A few Spanners for Undirected Graphs ${ }^{1}$

R. Inkulu
http://www.iitg.ac.in/rinkulu/

[^0]
Outline

1 Introduction

2 Based on node clustering (for unweighted graphs)

3 Using a hitting set (for unweighted graphs)

4 MST based

5 A greedy algorithm

6 Conclusions
(A few spanners for undirected graphs)

Motivation

State of the art for computing APSP:

	weights	complexity	ref
directed	real	$O\left(m n+n^{2} \lg n\right)$	[Johnson '77]
directed	integer	$O\left(m n+n^{2} \lg \lg n\right)$	[Hagerup '00]
undirected	real	$O(m n \alpha(m, n))$	[Pettie-Rama '01]
undirected	integer	$O(m n)$	[Thorup '97]

Given an arbitrary dense graph, find a sparse subgraph that approximates all pair distances fairly well.

(α, β)-spanner: definition

Given a graph $G(V, E)$, a subgraph $G^{\prime}\left(V, E^{\prime}\right)$ of G is a (α, β)-spanner $(\alpha>1)$ of G iff for every $u, v \in V, \operatorname{dist}_{G^{\prime}}(u, v) \leq \alpha \operatorname{dist}_{G}(u, v)+\beta$.

* α is the stretch (dilation) factor and β is the surplus or additive factor of G^{\prime}

t-Spanners and $+\beta$-spanners: definitions

An (α, β)-spanner G^{\prime} with $\alpha=t(>1)$ and $\beta=0$ is known as a t-spanner of the given graph $G .-\leftarrow$ focus of this talk

2-spanner is in red

An (α, β)-spanner G^{\prime} with $\alpha=0$ and $\beta>1$ is known as a $+\beta$-(additive) spanner of the given graph G.

A few applications

- APASP in sub-cubic time/sub-quadratic space
- every algorithm that has m-term gets benefitted
- distributed computing
- reconstructing phylogeny trees

t-Spanner: another definition

Given a graph $G(V, E)$, a subgraph $G^{\prime}\left(V, E^{\prime}\right)$ of G is a t-spanner $(t>1)$ of G iff for every $u, v \in V, \operatorname{dist}_{G^{\prime}}(u, v) \leq t \cdot \operatorname{dist}_{G}(u, v)$.
\Leftrightarrow
Given a graph $G(V, E)$, a subgraph $G^{\prime}\left(V, E^{\prime}\right)$ of G is a t-spanner $(t>1)$ of G iff for every edge $e(u, v) \in E$, $\operatorname{dist}_{G^{\prime}}(u, v) \leq t \cdot d i s t_{G}(u, v)$.

t-Spanner: another definition

Given a graph $G(V, E)$, a subgraph $G^{\prime}\left(V, E^{\prime}\right)$ of G is a t-spanner $(t>1)$ of G iff for every $u, v \in V, \operatorname{dist}_{G^{\prime}}(u, v) \leq t \cdot \operatorname{dist}_{G}(u, v)$.
\Leftrightarrow
Given a graph $G(V, E)$, a subgraph $G^{\prime}\left(V, E^{\prime}\right)$ of G is a t-spanner $(t>1)$ of G iff for every edge $e(u, v) \in E$, $\operatorname{dist}_{G^{\prime}}(u, v) \leq t \cdot d i s t_{G}(u, v)$.

Ex: A complete graph on n vertices has a 2 -spanner of size $n-1$.

A few lower bounds

- No bipartite graph has a 2-spanner except for the same graph itself.

