A few *t*-Spanners in the Euclidean plane¹

R. Inkulu http://www.iitg.ac.in/rinkulu/

Outline

1 Introduction

- **2** Θ -graphs
- 3 WSPD based
- 4 Gap-greedy
- 5 Path-greedy
- 6 Conclusions

t-Spanner: definition

Given a set *S* of points in Euclidean plane, network G(S, E) is a *t*-spanner (t > 1) of *S* iff for every $u, v \in V$, $dist_G(u, v) \le t.dist(u, v)$.

Motivation: designing road networks

10-stretch network for US cities

1.2-stretch network for US cities

Making a network by connecting points given in Euclidean plane.²

²example figs are from [Narasimhan, Smid '07]

(A few *t*-Spanners in the Euclidean plane)

・ロト・日本・日本・日本・日本・日本

Motivation

Asymptotic improvement for algorithms that rely on *m*.

Problem

Given a set S of points in Euclidean plane, construct a sparse network G(S, E) that obeys one/many of the following factors:

• low stretch factor
$$(t = max_{p,q \in S} \frac{\delta_G(p,q)}{\delta(p,q)})$$

- O(|S|) number of edges (*sparse*)
- low weight $(\sum_{e \in E} w_e)$
- minimize the maximum degree (*small size*)
- low diameter (conciseness)
- high fault tolerance
- small load factor
- small chromatic number

6/49

Problem description

Let *S* be a set of *n* points in \mathbb{R}^2 , and let t > 1 be a real number.

- Does there exist a *t*-spanner for *S* having at most *O*(*n*) edges?
- If so, find the lower and upper bounds in constructing the same.
- Is it possible to construct *t*-spanners in $O(n \lg n)$ time?
- Weight of such spanner as compared with MST?
- Can we minimize the diameter of the spanner?
- Can we minimize the maximum degree of the spanner?

An application: minimum Steiner tree

Given a set S of points and S' of Steiner points,

wight of Steiner minimum tree of S

- \leq weight of minimum spanning tree of *S*
- \leq 2.weight of Steiner minimum tree of S 3

³when points are in \mathbb{R}^2 , factor 2 got improved to $\frac{2}{\sqrt{3}}$ [Du, Hwang '90] $\neq \Xi \mapsto \overline{\Xi} = \sqrt{2} \otimes (A \text{ few } i\text{-Spanners in the Euclidean plane}) = 8/49$

Spanner degree vs diameter

Any *t*-spanner whose degree is bounded by a constant must have a spanner diameter Ω(lg n)

Another application: *t*-approximate MST

Let *G* be a *t*-spanner of *S*. Then $wt(MST(G)) \le t.wt(MST(S))$.

unioning paths in G corresp. to each edge of MST(S) results in a connected spanning graph G' that is a subgraph of G

Lower bounds

In the algebraic computation tree model, the worst-case lower bound in constructing a spanner of *n* points stands at $\Omega(n \lg n)$.

- not proved

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ = □ = ○ ○ ○ ○

Outline

1 Introduction

2 Θ -graphs

- 3 WSPD based
- 4 Gap-greedy
- 5 Path-greedy
- 6 Conclusions

Observation

For each $p \in S$, among all near-parallel edges incident on p in the complete graph, the Θ -graph retains only the shortest one.

Algorithm: preprocessing

input: set *S* of points in \mathbb{R}^2 , number of cones κ ($\kappa \ge 9$; so that the cone angle $\theta = \frac{2\pi}{\kappa} \in (0, \frac{\pi}{4})$)

let \mathcal{C} be a set of κ cones partitioning the space around origin

- (1) introduce each point in S as a vertex in Θ -graph
- (2) for each point p of S and for each cone C of C, such that the translated cone C_p contains at least one point of S\{p}, introduce an edge (p, r) into Θ-graph if r is a closest point along the bisector of C to p among all the points in C_p⁴

output: undirected graph $\Theta(S, E)$ with |E| is $O(n\kappa)$

⁴ in case of Yao graphs, among all the points in C_p is chosen, closest point to p is chosen 0 < 0(A few *t*-Spanners in the Euclidean plane) 14/49

