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Description

dy = 300 dy = 100

t C(u) per unit length
C(300) + C(100) > C(400)
C(100) < C(300) < C(400)

Given an undirected graph G(V, E) with the following:
length L: E — RT,

k source-sink pairs; each associated with a demand d; > O.

capacity u can be purchased at C(u) per unit length on any edge, and
function C : R — R is both non-decreasing and subadditive

Find a minimum cost multicommodity unsplittable flow ¢
(i.e., min Z(L“V)EE Clew)lw)
that meets the demands of all the source-sink pairs.
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Lower Bounds

® NP-hard problem —no proof provided

* No O(lg>~“n) apprx algo possible unless NP C ZPTIME (n?*b'08())
—not proof provided

Herewith, we design a randomized apprx algo with O(lgn) apprx factor in
expectation.
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Optimal algo when G is a tree

@) for each s;-¢;

(@) for each edge e(u,v) € distg(u,v), mark with e that additional d; units of
flow required to be pushed along e

@ for each edge e in G that is marked, purchase the corresp. capacity at
bulk

in any optimal solution, capacity c, for any edge e must be at least equal to the
summation of demands that e separates
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Algorithm when G is not a tree

e L -
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Algorithm when G is not a tree (cont)
to

S5 W t5
@) probabilistically approximate metric completion of G(V, E) (w.r.t. L) by
a spanning tree metric 7" (V, E’)
i.e., T" such that for any u,v € V,
distg(u,v) < T'(u,v) < O(lgn)distG(u,v) (atter in expectation)
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Algorithm when G is not a tree (cont)

3t2

>Z\/ t5

S5 W
@) probabilistically approximate metric completion of G(V, E) (w.r.t. L) by
a spanning tree metric 7" (V, E’)
i.e., T" such that for any u,v € V,
distg(u,v) < T'(u,v) < O(lgn)distG(u,v) (atter in expectation)
@ solve the problem on 7’
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Algorithm when G is not a tree (cont)

R

S5 W
@ probabilistically approximate metric completion of G(V, E) (w.r.t. L) by
a spanning tree metric 7" (V, E’)
i.e., T" such that for any u,v € V,
distg(u,v) < T'(u,v) < O(lgn)distG(u,v) (atter in expectation)
@ solve the problem on 7’
@3 for each s;-¢;
(a) map each edge in (x,y) € T'(s;, 1;) to a shortest path P between x and y in
G
() for each edge e € P, mark with e that additional d; units of flow required
to be pushed along e
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Algorithm when G is not a tree (cont)

R

S5 W
@ probabilistically approximate metric completion of G(V, E) (w.r.t. L) by
a spanning tree metric 7" (V, E’)
i.e., T" such that for any u,v € V,
distg(u,v) < T'(u,v) < O(lgn)distG(u,v) (atter in expectation)
@ solve the problem on 7’
@3 for each s;-¢;
(a) map each edge in (x,y) € T'(s;, 1;) to a shortest path P between x and y in
G
() for each edge e € P, mark with e that additional d; units of flow required
to be pushed along e
@ for each edge e in G that was marked, purchase capacity at bulk

(Uniform Buy-at-Bulk Network Design) 7/32



Overview of the Analysis

[ Gopt

,,,,,,,,,,,,,,, sol
our algo

) < cost(Tl,;) < O(lgn)cost(Gyy) in exp

sol

cost(our algo) < COSt(Tépt
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cost(Gyp) < COSt(T(I)pl‘
exp

) < cost(T:

sol

) < O(lgn)cost(Gop)

m
52

t%j/t tl

st

e T’ is chosen s.t. for any u,v € V in G, distg(u,v) < T'(u,v)
subadditive C

® SPs corresp. to two edges in 7/ may pass through the same edge in G:
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cost(Gyy) < cost(T, ) < cost(T!

opt sol) < O(Ig n)COSt(Gop;) in
exp

procedure to obtain 77, from G,

o for each edge e(u,v) € G with opt capacity ¢}, mark for all edges along
the unique path between « and v that additional ¢} units of capacity
required to be pushed along e

® buy-at-bulk
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cost(Gyp) < cost(T(’)pt) < cost(T;,;) < O(lgn)cost(G,y) in
exp (cont)

v 4
G U v
* *
o T Cuw ﬂ\/

/
c Ggpt to Tsol W S

® for every edge xy in 7", if the capacity xy uses in T, is c;,, then the

capacity xy uses in T}, is at least ¢}, — this is due to xy in T}, is
separating the same demand as xy in 77,