A few lower bounds

- No bipartite graph has a 2-spanner except for the same graph itself.
- For a given graph $G(V, E)$ with two integers $t, m \geq 1$, deciding whether G has a t-spanner with $<m$ edges is NP-complete.
- not proved in this talk

A few lower bounds

- No bipartite graph has a 2-spanner except for the same graph itself.
- For a given graph $G(V, E)$ with two integers $t, m \geq 1$, deciding whether G has a t-spanner with $<m$ edges is NP-complete.
- not proved in this talk
- For $t>2$, it is NP-hard to approximate the smallest size of t-spanner of a graph with $O\left(2^{(1-\mu) \ln n}\right)$ apprx factor for any $\mu>0$.
- not proved in this talk

Erdös girth conjecture

- Conjecture from [Erdös '63]: For integer $k \geq 1$ and sufficiently large n, there exist n-node undirected unweighted graphs of girth $\geq 2 k+2$ with $\Omega\left(n^{1+1 / k}\right)$ edges. ${ }^{2}$.
- proofs exist for $k=1,2,3,5$ - not proved in this talk

[^1]
Erdös girth conjecture

- Conjecture from [Erdös '63]: For integer $k \geq 1$ and sufficiently large n, there exist n-node undirected unweighted graphs of girth $\geq 2 k+2$ with $\Omega\left(n^{1+1 / k}\right)$ edges. ${ }^{2}$.
- proofs exist for $k=1,2,3,5$ - not proved in this talk
- Assuming Erdös girth conjecture, a $(2 k-1)$-spanner with $O\left(n^{1+1 / k}\right)$ number of edges for (un)weighted graphs is the best one could hope for. (1)
- Consider a $(2 k-1)$-spanner G^{\prime} of an unweighted graph G. Then, $d_{G^{\prime}}(u, v) \leq(2 k-1) d_{G}(u, v)=2 k-1$. Implying that there is a path of length at most $2 k-1$ between u and v in G^{\prime}. Including edge (u, v) into G^{\prime} leads to a cycle of length $2 k$ in G^{\prime}. However, G has girth $2 k+2$.

Lower bounds for directed graphs

- Typically, directed graphs cannot have sparse spanners.
- consider a directed bipartite graph (U, V) with each of its arcs oriented from U to V

Hence, for such graphs, one cannot do any better than taking the entire graph as its own t-spanner.

Outline

1 Introduction

2 Based on node clustering (for unweighted graphs)

3 Using a hitting set (for unweighted graphs)

5 A greedy algorithm

6 Conclusions

Breadth-first traversal (review)

breadth-first traversal, respectively rooted at 1,9 and 11

- takes $O(n+m)$ time

breadth-first traversal, respectively rooted at 1,9 and 11
- takes $O(n+m)$ time

For a connected graph G, breath-first traversal tree rooted at any vertex of G is a $O(n)$ spanner of G.

Observation

Partition the vertex set V of G into clusters ${ }^{3}$ and introduce as few edges as possible into spanner G^{\prime} so that

- the distance between any two nodes in a cluster
- as well as the distance between any two nodes from two distinct clusters are nicely approximated.

[^2]
Algorithm (from [Peleg, Schaffer '89]): high-level view

input: undirected unweighted graph $G(V, E)$ and an integer $k \geq 1$
(1) partition V into \mathcal{T} sets such that for every $S_{i} \in \mathcal{T}$, there exists a vertex c_{i} such that the distance between c_{i} and any vertex of S_{i} in G is $\leq k-1$
(2) Ensure the same in G^{\prime} by introducing appropriate edges into G^{\prime} : $\left(\bigcup_{i}\right.$ SSSPTree $\left._{c_{i}}\right) \cup I^{\prime}$, wherein set I^{\prime} comprises of one edge between every two clusters that have at least one edge between them
output: $G^{\prime}\left(V, E^{\prime}\right)$ is a $O(k)$-spanner of $G(V, E)$ with $\left|E^{\prime}\right|$ being $O\left(n^{1+\frac{1}{k}}\right) \leftarrow$ claim

An example

both the endpoints of an edge $e \in E$ belong to same cluster

endpoints of an edge $e \in E$ belong to two distinct clusters

Issue with the above algorithm

How to bound the number of clusters, in turn number of intercluster edges?