Algorithm: query

input: two query points p and q in S

- (1) pick a cone *C* in *C* such that $q \in C_p$
- (2) for $r \in C_p$ and pr being an edge of Θ -graph, output r
- (3) if $r \neq q$, set $p \leftarrow r$ and go to the stmt (1)

output: a path between p and q

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○

Analysis: stretch factor

for any point q in C_p and closest point r to p along bisector of C_p ,

- $|pr| \leq \frac{|pq|}{\cos \theta}$
- $|rq| \le |pq| (\cos \theta \sin \theta)|pr|$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

Analysis: stretch factor (cont)

The stretch factor $t = 1/(\cos \theta - \sin \theta)$:

Let $p = p_0, p_1, \dots, p_m = q$ be the path constructed by the query algorithm.

• $|p_{i+1}q| < |p_iq|$

implying that each successive point on this path takes us strictly closer to q

•
$$|p_i p_{i+1}| \leq \frac{1}{\cos \theta - \sin \theta} (|p_i q| - |p_{i+1} q|)$$

For each real constant t > 1, there exists a sparse *t*-spanner.

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つ Q ()

Analysis: complexity

- $O(\kappa n \lg n)$ time (using one plane sweep for each cone)
- using $O(n\kappa)$ space

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ = □ = ○ ○ ○ ○

A sketch of sink spanners

A *q*-sink t-spanner G of a set S of points is a directed graph such that there is a directed t-spanner path from any $p \in S$ to a $q \in S$ in G.

- for each cone C_q, introduce an arc from r to q in C_q, where r ∈ C_q is the closest point along the bisector of C_q among points in S {q}
- recursively define the directed subgraph pivoting at r for points located in C_r by all possible cones in C centered at r

A sketch of sink spanners

A *q*-sink t-spanner G of a set S of points is a directed graph such that there is a directed t-spanner path from any $p \in S$ to a $q \in S$ in G.

- for each cone C_q, introduce an arc from r to q in C_q, where r ∈ C_q is the closest point along the bisector of C_q among points in S {q}
- recursively define the directed subgraph pivoting at r for points located in C_r by all possible cones in C centered at r

The following transformation to any Θ -graph based \sqrt{t} -spanner *G*, leads to achieving a $1/(t-1)^2$ maximum degreed *t*-spanner, but with slightly worse time complexity to compute the same:

- instead of introducing any edge (p, r) into G while considering any cone C_p , introduce arc (p, r) into G
- for every node q in G, let V_q be the set comprising nodes p in S having arcs (p, q) in G, remove every arc (p, q), and include the edges of q-sink √t-spanner of points V_q ∪ q.

- proofs omitted from this presentation

(A few *t*-Spanners in the Euclidean plane)

19/49

Outline

- 1 Introduction
- **2** Θ -graphs
- 3 WSPD based
- 4 Gap-greedy
- 5 Path-greedy
- 6 Conclusions

20/49

Well-separated point sets

Given an *n*-element point set *S* in \mathbb{R}^2 , and a separation factor s > 0, two disjoint sets $A \subseteq S$ and $B \subseteq S$ are *s*-well separated if the sets *A* and *B* can be enclosed in two Euclidean balls of radius *r* such that the closest distance between these balls is at least *sr*.

Well-separated pair decomposition

Given a point set *S* and a separation factor s > 0, a *well-separated pair decomposition (WSPD)* is a collection of pairs of subsets of *S*, denoted $\{\{A_1, B_1\}, \ldots, \{A_m, B_m\}\}$, such that

- 1 $\forall_i A_i, B_i \subseteq S$, for $1 \leq i \leq m$,
- 2 $\forall_i A_i \cap B_i = \phi$, for $1 \le i \le m$,
- $3 \ \bigcup_i A_i \bigotimes B_i = S \bigotimes S = \{\{x, y\} | x \in S, y \in S, x \neq y\}, \text{ and }$
- **4** $\forall_i A_i, B_i$ are *s*-well separated, for $1 \le i \le m$.

