Uniform Buy-at-Bulk Network Design¹

R. Inkulu http://www.iitg.ac.in/rinkulu/

¹slides last updated in 2013

(Uniform Buy-at-Bulk Network Design)

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Outline

1 Buy-at-Bulk Network Design

2 Tree Metrics

3 Conclusions

Description

$$d_1 = 300 \ d_2 = 100$$

 $\begin{array}{l} C(u) \text{ per unit length} \\ C(300) + C(100) \geq C(400) \\ C(100) \leq C(300) \leq C(400) \end{array}$

Given an undirected graph G(V, E) with the following:

length $L: E \to R^+$,

k source-sink pairs; each associated with a demand $d_i > 0$. capacity *u* can be purchased at C(u) per unit length on any edge, and function $C : R^+ \to R^+$ is both *non-decreasing* and *subadditive*

Find a minimum cost multicommodity unsplittable flow c(i.e., $\min \sum_{(u,v) \in E} C(c_{uv}) l_{uv}$) that meets the demands of all the source-sink pairs.

Lower Bounds

- NP-hard problem —no proof provided
- No O(lg^{1/2}^{-ε} n) apprx algo possible unless NP ⊆ ZPTIME(n^{polylog(n)}) —not proof provided

Herewith, we design a randomized apprx algo with $O(\lg n)$ apprx factor in expectation.

Optimal algo when *G* **is a tree**

- (1) for each s_i - t_i
 - (a) for each edge $e(u, v) \in dist_G(u, v)$, mark with *e* that additional d_i units of flow required to be pushed along *e*
- 2) for each edge *e* in *G* that is marked, purchase the corresp. capacity at bulk

in any optimal solution, capacity c_e for any edge e must be at least equal to the summation of demands that e separates

Algorithm when G is not a tree

(1) probabilistically approximate metric completion of G(V, E) (w.r.t. *L*) by a spanning tree metric T'(V, E')

i.e., T' such that for any $u, v \in V$, $dist_G(u, v) \le T'(u, v) \le O(\lg n) dist_G(u, v)$ (latter in expectation)

(1) probabilistically approximate metric completion of G(V, E) (w.r.t. *L*) by a spanning tree metric T'(V, E')

i.e., T' such that for any $u, v \in V$,

 $dist_G(u, v) \le T'(u, v) \le O(\lg n) dist_G(u, v)$ (latter in expectation)

(2) solve the problem on T'

< ロト < 得ト < ヨト

(1) probabilistically approximate metric completion of G(V, E) (w.r.t. *L*) by a spanning tree metric T'(V, E')

i.e., T' such that for any $u, v \in V$,

 $dist_G(u, v) \le T'(u, v) \le O(\lg n) dist_G(u, v)$ (latter in expectation)

- (2) solve the problem on T'
- (3) for each s_i - t_i
 - (a) map each edge in $(x, y) \in T'(s_i, t_i)$ to a shortest path P between x and y in G
 - (b) for each edge e ∈ P, mark with e that additional d_i units of flow required to be pushed along e

(1) probabilistically approximate metric completion of G(V, E) (w.r.t. *L*) by a spanning tree metric T'(V, E')

i.e., T' such that for any $u, v \in V$,

 $dist_G(u, v) \le T'(u, v) \le O(\lg n) dist_G(u, v)$ (latter in expectation)

- (2) solve the problem on T'
- (3) for each s_i - t_i
 - (a) map each edge in $(x, y) \in T'(s_i, t_i)$ to a shortest path P between x and y in G
 - **(b)** for each edge $e \in P$, mark with *e* that additional d_i units of flow required to be pushed along *e*
- (4) for each edge e in G that was marked, purchase capacity at bulk

Overview of the Analysis

 $cost(our \ algo) \le \ cost(T'_{opt}) \le \ cost(T'_{sol}) \le \ O(\lg n)cost(G_{opt}) \ \mbox{in exp}$

 $cost(G_{sol}) \leq cost(T'_{opt}) \leq cost(T'_{sol}) \leq O(\lg n)cost(G_{opt})$ in exp

- T' is chosen s.t. for any $u, v \in V$ in G, $dist_G(u, v) \leq T'(u, v)$
- SPs corresp. to two edges in T' may pass through the same edge in G: *subadditive C*

(Uniform Buy-at-Bulk Network Design)

