
A few Spanners for Undirected Graphs 1

R. Inkulu
http://www.iitg.ac.in/rinkulu/

1these slides are last updated in 2013; in presenting, blackboard is used
(A few spanners for undirected graphs) 1 / 48

http://www.iitg.ac.in/rinkulu/

Outline

1 Introduction

2 Based on node clustering (for unweighted graphs)

3 Using a hitting set (for unweighted graphs)

4 MST based

5 A greedy algorithm

6 Conclusions

(A few spanners for undirected graphs) 2 / 48

Motivation

State of the art for computing APSP:
weights complexity ref

directed real O(mn + n2 lg n) [Johnson ’77]
directed integer O(mn + n2 lg lg n) [Hagerup ’00]
undirected real O(mnα(m, n)) [Pettie-Rama ’01]
undirected integer O(mn) [Thorup ’97]

Given an arbitrary dense graph, find a sparse subgraph that approximates all
pair distances fairly well.

(A few spanners for undirected graphs) 3 / 48

(α, β)-spanner: definition

Given a graph G(V,E), a subgraph G′(V,E′) of G is a (α, β)-spanner (α > 1)
of G iff for every u, v ∈ V , distG′(u, v) ≤ αdistG(u, v) + β.

* α is the stretch (dilation) factor and β is the surplus or additive factor of
G′

(A few spanners for undirected graphs) 4 / 48

t-Spanners and +β-spanners: definitions

An (α, β)-spanner G′ with α = t(> 1) and β = 0 is known as a t-spanner of
the given graph G. —← focus of this talk

a

b

c

d

u

f

g

h i
j

q

lp

2-spanner is in red

An (α, β)-spanner G′ with α = 0 and β > 1 is known as a +β-(additive)
spanner of the given graph G.

(A few spanners for undirected graphs) 5 / 48

A few applications

• APASP in sub-cubic time/sub-quadratic space

• every algorithm that has m-term gets benefitted

• distributed computing

• reconstructing phylogeny trees

(A few spanners for undirected graphs) 6 / 48

t-Spanner: another definition

Given a graph G(V,E), a subgraph G′(V,E′) of G is a t-spanner (t > 1)
of G iff for every u, v ∈ V , distG′(u, v) ≤ t.distG(u, v).

⇔

Given a graph G(V,E), a subgraph G′(V,E′) of G is a t-spanner (t > 1)
of G iff for every edge e(u, v) ∈ E, distG′(u, v) ≤ t.distG(u, v).

Ex: A complete graph on n vertices has a 2-spanner of size n− 1.

(A few spanners for undirected graphs) 7 / 48

t-Spanner: another definition

Given a graph G(V,E), a subgraph G′(V,E′) of G is a t-spanner (t > 1)
of G iff for every u, v ∈ V , distG′(u, v) ≤ t.distG(u, v).

⇔

Given a graph G(V,E), a subgraph G′(V,E′) of G is a t-spanner (t > 1)
of G iff for every edge e(u, v) ∈ E, distG′(u, v) ≤ t.distG(u, v).

Ex: A complete graph on n vertices has a 2-spanner of size n− 1.

(A few spanners for undirected graphs) 7 / 48

A few lower bounds

• No bipartite graph has a 2-spanner except for the same graph itself.

• For a given graph G(V,E) with two integers t,m ≥ 1, deciding whether
G has a t-spanner with < m edges is NP-complete.

— not proved in this talk

• For t > 2, it is NP-hard to approximate the smallest size of t-spanner of a
graph with O(2(1−µ) ln n) apprx factor for any µ > 0.

— not proved in this talk

(A few spanners for undirected graphs) 8 / 48

A few lower bounds

• No bipartite graph has a 2-spanner except for the same graph itself.

• For a given graph G(V,E) with two integers t,m ≥ 1, deciding whether
G has a t-spanner with < m edges is NP-complete.

— not proved in this talk

• For t > 2, it is NP-hard to approximate the smallest size of t-spanner of a
graph with O(2(1−µ) ln n) apprx factor for any µ > 0.

— not proved in this talk

(A few spanners for undirected graphs) 8 / 48

A few lower bounds

• No bipartite graph has a 2-spanner except for the same graph itself.

• For a given graph G(V,E) with two integers t,m ≥ 1, deciding whether
G has a t-spanner with < m edges is NP-complete.