(日)

Well-separated pair decomposition

Given a point set *S* and a separation factor s > 0, a *well-separated pair decomposition (WSPD)* is a collection of pairs of subsets of *S*, denoted $\{\{A_1, B_1\}, \ldots, \{A_m, B_m\}\}$, such that

- 1 $\forall_i A_i, B_i \subseteq S$, for $1 \leq i \leq m$,
- 2 $\forall_i A_i \cap B_i = \phi$, for $1 \le i \le m$,
- $3 \ \bigcup_i A_i \bigotimes B_i = S \bigotimes S = \{\{x, y\} | x \in S, y \in S, x \neq y\}, \text{ and }$
- 4 $\forall_i A_i, B_i$ are *s*-well separated, for $1 \le i \le m$.

It is immediate there exists a WSPD of size $O(n^2)$ by setting the $\{A_i, B_i\}$ pairs to each of the distinct pair singletons of *S*; however, the goal is to compute a *s*-WSPD of size $O(s^2n)$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Compressed quadtree for computing a WSPD

• Each set $\{A_i, B_i\}$ of the pair decomposition is encoded as a pair of nodes $\{u, v\}$ in the quadtree. Implicitly, this pair represents the pairs $S_u \bigotimes S_v$. Here, S_u (resp. S_v) is the set of points stored in the subtree rooted at u (resp. v).

(A few t-Spanners in the Euclidean plane)

イロト イポト イヨト イヨト

Computing a WSPD (cont)

compute a compressed quadtree *T*, and augment *T*: if *u* is a leaf node that contains a point *p* (resp. no point), then *u*'s representative, $rep(u) = \{p\}$ (resp. $rep(u) = \phi$); if *u* is an internal node, then it must have a child *v* so that the subtree rooted at *v* has at least one point, set rep(u) = rep(v)

Computing a WSPD (cont)

compute a compressed quadtree *T*, and augment *T*: if *u* is a leaf node that contains a point *p* (resp. no point), then *u*'s representative, $rep(u) = \{p\}$ (resp. $rep(u) = \phi$); if *u* is an internal node, then it must have a child *v* so that the subtree rooted at *v* has at least one point, set rep(u) = rep(v)

computeWSPD(u, v)

- 1 if (*u* and *v* are leaves of *T* and u = v) return //do not pair a leaf with itself
- 2 if (rep(u) or rep(v) is empty) return //no pairs to report
- 3 else if (*u* and *v* are *s*-well separated) return $\{\{u, v\}\}$ //return the WSP $\{S_u, S_v\}$
- 4 else
- if (level(u) > level(v)) swap u and v
 //so that u's cell is at least as large as v's
- 6 return $\bigcup_{u_i \in descendant(u)}$ compute WSPD (u_i, v)

The initial call is compute WSPD(r, r), where *r* is the root of *T*.

(A few t-Spanners in the Euclidean plane)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- The algorithm terminates.
 - terminates if both *u* and *v* are leafs

- The algorithm terminates.
 - terminates if both *u* and *v* are leafs
- Correctness of conditions (1), (2), and (4) are obvious.