 $cost(G_{sol}) \leq cost(T'_{opt}) \leq cost(T'_{sol}) \leq O(\lg n)cost(G_{opt})$ in exp

procedure to obtain T'_{sol} from G_{opt} :

- for each edge e(u, v) ∈ G with opt capacity c^{*}_e, mark for all edges along the unique path between u and v that additional c^{*}_e units of capacity required to be pushed along e
- buy-at-bulk

 $cost(G_{sol}) \leq cost(T'_{opt}) \leq cost(T'_{sol}) \leq O(\lg n)cost(G_{opt})$ in exp (cont)

- for every edge xy in T', if the capacity xy uses in T'_{opt} is c'_{xy} , then the capacity xy uses in T'_{sol} is at least c'_{xy} this is due to xy in T'_{opt} is separating the same demand as xy in T'_{sol}
- non-decreasing C

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

$cost_{T'_{sol}}$

$$= \sum_{(x,y)\in T'} T'(x,y) C(\sum_{(u,v)\in E: (x,y)\in u \sim v \text{ in } T'} c_{uv}^*)$$

$cost_{T'_{sol}}$

$$= \sum_{(x,y)\in T'} T'(x,y) C(\sum_{(u,v)\in E:(x,y)\in u\sim v \text{ in } T'} c^*_{uv})$$

$$\leq \sum_{(x,y)\in T'} T'(x,y) \sum_{(u,v)\in E:(x,y)\in u\sim v \text{ in } T'} C(c^*_{uv}) \leftarrow \text{subadditivity of } C$$

 $cost_{T'_{sol}}$

$$= \sum_{(x,y)\in T'} T'(x,y) C(\sum_{(u,v)\in E:(x,y)\in u\sim v \text{ in } T'} c^*_{uv})$$

$$\leq \sum_{(x,y)\in T'} T'(x,y) \sum_{(u,v)\in E:(x,y)\in u\sim v \text{ in } T'} C(c^*_{uv}) \leftarrow \text{subadditivity of } C$$

$$= \sum_{(u,v)\in E} C(c^*_{uv}) \sum_{(x,y)\in u\sim v \text{ in } T'} T'(x,y)$$

 $cost_{T'_{sol}}$

$$= \sum_{(x,y)\in T'} T'(x,y) C(\sum_{(u,v)\in E:(x,y)\in u \sim v \text{ in } T'} c_{uv}^*)$$

$$\leq \sum_{(x,y)\in T'} T'(x,y) \sum_{(u,v)\in E:(x,y)\in u \sim v \text{ in } T'} C(c_{uv}^*) \leftarrow \text{subadditivity of } C$$

$$= \sum_{(u,v)\in E} C(c_{uv}^*) \sum_{(x,y)\in u \sim v \text{ in } T'} T'(x,y)$$

$$= \sum_{(u,v)\in E} C(c_{uv}^*) T'(u,v)$$

(Uniform Buy-at-Bulk Network Design)

(日)

 $cost(G_{sol}) \le cost(T'_{opt}) \le cost(T'_{sol}) \le O(\lg n)cost(G_{opt})$ in exp: express T' distances in terms of distances in G

 $\sum_{(u,v)\in E} C(c_{uv}^*)T'(u,v)$

 $\leq O(\lg n) \sum_{(u,v) \in E} C(c_{uv}^*) dist_G(u,v)$ in expectation

(as T' is chosen s.t. for any $u, v \in V$ in $G, T'(u, v) \leq O(\lg n) dist_G(u, v)$ in expectation)

 $cost(G_{sol}) \le cost(T'_{opt}) \le cost(T'_{sol}) \le O(\lg n)cost(G_{opt})$ in exp: express T' distances in terms of distances in G

 $\sum_{(u,v)\in E} C(c_{uv}^*)T'(u,v)$

 $\leq O(\lg n) \sum_{(u,v) \in E} C(c_{uv}^*) dist_G(u,v)$ in expectation

(as *T'* is chosen s.t. for any $u, v \in V$ in *G*, $T'(u, v) \leq O(\lg n) dist_G(u, v)$ in expectation)

 $\leq O(\lg n) \sum_{(u,v) \in E} C(c_{uv}^*) l_{uv}$ in expectation

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つ Q ()