Partition V into \mathcal{T}

input: undirected unweighted graph $G(V, E)$ and an integer $k \geq 1$
(1) do till every vertex of input graph G belong to a cluster:
(i) for an arbitrary vertex c in the remaining graph, set $S \leftarrow\{c\}$
(ii) while $|S \cup \Gamma(S)|>n^{1 / k}|S|$
(a) include $\Gamma(S)$ to S
(iii) add S to \mathcal{T} and remove all the vertices in S from G
(2) G^{\prime} comprises of $\bigcup_{i} S S S P_{c_{i}} \cup I^{\prime}$, wherein set I^{\prime} of edges is formed by choosing one edge between every two clusters that have at least one edge between them

For every $S_{i} \in \mathcal{T}, G\left[S_{i}\right]$ is a cluster, and V is indeed paritioned into \mathcal{T}.

The cardinality of set I of intercluster edges is upper bounded by $n^{1+\frac{1}{k}}$.

$$
*|I| \leq \sum_{S_{i} \in \mathcal{T}} n^{1 / k}\left|S_{i}\right|=n^{1+1 / k}
$$

Property (iii) of \mathcal{T}

For every $S_{i} \in \mathcal{T}$, the radius of $G\left[S_{i}\right]$ with respect to a special vertex $c_{i} \in S$ is upper bounded by $k-1$.

* while building any cluster, number of nodes in it after adding $i^{\text {th }}$ layer to it is $>n^{i / k}$
* in any cluster, number of layers added to initial vertex $\leq k-1$

Time complexity

Takes $O\left(m+n^{1+1 / k}\right)$ time to construct G^{\prime}.

- $G^{\prime}\left(V, E^{\prime}\right)$ is a $O(k)$-spanner of $G(V, E)$ with $\left|E^{\prime}\right|$ being $O\left(n^{1+1 / k}\right)$.
- From (1), the spanner output by the algorithm is optimal with respect to size and (asymptotic) spanning ratio.

Outline

1 Introduction

2 Based on node clustering (for unweighted graphs)

3 Using a hitting set (for unweighted graphs)

4 MST based

5 A greedy algorithm

6 Conclusions

Construction

- With a naive greedy algorithm, compute a hitting set H of size $O(\sqrt{n})$ such that $H \cap N(v) \neq \phi$ for every v in G whose $\operatorname{degree}(v) \geq \sqrt{n}$. (Here, $N(v)$ is the closed neighborhood of v.)
- For every $s \in H$, include edges of $B F T(s)$ into G^{\prime}.
- For every vertex v of G with $\operatorname{degree}(v)<\sqrt{n}$, include every edge incident to v into G^{\prime}.

The number of edges in G^{\prime} is $O\left(n^{3 / 2} \lg n\right)$.

Correctness

For any two nodes u, v of G,

- if $S P(u, v)$ contains no node with degree $>\sqrt{n}$, then $S P(u, v) \in G^{\prime}$;
${ }^{4}+4$-spanner with $O\left(n^{7 / 5}\right.$ polylg $)$ edges and +6 spanner with $O\left(n^{4 / 3}\right.$ polylg $)$ edges are known
(A few spanners for undirected graphs)

Correctness

For any two nodes u, v of G,

- if $S P(u, v)$ contains no node with degree $>\sqrt{n}$, then $S P(u, v) \in G^{\prime}$;
- otherwise, for any node w with degree $>\sqrt{n}$ in $S P(u, v)$, there exists a node $w^{\prime} \in N(w) \cap H$;
${ }^{4}+4$-spanner with $O\left(n^{7 / 5}\right.$ polylg $)$ edges and +6 spanner with $O\left(n^{4 / 3}\right.$ polylg $)$ edges are known

Correctness

For any two nodes u, v of G,

- if $S P(u, v)$ contains no node with degree $>\sqrt{n}$, then $S P(u, v) \in G^{\prime}$;
- otherwise, for any node w with degree $>\sqrt{n}$ in $S P(u, v)$, there exists a node $w^{\prime} \in N(w) \cap H$;
$d_{G^{\prime}}(u, v)$
$\leq d_{G^{\prime}}\left(u, w^{\prime}\right)+d_{G^{\prime}}\left(w^{\prime}, v\right)$
$=d_{G}\left(w^{\prime}, u\right)+d_{G}\left(w^{\prime}, v\right)$
$\leq\left(d_{G}(u, w)+1\right)+\left(d_{G}(w, v)+1\right)$
$=d_{G}(u, v)+2$.