— not proved in this talk

• For t > 2, it is NP-hard to approximate the smallest size of t-spanner of a
graph with O(2(1−µ) ln n) apprx factor for any µ > 0.

— not proved in this talk

(A few spanners for undirected graphs) 8 / 48

Erdös girth conjecture

• Conjecture from [Erdös ’63]: For integer k ≥ 1 and sufficiently large n,
there exist n-node undirected unweighted graphs of girth ≥ 2k + 2 with
Ω(n1+1/k) edges.2.

- proofs exist for k = 1, 2, 3, 5 — not proved in this talk

• Assuming Erdös girth conjecture, a (2k − 1)-spanner with O(n1+1/k)
number of edges for (un)weighted graphs is the best one could hope for.
————– (1)

- Consider a (2k − 1)-spanner G′ of an unweighted graph G. Then,

dG′ (u, v) ≤ (2k − 1)dG(u, v) = 2k − 1. Implying that there is a path of length at most

2k − 1 between u and v in G′. Including edge (u, v) into G′ leads to a cycle of length 2k in

G′. However, G has girth 2k + 2.

2do note (2k − 1)-spanner is also a 2k-spanner
(A few spanners for undirected graphs) 9 / 48

Erdös girth conjecture

• Conjecture from [Erdös ’63]: For integer k ≥ 1 and sufficiently large n,
there exist n-node undirected unweighted graphs of girth ≥ 2k + 2 with
Ω(n1+1/k) edges.2.

- proofs exist for k = 1, 2, 3, 5 — not proved in this talk

• Assuming Erdös girth conjecture, a (2k − 1)-spanner with O(n1+1/k)
number of edges for (un)weighted graphs is the best one could hope for.
————– (1)

- Consider a (2k − 1)-spanner G′ of an unweighted graph G. Then,

dG′ (u, v) ≤ (2k − 1)dG(u, v) = 2k − 1. Implying that there is a path of length at most

2k − 1 between u and v in G′. Including edge (u, v) into G′ leads to a cycle of length 2k in

G′. However, G has girth 2k + 2.

2do note (2k − 1)-spanner is also a 2k-spanner
(A few spanners for undirected graphs) 9 / 48

Lower bounds for directed graphs

• Typically, directed graphs cannot have sparse spanners.

- consider a directed bipartite graph (U,V) with each of its arcs oriented from U to V

Hence, for such graphs, one cannot do any better than taking the entire
graph as its own t-spanner.

(A few spanners for undirected graphs) 10 / 48

Outline

1 Introduction

2 Based on node clustering (for unweighted graphs)

3 Using a hitting set (for unweighted graphs)

4 MST based

5 A greedy algorithm

6 Conclusions

(A few spanners for undirected graphs) 11 / 48

Breadth-first traversal (review)

 1

 2

3

4
5

7

8

9

10

11

12

13
14

6

breadth-first traversal, respectively rooted at 1, 9 and 11

— takes O(n + m) time

For a connected graph G, breath-first traversal tree rooted at any vertex of G is
a O(n) spanner of G.

(A few spanners for undirected graphs) 12 / 48

Breadth-first traversal (review)

 1

 2

3

4
5

7

8

9

10

11

12

13
14

6

breadth-first traversal, respectively rooted at 1, 9 and 11

— takes O(n + m) time

For a connected graph G, breath-first traversal tree rooted at any vertex of G is
a O(n) spanner of G.

(A few spanners for undirected graphs) 12 / 48

Observation

Partition the vertex set V of G into clusters3 and introduce as few edges as
possible into spanner G′ so that

• the distance between any two nodes in a cluster

• as well as the distance between any two nodes from two distinct clusters

are nicely approximated.

3cluster means a connected component
(A few spanners for undirected graphs) 13 / 48

