
expectation.
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Optimal algo when G is a tree
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(1) for each si-ti
(a) for each edge e(u, v) ∈ distG(u, v), mark with e that additional di units of

flow required to be pushed along e

(2) for each edge e in G that is marked, purchase the corresp. capacity at
bulk

in any optimal solution, capacity ce for any edge e must be at least equal to the
summation of demands that e separates
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Algorithm when G is not a tree
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Algorithm when G is not a tree (cont)
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(1) probabilistically approximate metric completion of G(V,E) (w.r.t. L) by
a spanning tree metric T ′(V,E′)

i.e., T ′ such that for any u, v ∈ V ,
distG(u, v) ≤ T ′(u, v) ≤ O(lg n)distG(u, v) (latter in expectation)

(2) solve the problem on T ′
(3) for each si-ti

(a) map each edge in (x, y) ∈ T ′(si, ti) to a shortest path P between x and y in
G

(b) for each edge e ∈ P, mark with e that additional di units of flow required
to be pushed along e

(4) for each edge e in G that was marked, purchase capacity at bulk

(Uniform Buy-at-Bulk Network Design) 7 / 32



Algorithm when G is not a tree (cont)
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Algorithm when G is not a tree (cont)
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Algorithm when G is not a tree (cont)
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Overview of the Analysis
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cost(Gsol) ≤ cost(T ′opt) ≤ cost(T ′sol) ≤ O(lg n)cost(Gopt) in
exp
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• T ′ is chosen s.t. for any u, v ∈ V in G, distG(u, v) ≤ T ′(u, v)

• SPs corresp. to two edges in T ′ may pass through the same edge in G:
subadditive C
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cost(Gsol) ≤ cost(T ′opt) ≤ cost(T ′sol) ≤ O(lg n)cost(Gopt) in
exp
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procedure to obtain T ′sol from Gopt:

• for each edge e(u, v) ∈ G with opt capacity c∗e , mark for all edges along
the unique path between u and v that additional c∗e units of capacity
required to be pushed along e

• buy-at-bulk
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cost(Gsol) ≤ cost(T ′opt) ≤ cost(T ′sol) ≤ O(lg n)cost(Gopt) in
exp (cont)
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• for every edge xy in T ′, if the capacity xy uses in T ′opt is c′xy, then the
capacity xy uses in T ′sol is at least c′xy — this is due to xy in T ′opt is
separating the same demand as xy in T ′sol

• non-decreasing C
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cost(Gsol) ≤ cost(T ′opt) ≤ cost(T ′sol) ≤ O(lg n)cost(Gopt) in
exp: express capacities in T ′sol in terms of Gopt
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cost(Gsol) ≤ cost(T ′opt) ≤ cost(T ′sol) ≤ O(lg n)cost(Gopt) in
exp: express T ′ distances in terms of distances in G
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Apprx factor in expectation

suggested randomized algorithm outputs a solution with apprx factor O(lg n)
in expectation:

costour algo

≤ cost(T ′opt)

≤ cost(T ′sol)

= O(lg n)cost(Gopt) in expectation

Done except for devising a randomized algo to construct a T ′ wherein for any
u, v ∈ V , distG(u, v) ≤ T ′(u, v) ≤ O(lg n)distG(u, v) (latter in expectation)
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Metric Space

A metric space is a pair (X,D) where X is a set and D : X × X → [0,∞) is a
metric satisfying:

• D(x, y) ≥ 0

• D(x, y) = 0 iff x = y

• D(x, y) = D(y, x)

• D(x, y) + D(y, z) ≥ D(x, z) (triangle inequality)

ex. (Rd,Ld
2)

A metric space (X,D) is a finite metric space if |X| is finite.

(Uniform Buy-at-Bulk Network Design) 16 / 32



Metric completion of a graph (a.k.a. graph metric)
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• All pair shortest distance graph G′ corresp. to input graph G is a finite
metric
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Embedding

Let (X,D′) and (Y,D′′) be two (finite) metric spaces. Any one-to-one map
f : X → Y is termed as an embedding.

• An embedding in which no distances shrink is termed as an expansive
embedding.