[^3]
Correctness

For any two nodes u, v of G,

- if $S P(u, v)$ contains no node with degree $>\sqrt{n}$, then $S P(u, v) \in G^{\prime}$;
- otherwise, for any node w with degree $>\sqrt{n}$ in $S P(u, v)$, there exists a node $w^{\prime} \in N(w) \cap H$;
$d_{G^{\prime}}(u, v)$
$\leq d_{G^{\prime}}\left(u, w^{\prime}\right)+d_{G^{\prime}}\left(w^{\prime}, v\right)$
$=d_{G}\left(w^{\prime}, u\right)+d_{G}\left(w^{\prime}, v\right)$
$\leq\left(d_{G}(u, w)+1\right)+\left(d_{G}(w, v)+1\right)$
$=d_{G}(u, v)+2$.
Open problem: Computing a +4 -spanner with $O\left(n^{4 / 3}\right.$ polylg $)$ number of edges.

[^4]
Outline

1 Introduction

2 Based on node clustering (for unweighted graphs)

3 Using a hitting set (for unweighted graphs)

4 MST based

5 A greedy algorithm

6 Conclusions
(A few spanners for undirected graphs)

Minimum spanning tree (review)

Objective: Given an undirected weighted connected graph $G(V, E)$, find a tree T that spans all the nodes in V such that T has the minimum weight among all the spanning trees.

MST properties (review)

- MST cut property: Assuming all the edge weights are distinct, e is the minimum weighted edge crossing some cut C of $G \Leftrightarrow \Leftrightarrow e \in M S T$.
- MST cycle property: Assuming all the edge weights are distinct, e is the maximum weighed edge in some cycle O of $G \Leftrightarrow e \notin M S T$.

Kruskal's MST algorithm (review)

Start with the spanning forest (SF) comprising vertices of G with no edges included. Consider edges in the order of increasing weight. For an edge $e(u, v)$:

- If there exists a path from u to v in the current SF, do not add e.
exploits MST cycle property
- Otherwise, add e.
exploits MST cut property

Kruskal's algorithm in execution

(i)

Kruskal's algorithm in execution

takes $O(|E| \lg |V|)$ time

A few observations from Kruskal's algorithm

- If two components C^{\prime} and $C^{\prime \prime}$ are joined with an edge e during the algorithm, then e is the heaviest weight among the $T_{C^{\prime}} \cup T_{C^{\prime \prime}} \cup\{e\}$.
- If the algorithm choses an edge e wherein an endpoint of e incident to a component C^{\prime}, then e is the lightest edge between C^{\prime} and $V-C^{\prime}$.

MST T is a $(n-1)$-spanner

let $C^{\prime}, C^{\prime \prime}$ be two components in the spanning forest F such that $s^{\prime} \in C^{\prime}$ and $s^{\prime \prime} \in C^{\prime \prime}$ just before adding an edge e to F so that C^{\prime} and $C^{\prime \prime}$ are merged

MST T is a $(n-1)$-spanner

let $C^{\prime}, C^{\prime \prime}$ be two components in the spanning forest F such that $s^{\prime} \in C^{\prime}$ and $s^{\prime \prime} \in C^{\prime \prime}$ just before adding an edge e to F so that C^{\prime} and $C^{\prime \prime}$ are merged $d_{T}\left(s^{\prime}, s^{\prime \prime}\right)$