Algorithm (from [Peleg, Schaffer ’89]): high-level view

input: undirected unweighted graph G(V,E) and an integer k ≥ 1

(1) partition V into T sets such that for every Si ∈ T , there exists a vertex ci

such that the distance between ci and any vertex of Si in G is ≤ k − 1

(2) Ensure the same in G′ by introducing appropriate edges into G′:
(
⋃

i SSSPTreeci)∪ I′, wherein set I′ comprises of one edge between every
two clusters that have at least one edge between them

output: G′(V,E′) is a O(k)-spanner of G(V,E) with |E′| being O(n1+ 1
k)←

claim

(A few spanners for undirected graphs) 14 / 48

An example

spanner is in red color

(A few spanners for undirected graphs) 15 / 48

G′ is a (4k − 3)-spanner of G: case (i)

u

v

ci

≤ k − 1

≤ k − 1

e

both the endpoints of an edge e ∈ E belong to same cluster

(A few spanners for undirected graphs) 16 / 48

G′ is a (4k − 3)-spanner of G: case (ii)

u

ci

≤ k − 1

≤ k − 1

v

≤ k − 1

≤ k − 1

e

cj

a

b

endpoints of an edge e ∈ E belong to two distinct clusters

(A few spanners for undirected graphs) 17 / 48

Issue with the above algorithm

How to bound the number of clusters, in turn number of intercluster edges?

(A few spanners for undirected graphs) 18 / 48

Partition V into T

input: undirected unweighted graph G(V,E) and an integer k ≥ 1

(1) do till every vertex of input graph G belong to a cluster:

(i) for an arbitrary vertex c in the remaining graph, set S← {c}

(ii) while |S ∪ Γ(S)| > n1/k|S|

(a) include Γ(S) to S

(iii) add S to T and remove all the vertices in S from G

(2) G′ comprises of
⋃

i SSSPci ∪ I′, wherein set I′ of edges is formed by
choosing one edge between every two clusters that have at least one edge
between them

(A few spanners for undirected graphs) 19 / 48

Property (i) of T

For every Si ∈ T , G[Si] is a cluster, and V is indeed paritioned into T .

(A few spanners for undirected graphs) 20 / 48

Property (ii) of T

The cardinality of set I of intercluster edges is upper bounded by n1+ 1
k .

* |I| ≤∑
Si∈T n1/k|Si| = n1+1/k

(A few spanners for undirected graphs) 21 / 48

Property (iii) of T

For every Si ∈ T , the radius of G[Si] with respect to a special vertex ci ∈ S is
upper bounded by k − 1.

* while building any cluster, number of nodes in it after adding ith layer to
it is > ni/k

* in any cluster, number of layers added to initial vertex ≤ k − 1

(A few spanners for undirected graphs) 22 / 48

Time complexity

Takes O(m + n1+1/k) time to construct G′.

(A few spanners for undirected graphs) 23 / 48

G′ is a spanner of interest

• G′(V,E′) is a O(k)-spanner of G(V,E) with |E′| being O(n1+1/k).

• From (1), the spanner output by the algorithm is optimal with respect to
size and (asymptotic) spanning ratio.

(A few spanners for undirected graphs) 24 / 48

Outline

1 Introduction

2 Based on node clustering (for unweighted graphs)

3 Using a hitting set (for unweighted graphs)

4 MST based

5 A greedy algorithm

6 Conclusions

(A few spanners for undirected graphs) 25 / 48

Construction

• With a naive greedy algorithm, compute a hitting set H of size O(
√

n)
such that H ∩ N(v) ̸= ϕ for every v in G whose degree(v) ≥ √n. (Here,
N(v) is the closed neighborhood of v.)

• For every s ∈ H, include edges of BFT(s) into G′.

• For every vertex v of G with degree(v) <
√

n, include every edge
incident to v into G′.

The number of edges in G′ is O(n3/2 lg n).

(A few spanners for undirected graphs) 26 / 48

Correctness

For any two nodes u, v of G,

• if SP(u, v) contains no node with degree >
√

n, then SP(u, v) ∈ G′;

• otherwise, for any node w with degree >
√

n in SP(u, v), there exists a
node w′ ∈ N(w) ∩ H;

dG′(u, v)

≤ dG′(u,w′) + dG′(w′, v)

= dG(w′, u) + dG(w′, v)

≤ (dG(u,w) + 1) + (dG(w, v) + 1)

= dG(u, v) + 2.

Open problem: Computing a +4-spanner with O(n4/3polylg) number of
edges. 4

4+4-spanner with O(n7/5polylg) edges and +6 spanner with O(n4/3polylg) edges are
known
(A few spanners for undirected graphs) 27 / 48

Correctness

For any two nodes u, v of G,

• if SP(u, v) contains no node with degree >
√

n, then SP(u, v) ∈ G′;

• otherwise, for any node w with degree >
√

n in SP(u, v), there exists a
node w′ ∈ N(w) ∩ H;

dG′(u, v)

≤ dG′(u,w′) + dG′(w′, v)

= dG(w′, u) + dG(w′, v)

≤ (dG(u,w) + 1) + (dG(w, v) + 1)

= dG(u, v) + 2.