- The algorithm terminates.
 - terminates if both *u* and *v* are leafs
- Correctness of conditions (1), (2), and (4) are obvious.
- For every pair of points p', p'' of *S*, there exists an *i* such that $p' \in A_i, p'' \in B_i$, where $\{A_i, B_i\} \in W$.
 - since p' and p'' are well-separated and in the worst-case $\{p'\}$ and $\{p''\}$ are singleton set pair in the WSPD

イロト イポト イヨト イヨト ニヨー

- The algorithm terminates.
 - terminates if both *u* and *v* are leafs
- Correctness of conditions (1), (2), and (4) are obvious.
- For every pair of points p', p'' of *S*, there exists an *i* such that $p' \in A_i, p'' \in B_i$, where $\{A_i, B_i\} \in W$.
 - since p' and p'' are well-separated and in the worst-case $\{p'\}$ and $\{p''\}$ are singleton set pair in the WSPD
- Every unordered pair from S occurs in a *unique* pair $A_i \bigotimes B_i$.
 - homework

イロト イポト イヨト イヨト ニヨー

- The algorithm terminates.
 - terminates if both *u* and *v* are leafs
- Correctness of conditions (1), (2), and (4) are obvious.
- For every pair of points p', p'' of *S*, there exists an *i* such that $p' \in A_i, p'' \in B_i$, where $\{A_i, B_i\} \in W$.
 - since p' and p'' are well-separated and in the worst-case $\{p'\}$ and $\{p''\}$ are singleton set pair in the WSPD
- Every unordered pair from *S* occurs in a *unique* pair $A_i \bigotimes B_i$.

- homework

• Including the time to build the compressed quadtree, which is $O(n \lg n)$, the time to compute the WSPD is $O((n \lg n) + s^2 n)$.

- not presented in this lecture

(A few *t*-Spanners in the Euclidean plane)

Algorithm to compute a $(1 + \epsilon)$ -spanner

- Given a parameter $0 < \epsilon \le 1$, compute a *s*-WSPD with $s = \frac{4(2+\epsilon)}{\epsilon}$ and set the representatives for its nodes.
- For every *s*-WSPD pair $\{S_u, S_v\}$, include an undirected edge between rep(u), rep(v).

< □ ト < @ ト < E ト < E ト = E = のQQ</p>

• If the pair $\{S_u, S_v\}$ is *s*-well separated and $x, x' \in S_u$ and $y, y' \in S_v$, then

• If the pair $\{S_u, S_v\}$ is s-well separated and $x, x' \in S_u$ and $y, y' \in S_v$, then * $||x - x'|| \le 2r = \frac{2r}{sr}(sr) \le \frac{2r}{sr}||x - y|| = \frac{2}{s}||x - y||$, and

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

• If the pair $\{S_u, S_v\}$ is *s*-well separated and $x, x' \in S_u$ and $y, y' \in S_v$, then * $||x - x'|| \le 2r = \frac{2r}{sr}(sr) \le \frac{2r}{sr}||x - y|| = \frac{2}{s}||x - y||$, and * $||x' - y'|| \le ||x' - x|| + ||x - y|| + ||y - y'||$

• If the pair $\{S_u, S_v\}$ is *s*-well separated and $x, x' \in S_u$ and $y, y' \in S_v$, then * $||x - x'|| \le 2r = \frac{2r}{sr}(sr) \le \frac{2r}{sr}||x - y|| = \frac{2}{s}||x - y||$, and * $||x' - y'|| \le ||x' - x|| + ||x - y|| + ||y - y'||$ $\le \frac{2}{s}||x - y|| + ||x - y|| + \frac{2}{s}||x - y|| = (1 + \frac{4}{s})||x - y||.$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Stretch of the spanner is $1 + \epsilon$

Proving $\delta_G(x, y) \leq (1 + \epsilon) \cdot ||x - y||$ by induction on the number of edges of the shortest path between *x* and *y* in the spanner:

if there is no edge between x and y in G, then $\begin{aligned} &\delta_G(x,y) \leq \delta_G(x,x') + \delta_G(x',y') + \delta_G(y',y), \text{ where } x, y \text{ respectively lie in } S_u, S_v \text{ for a WSP} \\ &\{S_u, S_v\} \text{ with } x' = rep(u), y' = rep(v) \end{aligned}$ $\leq \delta_G(x,x') + ||x' - y'|| + \delta_G(y',y), \text{ since there is an edge beween } x' \text{ and } y' \text{ in } G \end{aligned}$ $\leq (1 + \epsilon)(||x - x'|| + ||y - y'||) + ||x' - y'||, \text{ indhyp is applied since a shortest path from x to } x' \text{ (resp. y to } y') \text{ is a subpath of a shortest path from } x \text{ to } y \text{ and hence has lesser number of edges} \end{aligned}$ $\leq (1 + \epsilon)(2\frac{2}{s}||x - y||) + (1 + \frac{4}{s})||x - y||, \text{ from the above two observations}$ $= (1 + \frac{4(2+\epsilon)}{s})||x - y|| \end{aligned}$

Further, it is immediate that $||x - y|| \le \delta_G(x, y)$.

28/49

More analysis

- size is $O(s^2n)$, that is, $O((\frac{4(2+\epsilon)}{\epsilon})^2n) = O((\frac{12}{\epsilon})^2n)$
- time to compute is $O(n \lg n + s^2 n)$, that is, $O(n \lg n + (\frac{12}{\epsilon})^2 n)$.
- degree can be made $O(\frac{1}{\epsilon^3})$ with the help of sink spanners and by choosing the representatives at each node in a specific way

Heavy path decomposition of a binary tree

- By introducing dummy nodes, transform the compressed quadtree *T*' into a binary tree *T*.
- Partition the nodes of *T* into *n* maximal chains, each containing a unique leaf, wherein for any edge (*u*, *v*) belonging to any such path with *u* being the parent of *v*, the number of leaves in *T_v* is greater than or equal to the number of leaves in the tree rooted at the other child of *u*.

Obtaining a spanner with $(2 \lg n) - 1$ **diameter**

In constructing a WSPD-based spanner, for every node *u* of *T*, by choosing the leaf whose chain contains *u* as the representative of points stored at the leaves of T_u yields a $(1 + \epsilon)$ -spanner with diameter $2(\lg n) - 1$:

- for any point p ∈ S with p ∈ A_i where (A_i, B_i) is a WSP, by induction on |A_i|, there is a t-spanner path of length at most lg |A_i| from p to the rep(A_i)
- indeed, due to heavy path decomposition of *T*, for a WSPD-pair (A_j, B_j) with $p \in A_j$ and $rep(A_i) \in B_j$, $rep(A_i)$ must also be the representative of B_j
- again, due to heavy path decomposition of T, $|A_j| \le |A_i|/2$
- for any two points p, q ∈ S with p ∈ A_k and q ∈ B_k, the length of a (1 + ε)-spanner path between p and q is at most (lg |A_k|) + 1 + (lg |B_k|), which is 2(lg n) − 1

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Outline

- 1 Introduction
- **2** Θ -graphs
- 3 WSPD based

4 Gap-greedy

- 5 Path-greedy
- 6 Conclusions

32/49

Gap property

Let $w \ge 0$ be a real number, and let *E* be a set of directed edges in \mathbb{R}^d

- *E* satisfies *w*-*gap property* whenever for any two distinct edges (p, q) and (r, s) in *E*, we have $|pr| > w \min(|pq|, |rs|)$
- *E* satisfies *strong w-gap property* whenever *E* satisfies w-gap property together with $|qs| > w \min(|pq|, |rs|)$

Gap theorem

Let *S* be a set of *n* points in \mathbb{R}^d , and let $E \subseteq S \times S$ be a set of directed edges that satisfy the *w*-gap property.

- if $w \ge 0$, then each point of *S* is the source of at most one edge of *E*
- if w ≥ 0, and E satisfies the strong w-gap property, then each point of S is the sink of at most one edge of E.

(A few *t*-Spanners in the Euclidean plane)

Let *S* be a set of *n* points in \mathbb{R}^d , and let $E \subseteq S \times S$ be a set of *m* directed edges that satisfy the *w*-gap property. If w > 0, then $wt(E) < (1 + \frac{2}{w}).wt(MST(S)) \lg n$.