MST T is a $(n-1)$-spanner

let $C^{\prime}, C^{\prime \prime}$ be two components in the spanning forest F such that $s^{\prime} \in C^{\prime}$ and $s^{\prime \prime} \in C^{\prime \prime}$ just before adding an edge e to F so that C^{\prime} and $C^{\prime \prime}$ are merged

$$
\begin{aligned}
& d_{T}\left(s^{\prime}, s^{\prime \prime}\right) \\
& \leq\left(\left|C^{\prime}\right|+\left|C^{\prime \prime}\right|-1\right) w_{e} \\
& \quad \text { since } e \text { is the heaviest edge in } C^{\prime} \cup C^{\prime \prime} \cup\{e\}
\end{aligned}
$$

MST T is a $(n-1)$-spanner

let $C^{\prime}, C^{\prime \prime}$ be two components in the spanning forest F such that $s^{\prime} \in C^{\prime}$ and $s^{\prime \prime} \in C^{\prime \prime}$ just before adding an edge e to F so that C^{\prime} and $C^{\prime \prime}$ are merged

$$
d_{T}\left(s^{\prime}, s^{\prime \prime}\right)
$$

$$
\leq\left(\left|C^{\prime}\right|+\left|C^{\prime \prime}\right|-1\right) w_{e}
$$

since e is the heaviest edge in $C^{\prime} \cup C^{\prime \prime} \cup\{e\}$
$\leq(n-1) w_{e}$

MST T is a $(n-1)$-spanner

let $C^{\prime}, C^{\prime \prime}$ be two components in the spanning forest F such that $s^{\prime} \in C^{\prime}$ and $s^{\prime \prime} \in C^{\prime \prime}$ just before adding an edge e to F so that C^{\prime} and $C^{\prime \prime}$ are merged

$$
\begin{aligned}
& d_{T}\left(s^{\prime}, s^{\prime \prime}\right) \\
& \leq\left(\left|C^{\prime}\right|+\left|C^{\prime \prime}\right|-1\right) w_{e}
\end{aligned}
$$

since e is the heaviest edge in $C^{\prime} \cup C^{\prime \prime} \cup\{e\}$
$\leq(n-1) w_{e}$
$\leq(n-1) d_{G}\left(s^{\prime}, s^{\prime \prime}\right)$
since e is the lightest edge between C^{\prime} and $V-C^{\prime}$

Lower bound on the stretch of any spanning tree spanner

For a unit-weighted cycle graph, the stretch t can be as bad as $\Omega(n)$.

- hence, Kruskal's algorithm based MST is an optimal spanner with respect to stretch

Disadv with spanning tree spanners: best possible stretch is a function of n

Outline

1 Introduction

2 Based on node clustering (for unweighted graphs)

3 Using a hitting set (for unweighted graphs)

4 MST based

5 A greedy algorithm

6 Conclusions
(A few spanners for undirected graphs)

An obvious greedy algorithm: from [Althofer et al. '93]

while considering edges in weight nondecreasing order, introduce an edge $e(u, v) \in G$ in G^{\prime} whenever $\operatorname{dist}_{G^{\prime}}(u, v)>(2 k-1) w(e)$

- every iteration ensures that G^{\prime} is locally (with respect to u and v) a t-spanner (hence, greedy)

Just after considering edge (u, v) by the algorithm,
$d_{G^{\prime}}(u, v)$
$\leq \sum_{(x, y) \in P} d_{G^{\prime}}(x, y)$, where P is a shortest path between u and v in G
$\leq \sum_{(x, y) \in P}(2 k-1) d_{G}(x, y) \quad$ (since $w(x, y)<w(u, v)$, edge (x, y) was considered in the greedy algorithm)
$=(2 k-1) d_{G}(u, v)$

Upper bounding the number of edges of G^{\prime}

- The spanner G^{\prime} has girth $>2 k$.
- Suppose G^{\prime} has a cycle C of length $\left(2 k-k^{\prime}\right)$, for an integer $k^{\prime} \geq 0$. Then, for a maximum weighted edge $e(u, v)$ of C, the weight of $C-e$ is at most $\left(2 k-k^{\prime}-1\right) w(u, v) \leq(2 k-1) w(u, v)$, contradicting inclusion of e into G^{\prime} by the algorithm.