Open problem: Computing a +4-spanner with O(n4/3polylg) number of
edges. 4

4+4-spanner with O(n7/5polylg) edges and +6 spanner with O(n4/3polylg) edges are
known
(A few spanners for undirected graphs) 27 / 48

Correctness

For any two nodes u, v of G,

• if SP(u, v) contains no node with degree >
√

n, then SP(u, v) ∈ G′;

• otherwise, for any node w with degree >
√

n in SP(u, v), there exists a
node w′ ∈ N(w) ∩ H;

dG′(u, v)

≤ dG′(u,w′) + dG′(w′, v)

= dG(w′, u) + dG(w′, v)

≤ (dG(u,w) + 1) + (dG(w, v) + 1)

= dG(u, v) + 2.

Open problem: Computing a +4-spanner with O(n4/3polylg) number of
edges. 4

4+4-spanner with O(n7/5polylg) edges and +6 spanner with O(n4/3polylg) edges are
known
(A few spanners for undirected graphs) 27 / 48

Correctness

For any two nodes u, v of G,

• if SP(u, v) contains no node with degree >
√

n, then SP(u, v) ∈ G′;

• otherwise, for any node w with degree >
√

n in SP(u, v), there exists a
node w′ ∈ N(w) ∩ H;

dG′(u, v)

≤ dG′(u,w′) + dG′(w′, v)

= dG(w′, u) + dG(w′, v)

≤ (dG(u,w) + 1) + (dG(w, v) + 1)

= dG(u, v) + 2.

Open problem: Computing a +4-spanner with O(n4/3polylg) number of
edges. 4

4+4-spanner with O(n7/5polylg) edges and +6 spanner with O(n4/3polylg) edges are
known
(A few spanners for undirected graphs) 27 / 48

Outline

1 Introduction

2 Based on node clustering (for unweighted graphs)

3 Using a hitting set (for unweighted graphs)

4 MST based

5 A greedy algorithm

6 Conclusions

(A few spanners for undirected graphs) 28 / 48

Minimum spanning tree (review)

Objective: Given an undirected weighted connected graph G(V,E), find a tree
T that spans all the nodes in V such that T has the minimum weight among all
the spanning trees.

(A few spanners for undirected graphs) 29 / 48

MST properties (review)

• MST cut property: Assuming all the edge weights are distinct, e is the
minimum weighted edge crossing some cut C of G⇔⇔ e ∈ MST .

• MST cycle property: Assuming all the edge weights are distinct, e is the
maximum weighed edge in some cycle O of G⇔ e /∈ MST .

(A few spanners for undirected graphs) 30 / 48

Kruskal’s MST algorithm (review)

Start with the spanning forest (SF) comprising vertices of G with no edges
included. Consider edges in the order of increasing weight. For an edge
e(u, v):

• If there exists a path from u to v in the current SF, do not add e.

exploits MST cycle property

• Otherwise, add e.

exploits MST cut property

(A few spanners for undirected graphs) 31 / 48

Kruskal’s algorithm in execution

a

b c d

fg

i

1 2

9

j

3
4

65

100

8

7

11

12

22

20

h

r
200

(i)

a

b c d

fg

i

1 2

9

j

3
4

65

100

8

7

11

12

22

20

h

r
200

(ii)

a

b c d

fg

i

1 2

9

j

3
4

65

100

8

7

11

12

22

20

h

r
200

(iii)

a

b c d

fg

i

1 2

9

j

3
4

65

100

8

7

11

12

22

20

h

r
200

(iv)

(A few spanners for undirected graphs) 32 / 48

Kruskal’s algorithm in execution

a

b c d

fg

i

1 2

9

j

3
4

65

100

8

7

11

12

22

20

h

r
200

(i)

a

b c d

fg

i

1 2

9

j

3
4

65

100

8

7

11

12

22

20

h

r
200

(ii)

a

b c d

fg

i

1 2

9

j

3
4

65

100

8

7

11

12

22

20

h

r
200

(iii)

a

b c d

fg

i

1 2

9

j

3
4

65

100

8

7

11

12

22

20

h

r
200

(iv)