® non-decreasing C
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T,p) < cost(T;

cost(Gsor) < cost( -~
exp: express capacities in 7|, in terms of G,

uv

) < O(lgn)cost(G,y) in
oY

z
u v
. e
% Gopt t0 Tgy W%

costy
SOl

Z(x,y)eT’ T/(x7 y)C(Z(u,V)EE:()C,y)EMNV inT’ CZV)
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T/

cost(Gyy) < cost( opt

) < cost(T},
exp: express capacities in 7|, in terms of G,

u uv

) < O(lgn)cost(G,y) in
o

z
u v
. e
* Gopt to Tslol WS
ww
costrs

Z(x,y)eT’ T/(x’ y)C(Z(M,V)EE:(X,y)EMNV inT’ CZV)

< Z(x,y)ET’ T’ (x’ y) Z(u,v)éE:(x,y)Euwv inT’ C(C;:v) A SUbadditiVity of C

(Uniform Buy-at-Bulk Network Design)

12/32



T/

cost(Gyy) < cost( opt

) < cost(T},
exp: express capacities in 7|, in terms of G,

u uv

) < O(lgn)cost(G,y) in
o

z
u v
- > > + CZ}Z 9\/
/
w% Gopt to Tsol WS
costyr
Z(x,y)eT’ T/(x’ y)C(Z(M,V)EE:(X,y)EMNV inT’ CZV)
< Z(x,y)eT' T'(x,y) Z(u,v)EE:(x,y)Euwv .7 C(ch,) < subadditivity of C
Z(u,v)EE C(C:v) Z(x,y)Euwv inT’ T/(X, y)
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T/

cost(Gyy) < cost( opt

) < cost(T},
exp: express capacities in 7|, in terms of G,

u uv

) < O(lgn)cost(G,y) in
z
e Y u v
- e
w%zz GOPt to Tslol w1
costyr.

> ewyer T (6 Y)C( (u)ek: (vy)cuvin T/ Ciov)
< Z(J@y)ET' T'(x,y) Z(u,v)eE:(x,y)euw in7 C(c},,) < subadditivity of C
> wner Cn) Xppeumint T (X,)
=2 (uee Clei)T' (1, v)

(Uniform Buy-at-Bulk Network Design)

12/32



T/

cost(Gsor) < cost(T,,

) < cost(T.,;) < O(lgn)cost(G,p) in
exp: express 7’ distances in terms of distances in G

Z(u,v) €E C(CZV)T, (u7 V)

< O(lgn) 3_ ek C(cy)dist(u, v) in expectation
expectation) -

(as T is chosen s.t. for any u,v € Vin G, T'(u,v) < O(lgn)distg(u,v) in
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T/

cost(Gsor) < cost(T,,

) < cost(T.,;) < O(lgn)cost(G,p) in
exp: express 7’ distances in terms of distances in G

Z(u,v) €E C(CZV)T, (u7 V)

< O(lgn) 3_ ek C(cy)dist(u, v) in expectation
(as T is chosen s.t. for any u,v € Vin G, T'(u,v) < O(lgn)distg(u,v) in
expectation)
O(lgn) 3= ee C(

),y in expectation
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T,p) < cost(T;

cost(Gyy) < cost( o
exp: express 7’ distances in terms of distances in G

) < O(lgn)cost(G,y) in

Z(u,v) €E C(CZV)T, (u7 V)

< O(lgn) 3_ ek C(cy)dist(u, v) in expectation
(as T is chosen s.t. for any u,v € Vin G, T'(u,v) < O(lgn)distg(u,v) in
expectation)
< O0(lgn) Z(u Vv)EE C(

),y in expectation
= O(lgn)costg,, in expectation
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Apprx factor in expectation

suggested randomized algorithm outputs a solution with apprx factor O(lg n)
in expectation:

COSTour algo
< cost(T,,,)
< cost(T!,)
= O(lgn)cost(G,p) in expectation

Done except for devising a randomized algo to construct a 7" wherein for any
u,vev, distg(u, V) < T/(M, V) < 0(1g n)distc;(u, v) (latter in expectation)
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2 Tree Metrics
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Metric Space

A metric space is a pair (X,D) where X isasetand D : X x X — [0,00) is a
metric satisfying:

® D(x,y) >0

® D(x,y) =0iffx=1y

® D(x,y) = D(y;x)

® D(x,y) + D(y,z) > D(x, z) (triangle inequality)
ex. (R4, L9)

A metric space (X, D) is a finite metric space if |X| is finite.
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Metric completion of a graph (a.k.a. graph metric)

V1 7 (% U1 4 V9
9
5 3 1 5 1
3
1 12 3 Uy 8 U3
G G

e All pair shortest distance graph G’ corresp. to input graph G is a finite
metric
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Embedding

Let (X,D’) and (Y, D”) be two (finite) metric spaces. Any one-to-one map
f: X — Yistermed as an embedding.