Let *S* be a set of *n* points in \mathbb{R}^d , and let $E \subseteq S \times S$ be a set of *m* directed edges that satisfy the *w*-gap property. If w > 0, then $wt(E) < (1 + \frac{2}{w}).wt(MST(S)) \lg n$.

claim: E contains a subset E' of size ^m/₂, such that wt(E') < (²/_w)wt(MST(S)).

Let *S* be a set of *n* points in \mathbb{R}^d , and let $E \subseteq S \times S$ be a set of *m* directed edges that satisfy the *w*-gap property. If w > 0, then $wt(E) < (1 + \frac{2}{w}).wt(MST(S)) \lg n$.

- claim: E contains a subset E' of size ^m/₂, such that wt(E') < (²/_w)wt(MST(S)).
 - * number of edges of *E* according to the order in which their sources are visited by an optimal TSP of *S*; consider the portion $T_i = (p_{k_{2i-1}}, p_{k_{2i-1}} + 1, \dots, p_{k_{2i}})$ of TSP(S) between the sources of two successive edges e_{2i-1} and e_{2i} , where $1 \le i \le m/2$

35/49

Let *S* be a set of *n* points in \mathbb{R}^d , and let $E \subseteq S \times S$ be a set of *m* directed edges that satisfy the *w*-gap property. If w > 0, then $wt(E) < (1 + \frac{2}{w}).wt(MST(S)) \lg n$.

- claim: E contains a subset E' of size ^m/₂, such that wt(E') < (²/_w)wt(MST(S)).
 - * number of edges of *E* according to the order in which their sources are visited by an optimal TSP of *S*; consider the portion $T_i = (p_{k_{2i-1}}, p_{k_{2i-1}} + 1, \dots, p_{k_{2i}})$ of TSP(S) between the sources of two successive edges e_{2i-1} and e_{2i} , where $1 \le i \le m/2$
 - * $|p_{k_{2i-1}}p_{k_{2i}}| \le wt(T_i)$ and $|p_{k_{2i-1}}p_{k_{2i}}| > w\min(|e_{2i-1}|, |e_{2i}|) \Rightarrow \min(|e_{2i-1}|, |e_{2i}|) < \frac{1}{w} \cdot wt(T_i)$

A B > A B > A B > B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

Let *S* be a set of *n* points in \mathbb{R}^d , and let $E \subseteq S \times S$ be a set of *m* directed edges that satisfy the *w*-gap property. If w > 0, then $wt(E) < (1 + \frac{2}{w}).wt(MST(S)) \lg n$.

- claim: E contains a subset E' of size ^m/₂, such that wt(E') < (²/_w)wt(MST(S)).
 - * number of edges of *E* according to the order in which their sources are visited by an optimal TSP of *S*; consider the portion $T_i = (p_{k_{2i-1}}, p_{k_{2i-1}} + 1, \dots, p_{k_{2i}})$ of TSP(S) between the sources of two successive edges e_{2i-1} and e_{2i} , where $1 \le i \le m/2$
 - * $|p_{k_{2i-1}}p_{k_{2i}}| \le wt(T_i)$ and $|p_{k_{2i-1}}p_{k_{2i}}| > w\min(|e_{2i-1}|, |e_{2i}|) \Rightarrow \min(|e_{2i-1}|, |e_{2i}|) < \frac{1}{w} \cdot wt(T_i)$ * $\sum_{i=1}^{m/2} \min(|e_{2i-1}, e_{2i}|) \le \frac{1}{w} \cdot wt(TSP(S))$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let *S* be a set of *n* points in \mathbb{R}^d , and let $E \subseteq S \times S$ be a set of *m* directed edges that satisfy the *w*-gap property. If w > 0, then $wt(E) < (1 + \frac{2}{w}).wt(MST(S)) \lg n$.