(A few spanners for undirected graphs) 32 / 48

Kruskal’s algorithm in execution

a

b c d

fg

i

1 2

9

j

3
4

65

100

8

7

11

12

22

20

h

r
200

(i)

a

b c d

fg

i

1 2

9

j

3
4

65

100

8

7

11

12

22

20

h

r
200

(ii)

a

b c d

fg

i

1 2

9

j

3
4

65

100

8

7

11

12

22

20

h

r
200

(iii)

a

b c d

fg

i

1 2

9

j

3
4

65

100

8

7

11

12

22

20

h

r
200

(iv)

(A few spanners for undirected graphs) 32 / 48

Kruskal’s algorithm in execution

a

b c d

fg

i

1 2

9

j

3
4

65

100

8

7

11

12

22

20

h

r
200

(i)

a

b c d

fg

i

1 2

9

j

3
4

65

100

8

7

11

12

22

20

h

r
200

(ii)

a

b c d

fg

i

1 2

9

j

3
4

65

100

8

7

11

12

22

20

h

r
200

(iii)

a

b c d

fg

i

1 2

9

j

3
4

65

100

8

7

11

12

22

20

h

r
200

(iv)

(A few spanners for undirected graphs) 32 / 48

Kruskal’s algorithm in execution (cont)

. . . a

b c d

fg

i

1 2

9

j

3
4

65

100

8

7

11

12

22

20

h

r
200

Output MST

takes O(|E| lg |V|) time

(A few spanners for undirected graphs) 33 / 48

A few observations from Kruskal’s algorithm

• If two components C′ and C′′ are joined with an edge e during the
algorithm, then e is the heaviest weight among the TC′ ∪ TC′′ ∪ {e}.

• If the algorithm choses an edge e wherein an endpoint of e incident to a
component C′, then e is the lightest edge between C′ and V − C′.

(A few spanners for undirected graphs) 34 / 48

MST T is a (n− 1)-spanner

let C′,C′′ be two components in the spanning forest F such that s′ ∈ C′ and
s′′ ∈ C′′ just before adding an edge e to F so that C′ and C′′ are merged

dT(s′, s′′)

≤ (|C′|+ |C′′| − 1)we

since e is the heaviest edge in C′ ∪ C′′ ∪ {e}

≤ (n− 1)we

≤ (n− 1)dG(s′, s′′)
since e is the lightest edge between C′ and V − C′

(A few spanners for undirected graphs) 35 / 48

MST T is a (n− 1)-spanner

let C′,C′′ be two components in the spanning forest F such that s′ ∈ C′ and
s′′ ∈ C′′ just before adding an edge e to F so that C′ and C′′ are merged

dT(s′, s′′)

≤ (|C′|+ |C′′| − 1)we

since e is the heaviest edge in C′ ∪ C′′ ∪ {e}

≤ (n− 1)we

≤ (n− 1)dG(s′, s′′)
since e is the lightest edge between C′ and V − C′

(A few spanners for undirected graphs) 35 / 48

MST T is a (n− 1)-spanner

let C′,C′′ be two components in the spanning forest F such that s′ ∈ C′ and
s′′ ∈ C′′ just before adding an edge e to F so that C′ and C′′ are merged

dT(s′, s′′)

≤ (|C′|+ |C′′| − 1)we

since e is the heaviest edge in C′ ∪ C′′ ∪ {e}

≤ (n− 1)we

≤ (n− 1)dG(s′, s′′)
since e is the lightest edge between C′ and V − C′

(A few spanners for undirected graphs) 35 / 48

MST T is a (n− 1)-spanner

let C′,C′′ be two components in the spanning forest F such that s′ ∈ C′ and
s′′ ∈ C′′ just before adding an edge e to F so that C′ and C′′ are merged

dT(s′, s′′)

≤ (|C′|+ |C′′| − 1)we

since e is the heaviest edge in C′ ∪ C′′ ∪ {e}

≤ (n− 1)we

≤ (n− 1)dG(s′, s′′)
since e is the lightest edge between C′ and V − C′

(A few spanners for undirected graphs) 35 / 48

MST T is a (n− 1)-spanner

let C′,C′′ be two components in the spanning forest F such that s′ ∈ C′ and
s′′ ∈ C′′ just before adding an edge e to F so that C′ and C′′ are merged

dT(s′, s′′)

≤ (|C′|+ |C′′| − 1)we

since e is the heaviest edge in C′ ∪ C′′ ∪ {e}

≤ (n− 1)we

≤ (n− 1)dG(s′, s′′)
since e is the lightest edge between C′ and V − C′

(A few spanners for undirected graphs) 35 / 48

Lower bound on the stretch of any spanning tree
spanner

For a unit-weighted cycle graph, the stretch t can be as bad as Ω(n).