• distortion of an expansive embedding f is maxx,y∈X
D′′(f (x),f (y))

D′(x,y)

We intend to construct an expansive (distG(u, v) ≤ T(u, v)) tree metric
(V ⊆ V ′,T) corresp. to the graph metric (V, distG) such that
T(u, v) ≤ O(lg n)distG(u, v) in expectation. Further, we enforce V = V ′ by
building a spanning tree metric (V,T ′).
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Hierarchical cut decomposition of the metric (V, distG)
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V

here, ∆ is the smallest power of 2 greater than 2 maxu,v∈V distG(u, v)

• root has the entire V
• each leaf node corresp. to a unique point in V for convenience, let distG(u, v) ≥ 1

• nodes in each level together partition V

let us refer vertices of T as nodes while the vertices of V as points
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Hierarchical cut decomposition is a tree metric

• V ⊆ V ′

• positive edge lengths

• (V ′,T) is an expansive metric
lowest level at which u and v belong to the same is blg2 distG(u, v)c

• what about the distortion?
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Randomized Algorithm to construct (V ′,T)

(1) pick a permutation π of V

(2) pick a random number r0 in [1/2, 1); set radius ri = 2ir0 for all balls at
each level i

(3) root is associated with points in ball B(any point,∆) i.e., V itself

(4) for each node v in each level i (i > 0)

let S be the set of points associated with v
(a) for every j from 1 to n

(i) if S′ = B(π(j), ri−1) ∩ S 6= φ then create a child node to v and associate
points in S′ to it

(ii) S = S− S′

• takes polynomial time
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Algorithm in execution
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shown with filled circles
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Bounding the expected distortion

u v
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q
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• If LCA of u and v is at level i, then T(u, v) ≤ 2i+2.

• E[T(u, v)]

=
∑

w∈V
∑lg ∆−1

i=0 (prob. u ∈ B(w, ri), v /∈ B(w, ri) and B(w, ri) is a
child of q)∗(2i+3) ≤ O(lg n)distG(u, v)

w.l.o.g. suppose u is nearer to w than v

— only intuition behind the proof is given
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Transforming Tree Metric (V ′,T) to a Spanning Tree
Metric (V,T ′)

(1) repeat until there does not exist a vertex pair u,w such that u ∈ V , w /∈ V
and w is the parent of u

(a) contract edge uw

(b) identify merged node with u(∈ V)

(2) multiply the length of every remaining edge by four

— intutively explained why it won’t change the bounds on T ′(u, v)
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Example specializations of uBatB

• Steiner tree problem: Given a non-negative edge-weighted connected
undirected graph G(V,E) together with a set S ⊆ V , find a minimum
cost tree in G that spans all vertices in S and any subset of Steiner
vertices V − S.

• Generalized Steiner forest problem: Given an undirected graph G(V,E),
∀e∈E we ≥ 0, and k pairs of vertices si, ti ∈ V , find a minimum-cost
subset of edges F ⊆ E such that every si-ti pair is connected in (V,F).

(Uniform Buy-at-Bulk Network Design) 26 / 32



Open problems around uBatB

• reducing the gap between lower and upper bounds

• algorithm with apprx factor O(lg k)

• devising algorithms for special graphs
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Beyond uBatB

• Non-uniform BatB
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Other example applications of tree embeddings

• Group Steiner tree: Given an undirected graph G(V,E) with
c : E → R+, and groups of vertices V1,V2, . . . ,Vk ⊆ V find a minimum
cost subtree of G that contains at least one vertex from each group.

• Communication spanning trees: Given an undirected graph G(V,E) with
nonnegative costs on edges, requirement value rij for every pair i and j,
and the communication cost of a spanning tree T is defined as∑

ij rij ∗ SPT(i,j), find a spanning tree T of minimum communication cost.

And, several networking heuristics that use tree metrics are awaiting
Algorithms.
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Other popular metric embeddings

Let |X| = n, D′ is an arbitrary metric, d denotes the number of dimensions,
and X′ is finite. Then,

• Bourgain’s Theorem:
existence of (X,D′) ↪→O(lg n) (RO(lg2 n),Lp)

• dimension reduction due to the Johnson-Lindenstrauss Lemma:
existence of (X,Ld

2) ↪→(1+ε) (RO(ε−2 lg n),L2)

• Feige’s volume respecting embeddings:
Vol(X) = supf :X→l2 Evol(f (X)) (f requires to be a contraction)

k-distortion of f is supP⊂X,|P|=k(
Vol(P)

Evol(f (P)) )
1

k−1
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Significant theoretical ideas explored

• extended a trivial solution for trees to graphs

• interpreted a graph theoretic problem as a geometric problem

• embedded a finite metric space into a tree metric

• randomized + approximation algortihm

hence, the apprx factor in expectation

• designed an algorithm for a network design problem

uBatB is a generalization of several network design problems
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