® An embedding in which no distances shrink is termed as an expansive
embedding.

D" (f(x)f(»)
D' (x,y)

e distortion of an expansive embedding f is max, yex
We intend to construct an expansive (distg(u,v) < T(u,v)) tree metric
(V C V', T) corresp. to the graph metric (V, distg) such that
T(u,v) < O(1gn)dist(u,v) in expectation. Further, we enforce V = V' by
building a spanning tree metric (V, T).
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Hierarchical cut decomposition of the metric (V, dist)

lg A Y, APS=r< A

A

1gA-1

©2“<= -

0

here, A is the smallest power of 2 greater than 2 max, ,cvdistc(u, v)
® root has the entire V
® cach leaf node corresp. to a unique point in V' for convenience, let distc (1, v) > 1
® nodes in each level together partition V

let us refer vertices of T as nodes while the vertices of V as points
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Hierarchical cut decomposition is a tree metric

e VCV

® positive edge lengths

(V',T) is an expansive metric

lowest level at which u and v belong to the same is |lg, distg(u, v)]

what about the distortion?
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Randomized Algorithm to construct (V',T)

@ pick a permutation 7 of V

@ pick a random number ry in [1/2,1); set radius r; = 2iry for all balls at
each level i

@ root is associated with points in ball B(any point, A) i.e., V itself
@ for each node v in each level i (i > 0)

let S be the set of points associated with v

(a) foreveryjfrom 1ton

@ if S’ = B(w(j), ri_1) NS # ¢ then create a child node to v and associate
points in §’ to it
@ S=5-5

® takes polynomial time
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Algorithm in execution

<

@
';"}’

points belonging to a tree node are

shown with filled circles
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Bounding the expected distortion

i1
“’/ \1 0
® If LCA of u and v is at level i, then T'(u,v) < 2/+2,
® E[T(u,v)]
=3 v igzﬁfl (prob. u € B(w,r;), v & B(w,r;) and B(w, r;) is a

child of ¢)+(2"+3) < O(lg n)distg(u,v)
w.l.0.g. suppose u is nearer to w than v

— only intuition behind the proof is given
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Transforming Tree Metric (V' T) to a Spanning Tree
Metric (V,T")

@) repeat until there does not exist a vertex pair u, w such thatu € V,w ¢ V
and w is the parent of u

(a) contract edge uw

(b) identify merged node with u(€ V)

2 multiply the length of every remaining edge by four

— intutively explained why it won’t change the bounds on 7" (u, v)
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3 Conclusions

(Uniform Buy-at-Bulk Network Design) 25/32



Example specializations of uBatB

® Steiner tree problem: Given a non-negative edge-weighted connected
undirected graph G(V, E) together with a set S C V, find a minimum
cost tree in G that spans all vertices in S and any subset of Steiner
vertices V — S.

® Generalized Steiner forest problem: Given an undirected graph G(V, E),
Vecew. > 0, and k pairs of vertices s;,¢; € V, find a minimum-cost
subset of edges F C E such that every s;-f; pair is connected in (V, F).
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Open problems around uBatB

® reducing the gap between lower and upper bounds
® algorithm with apprx factor O(lg k)

® devising algorithms for special graphs
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Beyond uBatB

® Non-uniform BatB
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Other example applications of tree embeddings

® Group Steiner tree: Given an undirected graph G(V, E) with
c: E— R*, and groups of vertices Vi, V5, ..., V; C V find a minimum
cost subtree of G that contains at least one vertex from each group.

® Communication spanning trees: Given an undirected graph G(V, E) with
nonnegative costs on edges, requirement value r;; for every pair i and j,
and the communication cost of a spanning tree 7 is defined as
Zij rij * SPr(; j), find a spanning tree 7' of minimum communication cost.

And, several networking heuristics that use tree metrics are awaiting
Algorithms.
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Other popular metric embeddings

Let |X| = n, D' is an arbitrary metric, d denotes the number of dimensions,
and X’ is finite. Then,

® Bourgain’s Theorem:
existence of (X, D’) «—0(&") (RO(lgzn),Lp)

® dimension reduction due to the Johnson-Lindenstrauss Lemma:
existence of (X, L4) «(1+e) (RO *1sn) [,)

® Feige’s volume respecting embeddings:
Vol(X) = sups.x—i, Evol(f (X)) (f requires to be a contraction)

k-distortion of f is SupPCXJP‘:k(#%)ﬁ
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Significant theoretical ideas explored

® extended a trivial solution for trees to graphs
® interpreted a graph theoretic problem as a geometric problem
® embedded a finite metric space into a tree metric

® randomized + approximation algortihm

hence, the apprx factor in expectation

® designed an algorithm for a network design problem

uBatB is a generalization of several network design problems
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