• hence, Kruskal’s algorithm based MST is an optimal spanner with respect to stretch

Disadv with spanning tree spanners: best possible stretch is a function of n

(A few spanners for undirected graphs) 36 / 48

Outline

1 Introduction

2 Based on node clustering (for unweighted graphs)

3 Using a hitting set (for unweighted graphs)

4 MST based

5 A greedy algorithm

6 Conclusions

(A few spanners for undirected graphs) 37 / 48

An obvious greedy algorithm: from [Althofer et al. ’93]

while considering edges in weight nondecreasing order, introduce an edge
e(u, v) ∈ G in G′ whenever distG′(u, v) > (2k − 1)w(e)

• every iteration ensures that G′ is locally (with respect to u and v) a
t-spanner (hence, greedy)

(A few spanners for undirected graphs) 38 / 48

G′ is a (2k − 1)-spanner

Just after considering edge (u, v) by the algorithm,

dG′(u, v)

≤∑
(x,y)∈P dG′(x, y), where P is a shortest path between u and v in G

≤∑
(x,y)∈P(2k − 1)dG(x, y) (since w(x, y) < w(u, v), edge (x, y) was considered in the

greedy algorithm)

= (2k − 1)dG(u, v)

(A few spanners for undirected graphs) 39 / 48

Upper bounding the number of edges of G′

• The spanner G′ has girth > 2k.

- Suppose G′ has a cycle C of length (2k − k′), for an integer k′ ≥ 0. Then, for a maximum

weighted edge e(u, v) of C, the weight of C − e is at most

(2k − k′ − 1)w(u, v) ≤ (2k − 1)w(u, v), contradicting inclusion of e into G′ by the

algorithm.

• The spanner G′ has O(n1+ 1
k) edges.

- remove every node in G′ that has degree ≤ ⌈n1/k⌉; in the resulting graph G′′, if there is no
cycle of length≤ 2k, edges encountered up till level-k of a breadth-first search of G′′ yields a
tree;

- however, since the minimum degree of G′′ is > ⌈n1/k⌉, this search must have encountered

more than > (n1/k)k = n nodes; this says, G′′ has girth at most 2k, implying, G′ has girth at

most 2k, a contradiction

From (1), the spanner output by the above algorithm is optimal. But, do note
that this algorithm takes O(min(kn2+1/k,mn1+1/k)) time.

(A few spanners for undirected graphs) 40 / 48

Upper bounding the number of edges of G′

• The spanner G′ has girth > 2k.

- Suppose G′ has a cycle C of length (2k − k′), for an integer k′ ≥ 0. Then, for a maximum

weighted edge e(u, v) of C, the weight of C − e is at most

(2k − k′ − 1)w(u, v) ≤ (2k − 1)w(u, v), contradicting inclusion of e into G′ by the

algorithm.

• The spanner G′ has O(n1+ 1
k) edges.

- remove every node in G′ that has degree ≤ ⌈n1/k⌉; in the resulting graph G′′, if there is no
cycle of length≤ 2k, edges encountered up till level-k of a breadth-first search of G′′ yields a
tree;

- however, since the minimum degree of G′′ is > ⌈n1/k⌉, this search must have encountered

more than > (n1/k)k = n nodes; this says, G′′ has girth at most 2k, implying, G′ has girth at

most 2k, a contradiction

From (1), the spanner output by the above algorithm is optimal. But, do note
that this algorithm takes O(min(kn2+1/k,mn1+1/k)) time.

(A few spanners for undirected graphs) 40 / 48

Upper bounding the number of edges of G′

• The spanner G′ has girth > 2k.

- Suppose G′ has a cycle C of length (2k − k′), for an integer k′ ≥ 0. Then, for a maximum

weighted edge e(u, v) of C, the weight of C − e is at most

(2k − k′ − 1)w(u, v) ≤ (2k − 1)w(u, v), contradicting inclusion of e into G′ by the

algorithm.

• The spanner G′ has O(n1+ 1
k) edges.