- claim: E contains a subset E' of size ^m/₂, such that wt(E') < (²/_w)wt(MST(S)).
 - * number of edges of *E* according to the order in which their sources are visited by an optimal TSP of *S*; consider the portion $T_i = (p_{k_{2i-1}}, p_{k_{2i-1}} + 1, \dots, p_{k_{2i}})$ of TSP(S) between the sources of two successive edges e_{2i-1} and e_{2i} , where $1 \le i \le m/2$
 - * $|p_{k_{2i-1}}p_{k_{2i}}| \le wt(T_i)$ and $|p_{k_{2i-1}}p_{k_{2i}}| > w\min(|e_{2i-1}|, |e_{2i}|) \Rightarrow \min(|e_{2i-1}|, |e_{2i}|) < \frac{1}{w} \cdot wt(T_i)$ * $\sum_{i=1}^{m/2} \min(|e_{2i-1}, e_{2i}) \le \frac{1}{w} \cdot wt(TSP(S))$
- by induction on m

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Observation

Let t, θ , and w be real numbers, such that $0 < \theta < \pi/4$, $0 \le w < (\cos \theta - \sin \theta)/2$, and $t \ge 1/(\cos \theta - \sin \theta - 2w)$. Let p, q, r, and s be points in \mathbb{R}^d , such that

- $p \neq q, r \neq s$,
- $angle(pq, rs) \le \theta$, (r, s) is almost parallel to (p, q)
- $|rs| \le |pq|/\cos \theta$, |rs| is not much larger than |pq|
- $|pr| \le w|rs|$. r is close to p

Then |pr| < |pq|, |sq| < |pq|, and $t|pr| + |rs| + t|sq| \leq t|pq|$. - not proved

(A few t-Spanners in the Euclidean plane)

Another observation

Let θ , *w*, and *t* be real numbers such that $0 < \theta < \pi/4$, $0 \le w < (\cos \theta - \sin \theta)/2$, and $t \ge 1/(\cos \theta - \sin \theta - 2w)$. Let *S* be a set of *n* points in the plane, and let G(S, E) be a directed graph, such that the following holds: for any two distinct points *p* and *q* of *S*, there is an edge $(r, s) \in E$, such that

- $angle(pq, rs) \le \theta$
- $|rs| \le |pq|/\cos\theta$
- $|pr| \le w|rs|$ or $|qs| \le w|rs|$.

Then, the graph G is a t-spanner for S.

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つ Q ()

The gap-greedy algorithm⁵

Consider all ordered pairs of distinct points in nondecreasing order of their distances. An edge (p,q) is added iff including (p,q) into the current edge set *E* does not make the new set to violate the *w*-strong gap property.

⁵from [Arya, Smid '97]

(A few t-Spanners in the Euclidean plane)

when $0 < \theta < \pi/4$ and $0 \le w \le (\cos \theta - \sin \theta)/2$,

• stretch factor $1/(\cos\theta - \sin\theta - 2w)$

when $0 < \theta < \pi/4$ and $0 \le w \le (\cos \theta - \sin \theta)/2$,

• stretch factor
$$1/(\cos\theta - \sin\theta - 2w)$$

• maximum degree $\leq 2 \lceil 2\pi/\theta \rceil$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ = □ = ○ ○ ○ ○

when $0 < \theta < \pi/4$ and $0 \le w \le (\cos \theta - \sin \theta)/2$,

- stretch factor $1/(\cos\theta \sin\theta 2w)$
- maximum degree $\leq 2\lceil 2\pi/\theta \rceil$
- weight $\leq \lceil 2\pi/\theta \rceil (1 + 2/w) wt(MST(S)) \lg n$

when $0 < \theta < \pi/4$ and $0 \le w \le (\cos \theta - \sin \theta)/2$,

- stretch factor $1/(\cos\theta \sin\theta 2w)$
- maximum degree $\leq 2\lceil 2\pi/\theta \rceil$
- weight $\leq \lceil 2\pi/\theta \rceil (1 + 2/w) wt(MST(S)) \lg n$
- construction time $O(n^3)$