Upper bounding the number of edges of G^{\prime}

- The spanner G^{\prime} has girth $>2 k$.
- Suppose G^{\prime} has a cycle C of length $\left(2 k-k^{\prime}\right)$, for an integer $k^{\prime} \geq 0$. Then, for a maximum weighted edge $e(u, v)$ of C, the weight of $C-e$ is at most $\left(2 k-k^{\prime}-1\right) w(u, v) \leq(2 k-1) w(u, v)$, contradicting inclusion of e into G^{\prime} by the algorithm.
- The spanner G^{\prime} has $O\left(n^{1+\frac{1}{k}}\right)$ edges.
- remove every node in G^{\prime} that has degree $\leq\left\lceil n^{1 / k}\right\rceil$; in the resulting graph $G^{\prime \prime}$, if there is no cycle of length $\leq 2 k$, edges encountered up till level- k of a breadth-first search of $G^{\prime \prime}$ yields a tree;
- however, since the minimum degree of $G^{\prime \prime}$ is $>\left\lceil n^{1 / k}\right\rceil$, this search must have encountered more than $>\left(n^{1 / k}\right)^{k}=n$ nodes; this says, $G^{\prime \prime}$ has girth at most $2 k$, implying, G^{\prime} has girth at most $2 k$, a contradiction

Upper bounding the number of edges of G^{\prime}

- The spanner G^{\prime} has girth $>2 k$.
- Suppose G^{\prime} has a cycle C of length $\left(2 k-k^{\prime}\right)$, for an integer $k^{\prime} \geq 0$. Then, for a maximum weighted edge $e(u, v)$ of C, the weight of $C-e$ is at most $\left(2 k-k^{\prime}-1\right) w(u, v) \leq(2 k-1) w(u, v)$, contradicting inclusion of e into G^{\prime} by the algorithm.
- The spanner G^{\prime} has $O\left(n^{1+\frac{1}{k}}\right)$ edges.
- remove every node in G^{\prime} that has degree $\leq\left\lceil n^{1 / k}\right\rceil$; in the resulting graph $G^{\prime \prime}$, if there is no cycle of length $\leq 2 k$, edges encountered up till level- k of a breadth-first search of $G^{\prime \prime}$ yields a tree;
- however, since the minimum degree of $G^{\prime \prime}$ is $>\left\lceil n^{1 / k}\right\rceil$, this search must have encountered more than $>\left(n^{1 / k}\right)^{k}=n$ nodes; this says, $G^{\prime \prime}$ has girth at most $2 k$, implying, G^{\prime} has girth at most $2 k$, a contradiction

From (1), the spanner output by the above algorithm is optimal. But, do note that this algorithm takes $O\left(\min \left(k n^{2+1 / k}, m n^{1+1 / k}\right)\right)$ time.

Observation: $M S T_{G}$ is a subgraph of G^{\prime}

- Compare this algo with the Kruskal's algo for MST: after examining each edge, the number of connected components are same in both; and each component from this algo contains a corresponding component from Kruskal's algo. (proof by induction)
$w\left(G^{\prime}\right) \leq w\left(M S T_{G}\right)\left(1+\frac{n}{2 k-2}\right)$

Construct skinny polygon P with respect to $M S T_{G}$; for any vertex v, let S_{v} be the set of edges in G^{\prime} that have v as one endpoint but do not belong to $M S T_{G}$; obtain a planar embedding of S_{v} during the DFT of $M S T_{G}$ with root as v