- remove every node in G′ that has degree ≤ ⌈n1/k⌉; in the resulting graph G′′, if there is no
cycle of length≤ 2k, edges encountered up till level-k of a breadth-first search of G′′ yields a
tree;

- however, since the minimum degree of G′′ is > ⌈n1/k⌉, this search must have encountered

more than > (n1/k)k = n nodes; this says, G′′ has girth at most 2k, implying, G′ has girth at

most 2k, a contradiction

From (1), the spanner output by the above algorithm is optimal. But, do note
that this algorithm takes O(min(kn2+1/k,mn1+1/k)) time.

(A few spanners for undirected graphs) 40 / 48

Observation: MSTG is a subgraph of G′

• Compare this algo with the Kruskal’s algo for MST: after examining
each edge, the number of connected components are same in both; and
each component from this algo contains a corresponding component
from Kruskal’s algo. (proof by induction)

(A few spanners for undirected graphs) 41 / 48

w(G′) ≤ w(MSTG)(1 + n
2k−2)

v

C

e

e

1

2

a

b

d

Construct skinny polygon P with respect to MSTG; for any vertex v, let Sv be
the set of edges in G′ that have v as one endpoint but do not belong to MSTG;
obtain a planar embedding of Sv during the DFT of MSTG with root as v

• for any cycle C in G′ and for any edge e ∈ C,
w(C − {e}) > (2k − 1)w(e)

• perimeter of P after embedding all the edges in Sv =
2w(MSTG)− ((2k − 1)− 1)

∑
e∈Sv

w(e) > 0
(A few spanners for undirected graphs) 42 / 48

Outline

1 Introduction

2 Based on node clustering (for unweighted graphs)

3 Using a hitting set (for unweighted graphs)

4 MST based

5 A greedy algorithm

6 Conclusions

(A few spanners for undirected graphs) 43 / 48

Significant (2k − 1)-spanner algorithms

size time wei
[Althofer et al. ’93] O(n1+1/k) O(mn1+1/k) w5

[Halperin, Zwick ’96] O(n1+1/k) O(m) u
[Cohen ’98] O(n1+(2+ϵ)/(2k−1)) O(mn(2+ϵ)/(2k−1)) expc pw
[Thorup, Zwick ’05] O(n1+1/k) O(kmn1/k) expc w
[Baswana, Sen ’07] O(kn1+1/k) O(km) expc w

5w: weighted; u: unweighted; p: positive weighted
(A few spanners for undirected graphs) 44 / 48

Current research (weighted graphs)

• (2k − 1) spanner of size O(n1+1/k) in deterministic linear time

• obtaining < 3 stretch in n2+o(1) time

• purely additive spanners of size o(n4/3)

• pairwise spanners

• fault-tolerant spanners

• minimum-degree spanners

• dynamic spanners

• a combination of the above

(A few spanners for undirected graphs) 45 / 48

References
B. Awerbuch. Complexity of network synchronization. Journal of the
ACM, 1985.

I. Althöfer, G. Das, D. P. Dobkin, D. Joseph, J. Soares. On Sparse
Spanners of Weighted Graphs. Discrete & Computational Geometry,
1993.

D. Aingworth, C. Chekuri, P. Indyk, R. Motwani. SIAM Journal on
Computing, 1999.

E. Cohen. Fast algorithms for constructing t-spanners and paths with
stretch t. SIAM Journal on Computing, 1998.

M. Thorup, U. Zwick. Approximate distance oracles. Journal of ACM,
2005.

S. Baswana, S. Sen. A simple and linear time randomized algorithm for
computing sparse spanners in weighted graphs. Random Structures &
Algorithms, 2007.

(A few spanners for undirected graphs) 46 / 48

References (cont)

P. Erdös. Extreme problems in graph theory. Theory of Graphs and its
Applications, 1963.

D. Peleg, A. A. Schaffer. Graph spanners. Journal of Graph Theory, 1989.

S. Halperin, U. Zwick. Unpublished result, 1996.

U. Zwick. Exact and approximate distances in graphs - a survey. ESA,
2001.

S. Sen. Approximating shortest paths in graphs - a survey. WALCOM,
2009.

(A few spanners for undirected graphs) 47 / 48

Thanks!

(A few spanners for undirected graphs) 48 / 48

	Introduction
	Based on node clustering (for unweighted graphs)
	Using a hitting set (for unweighted graphs)
	MST based
	A greedy algorithm
	Conclusions