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Analysis: optimizing parameters to minimize the weight

when $\theta = (t - 1)/2$ and w = (t - 1)/4,

- stretch factor t
- maximum degree is O(1/(t-1))
- weight is $O((1/(t-1)^2) \cdot wt(MST(S)) \lg n)$
- construction time $O(n^3)^6$

⁶a modified implementation yields $O(n(\lg n)^2)$ time. (A few t-Spanners in the Euclidean plane)

Outline

- 1 Introduction
- **2** Θ -graphs
- **3** WSPD based
- 4 Gap-greedy
- **5** Path-greedy
- 6 Conclusions

The path-greedy algorithm⁷

Construct spanner *G* while onsidering pairs of points in nondecreasing order of distances: add an edge *e* between the considered pair (u, v) only if $d_G(u, v) > t.d(u, v)$.

⁷ from [Das, Heffernan, Narasimhan '93]

⁽A few t-Spanners in the Euclidean plane)

- *t*-spanner
- $O(n^2(m + n \lg n))$ time to compute
- node degree is O(1/(t-1)) not proved: analysis is a bit involved
- O(n) size with weight $O((\lg n)w(MST))$ not proved: analysis is a bit involved

has many good characteristics but the computation time is high

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- *t*-spanner
- $O(n^2(m + n \lg n))$ time to compute
- node degree is O(1/(t-1)) not proved: analysis is a bit involved
- O(n) size with weight $O((\lg n)w(MST))$ not proved: analysis is a bit involved

has many good characteristics but the computation time is high

several optimizations in constructing an approximate path-greedy spanner led to achiving a computation time of $O(n(\lg n)^2/(\lg \lg n))$ while the resulting spanner being sparse with weight $O(\frac{1}{(t-1)^4}w(MST))$ and degree $O(1/(t-1)^3)$

Outline

- 1 Introduction
- **2** Θ -graphs
- 3 WSPD based
- 4 Gap-greedy
- 5 Path-greedy

6 Conclusions

Comparison of *t***-spanners**

• Parameters based on which spanners presented here are compared: stretch, time to compute, size, weight, diameter, and maximum node degree

Comparison of *t***-spanners**

- Parameters based on which spanners presented here are compared: stretch, time to compute, size, weight, diameter, and maximum node degree
- Θ -graph based
- WSPD based
- Greedy algorithms: gap-greedy, path-greedy ← excellent features but the construction time is a bottleneck

(日)

Current research

- specialized: plane, single-source, pairwise
- amid obstacles
- Steiner
- in \mathbb{R}^3
- expected analysis
- dynamic spanners
- kinetic spanners
- energy-efficient
- multicriteria

. . .

46/49

References

- Giri Narasimhan, Michiel Smid. Geometric Spanner Networks. Cambridge University Press, 2007.
- Sunil Arya, Michiel Smid. Efficient construction of a bounded-degree spanner with low weight. Algorithmica, 1997.
- B. Chandra, G. Das, G. Narasimhan, J. Soares. New sparseness results on graph spanners. IJCGA, 1995.
- P. B. Callahan, S. R. Kosaraju. A decomposition of multidimensional point sets with applications to *k*-nearest-neighbors and *n*-body potential fields. JACM, 1995.

References (cont)

- Sunil Arya, Gautam Das, Dave M. Mount, J. S. Salow, Michiel Smid. Euclidean spanners: short, thin, and lanky. STOC, 1995.
- Sunil Arya, David M. Mount, Michiel Smid. Randomized and deterministic algorithms for geometric spanners of small diameter. FOCS, 1994.
- G. Das, P. Heffernan, G. Narasimhan. Optimally sparse spanners in 3-dimensional Euclidean space. SoCG, 1993.
- Kenneth L. Clarkson. Approximation alorithms for shortest path motion planning. STOC, 1987.

(日)

Thanks!

(A few t-Spanners in the Euclidean plane)