- for any cycle C in G^{\prime} and for any edge $e \in C$,

$$
w(C-\{e\})>(2 k-1) w(e)
$$

- perimeter of P after embedding all the edges in $S_{v}=$

$$
2 w\left(M S T_{G}\right)-((2 k-1)-1) \sum_{e \in S_{v}} w(e)>0
$$

Outline

1 Introduction

2 Based on node clustering (for unweighted graphs)

3 Using a hitting set (for unweighted graphs)

4 MST based

5 A greedy algorithm

6 Conclusions

\square
(A few spanners for undirected graphs)

Significant $(2 k-1)$-spanner algorithms

	size	time	wei
[Althofer et al. '93]	$O\left(n^{1+1 / k}\right)$	$O\left(m n^{1+1 / k}\right)$	w^{5}
[Halperin, Zwick '96]	$O\left(n^{1+1 / k}\right)$	$O(m)$	u
[Cohen '98]	$O\left(n^{1+(2+\epsilon) /(2 k-1)}\right)$	$O\left(m n^{(2+\epsilon) /(2 k-1)}\right)$ expc	pw
[Thorup, Zwick '05]	$O\left(n^{1+1 / k}\right)$	$O\left(k m n^{1 / k}\right) \operatorname{expc}$	w
[Baswana, Sen '07]	$O\left(k n^{1+1 / k}\right)$	$O(k m)$ expc	w

[^5]
Current research (weighted graphs)

- $(2 k-1)$ spanner of size $O\left(n^{1+1 / k}\right)$ in deterministic linear time
- obtaining <3 stretch in $n^{2+o(1)}$ time
- purely additive spanners of size $o\left(n^{4 / 3}\right)$
- pairwise spanners
- fault-tolerant spanners
- minimum-degree spanners
- dynamic spanners
- a combination of the above

References

國 B．Awerbuch．Complexity of network synchronization．Journal of the ACM， 1985.

固 I．Althöfer，G．Das，D．P．Dobkin，D．Joseph，J．Soares．On Sparse Spanners of Weighted Graphs．Discrete \＆Computational Geometry， 1993.

D．Aingworth，C．Chekuri，P．Indyk，R．Motwani．SIAM Journal on Computing， 1999.

E．E．Cohen．Fast algorithms for constructing t－spanners and paths with stretch t ．SIAM Journal on Computing， 1998.

國 M．Thorup，U．Zwick．Approximate distance oracles．Journal of ACM， 2005.
－S．Baswana，S．Sen．A simple and linear time randomized algorithm for computing sparse spanners in weighted graphs．Random Structures \＆ Algorithms， 2007.

References (cont)

P. Erdös. Extreme problems in graph theory. Theory of Graphs and its Applications, 1963.

固 D. Peleg, A. A. Schaffer. Graph spanners. Journal of Graph Theory, 1989.
S. Halperin, U. Zwick. Unpublished result, 1996.

围 U. Zwick. Exact and approximate distances in graphs - a survey. ESA, 2001.
S. Sen. Approximating shortest paths in graphs - a survey. WALCOM, 2009.

Thanks!

[^0]: ${ }^{1}$ these slides are last updated in 2013; in presenting, blackboard is used (A few spanners for undirected graphs)

[^1]: ${ }^{2}$ do note $(2 k-1)$-spanner is also a $2 k$-spanner

[^2]: ${ }^{3}$ cluster means a connected component
 (A few spanners for undirected graphs)

[^3]: ${ }^{4}+4$-spanner with $O\left(n^{7 / 5}\right.$ polylg $)$ edges and +6 spanner with $O\left(n^{4 / 3}\right.$ polylg $)$ edges are known

[^4]: ${ }^{4}+4$-spanner with $O\left(n^{7 / 5}\right.$ polylg $)$ edges and +6 spanner with $O\left(n^{4 / 3}\right.$ polylg $)$ edges are known

[^5]: ${ }^{5} \mathrm{w}$: weighted; u : unweighted; p : positive weighted