 $cost(G_{sol}) \le cost(T'_{opt}) \le cost(T'_{sol}) \le O(\lg n)cost(G_{opt})$ in exp: express T' distances in terms of distances in G

 $\sum_{(u,v)\in E} C(c_{uv}^*)T'(u,v)$

 $\leq O(\lg n) \sum_{(u,v) \in E} C(c_{uv}^*) dist_G(u,v)$ in expectation

(as *T'* is chosen s.t. for any $u, v \in V$ in *G*, $T'(u, v) \leq O(\lg n) dist_G(u, v)$ in expectation)

 $\leq O(\lg n) \sum_{(u,v) \in E} C(c_{uv}^*) l_{uv}$ in expectation

 $= O(\lg n) cost_{G_{opt}}$ in expectation

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Apprx factor in expectation

suggested randomized algorithm outputs a solution with apprx factor $O(\lg n)$ in expectation:

costour algo

 $\leq cost(T'_{opt})$ $\leq cost(T'_{sol})$ $= O(\lg n)cost(G_{opt}) \text{ in expectation}$

Done except for devising a randomized algo to construct a T' wherein for any $u, v \in V$, $dist_G(u, v) \leq T'(u, v) \leq O(\lg n) dist_G(u, v)$ (latter in expectation)

14/32

Outline

1 Buy-at-Bulk Network Design

2 Tree Metrics

3 Conclusions

Metric Space

A *metric space* is a pair (X, D) where X is a set and $D : X \times X \rightarrow [0, \infty)$ is a metric satisfying:

- $D(x,y) \ge 0$
- D(x, y) = 0 iff x = y
- D(x,y) = D(y,x)
- $D(x, y) + D(y, z) \ge D(x, z)$ (triangle inequality)

ex. (\mathcal{R}^d, L_2^d)

A metric space (X, D) is a *finite metric space* if |X| is finite.

(Uniform Buy-at-Bulk Network Design)

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Metric completion of a graph (a.k.a. graph metric)

• All pair shortest distance graph G' corresp. to input graph G is a finite metric

(Uniform Buy-at-Bulk Network Design)

Embedding

Let (X, D') and (Y, D'') be two (finite) metric spaces. Any one-to-one map $f: X \to Y$ is termed as an *embedding*.

- An embedding in which no distances shrink is termed as an *expansive embedding*.
- distortion of an expansive embedding f is $\max_{x,y \in X} \frac{D''(f(x),f(y))}{D'(x,y)}$

We intend to construct an expansive $(dist_G(u, v) \le T(u, v))$ tree metric $(V \subseteq V', T)$ corresp. to the graph metric $(V, dist_G)$ such that $T(u, v) \le O(\lg n) dist_G(u, v)$ in expectation. Further, we enforce V = V' by building a *spanning tree metric* (V, T').

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Hierarchical cut decomposition of the metric $(V, dist_G)$

here, Δ is the smallest power of 2 greater than 2 max_{u,v \in V} dist_G(u, v)

- root has the entire V
- each leaf node corresp. to a unique point in V for convenience, let $dist_G(u, v) \ge 1$
- nodes in each level together partition V

let us refer vertices of T as nodes while the vertices of V as points (Uniform Buy-at-Bulk Network Design)

Hierarchical cut decomposition is a tree metric

- $V \subseteq V'$
- positive edge lengths
- (V', T) is an expansive metric

lowest level at which *u* and *v* belong to the same is $\lfloor \lg_2 dist_G(u, v) \rfloor$

• what about the distortion?

Randomized Algorithm to construct (V', T)

- (1) pick a permutation π of V
- (2) pick a random number r_0 in [1/2, 1); set radius $r_i = 2^i r_0$ for all balls at each level *i*
- (3) root is associated with points in ball $B(any point, \Delta)$ i.e., V itself
- (4) for each node *v* in each level i (i > 0)

let S be the set of points associated with v

- (a) for every j from 1 to n
 - if S' = B(π(j), r_{i-1}) ∩ S ≠ φ then create a child node to v and associate points in S' to it
 - (ii) S = S S'
- takes polynomial time

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Algorithm in execution

points belonging to a tree node are shown with filled circles

Bounding the expected distortion

- If LCA of u and v is at level i, then $T(u, v) \le 2^{i+2}$.
- E[T(u,v)]

 $= \sum_{w \in V} \sum_{i=0}^{\lg \Delta - 1} \text{ (prob. } u \in B(w, r_i), v \notin B(w, r_i) \text{ and } B(w, r_i) \text{ is a child of } q) * (2^{i+3}) \le O(\lg n) dist_G(u, v)$

w.l.o.g. suppose u is nearer to w than v

- only intuition behind the proof is given

(Uniform Buy-at-Bulk Network Design)

Transforming Tree Metric (V', T) to a Spanning Tree Metric (V, T')

- (1) repeat until there does not exist a vertex pair u, w such that $u \in V, w \notin V$ and w is the parent of u
 - (a) contract edge uw
 - **(b)** identify merged node with $u \in V$
- (2) multiply the length of every remaining edge by four
- intutively explained why it won't change the bounds on T'(u, v)

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つ Q ()

Outline

1 Buy-at-Bulk Network Design

2 Tree Metrics

3 Conclusions

Example specializations of uBatB

- Steiner tree problem: Given a non-negative edge-weighted connected undirected graph G(V, E) together with a set $S \subseteq V$, find a minimum cost tree in *G* that spans all vertices in *S* and any subset of *Steiner* vertices V S.
- *Generalized Steiner forest problem*: Given an undirected graph G(V, E),
 ∀_{e∈E} w_e ≥ 0, and k pairs of vertices s_i, t_i ∈ V, find a minimum-cost subset of edges F ⊆ E such that every s_i-t_i pair is connected in (V, F).

< □ ト < @ ト < E ト < E ト = E = のQQ</p>

Open problems around uBatB

- reducing the gap between lower and upper bounds
- algorithm with apprx factor $O(\lg k)$
- devising algorithms for special graphs

Beyond uBatB

• Non-uniform BatB

Other example applications of tree embeddings

- *Group Steiner tree*: Given an undirected graph G(V, E) with $c: E \to \mathcal{R}^+$, and groups of vertices $V_1, V_2, \ldots, V_k \subseteq V$ find a minimum cost subtree of *G* that contains at least one vertex from each group.
- Communication spanning trees: Given an undirected graph G(V, E) with nonnegative costs on edges, requirement value r_{ij} for every pair *i* and *j*, and the communication cost of a spanning tree *T* is defined as $\sum_{ij} r_{ij} * SP_{T(i,j)}$, find a spanning tree *T* of minimum communication cost.

And, several networking heuristics that use tree metrics are awaiting Algorithms.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Other popular metric embeddings

Let |X| = n, D' is an arbitrary metric, *d* denotes the number of dimensions, and *X'* is finite. Then,

• Bourgain's Theorem:

existence of $(X, D') \hookrightarrow^{O(\lg n)} (\mathcal{R}^{O(\lg^2 n)}, L_p)$

- dimension reduction due to the Johnson-Lindenstrauss Lemma: existence of $(X, L_2^d) \hookrightarrow^{(1+\epsilon)} (\mathcal{R}^{O(\epsilon^{-2} \lg n)}, L_2)$
- Feige's volume respecting embeddings:

 $Vol(X) = sup_{f:X \to l_2} Evol(f(X))$ (*f* requires to be a contraction) *k*-distortion of *f* is $sup_{P \subset X, |P| = k} (\frac{Vol(P)}{Evol(f(P))})^{\frac{1}{k-1}}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Significant theoretical ideas explored

- extended a trivial solution for trees to graphs
- interpreted a graph theoretic problem as a geometric problem
- embedded a finite metric space into a tree metric
- randomized + approximation algorithm hence, the apprx factor in expectation
- designed an algorithm for a network design problem uBatB is a generalization of several network design problems

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ●□

References

- B. Awerbuch and Y. Azar. Buy-at-bulk network design. FOCS 1997, pg 542-547.
- J. Fakcharoenphol, S. Rao and K. Talwar A tight bound on approximating arbitrary metrics by tree metrics. Journal of Computer and System Sciences, 69:485-497, 2004.
- Y. Bartal. Probabilistic Approximation of Metric Spaces and its Algorithmic Applications. FOCS 1996, 184-193.
- P. Indyk. Algorithms applications of low-distortion geometric embeddings. FOCS 2001.
- David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms. Cambridge University Press, 2011.

Jiri Matousek. Lectures on Discrete Geometry. Springer, 2002.