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t-Spanner: definition

Given a set S of points in Euclidean plane, network G(S,E) is a t-spanner
(t > 1) of S iff for every u, v ∈ V , distG(u, v) ≤ t.dist(u, v).
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Motivation: designing road networks

10-stretch network for US cities 1.2-stretch network for US cities

Making a network by connecting points given in Euclidean plane. 2

2example figs are from [Narasimhan, Smid ’07]
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Motivation

Asymptotic improvement for algorithms that rely on m.
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Problem

Given a set S of points in Euclidean plane, construct a sparse network G(S,E)
that obeys one/many of the following factors:

• low stretch factor (t = maxp,q∈S
δG(p,q)
δ(p,q) )

• O(|S|) number of edges (sparse)

• low weight (
∑

e∈E we)

• minimize the maximum degree (small size)

• low diameter (conciseness)

• high fault tolerance

• small load factor

• small chromatic number
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Problem description

Let S be a set of n points in R2, and let t > 1 be a real number.

• Does there exist a t-spanner for S having at most O(n) edges?

• If so, find the lower and upper bounds in constructing the same.

• Is it possible to construct t-spanners in O(n lg n) time?

• Weight of such spanner as compared with MST?

• Can we minimize the diameter of the spanner?

• Can we minimize the maximum degree of the spanner?
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An application: minimum Steiner tree

Given a set S of points and S′ of Steiner points,

wight of Steiner minimum tree of S

≤ weight of minimum spanning tree of S

≤ 2.weight of Steiner minimum tree of S 3

3when points are in R2, factor 2 got improved to 2√
3

[Du, Hwang ’90]
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Spanner degree vs diameter

• Any t-spanner whose degree is bounded by a constant must have a
spanner diameter Ω(lg n)
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Another application: t-approximate MST

Let G be a t-spanner of S. Then wt(MST(G)) ≤ t.wt(MST(S)).

unioning paths in G corresp. to each edge of MST(S) results in a
connected spanning graph G′ that is a subgraph of G
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Lower bounds

In the algebraic computation tree model, the worst-case lower bound in
constructing a spanner of n points stands at Ω(n lg n).

— not proved
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Observation

For each p ∈ S, among all near-parallel edges incident on p in the complete
graph, the Θ-graph retains only the shortest one.
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Algorithm: preprocessing

rp
Cp

input: set S of points in R2, number of cones κ (κ ≥ 9; so that the cone angle
θ = 2π

κ ∈ (0, π4 ))

let C be a set of κ cones partitioning the space around origin

(1) introduce each point in S as a vertex in Θ-graph

(2) for each point p of S and for each cone C of C, such that the translated
cone Cp contains at least one point of S\{p}, introduce an edge (p, r)
into Θ-graph if r is a closest point along the bisector of C to p among all
the points in Cp

4

output: undirected graph Θ(S,E) with |E| is O(nκ)
4in case of Yao graphs, among all the points in Cp is chosen, closest point to p is chosen
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Algorithm: query

input: two query points p and q in S

(1) pick a cone C in C such that q ∈ Cp

(2) for r ∈ Cp and pr being an edge of Θ-graph, output r

(3) if r ̸= q, set p← r and go to the stmt (1)

output: a path between p and q
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Analysis: stretch factor

for any point q in Cp and closest point r to p along bisector of Cp,

• |pr| ≤ |pq|
cos θ

• |rq| ≤ |pq| − (cos θ − sin θ)|pr|
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Analysis: stretch factor (cont)

The stretch factor t = 1/(cos θ − sin θ):

Let p = p0, p1, . . . , pm = q be the path constructed by the query
algorithm.

• |pi+1q| < |piq|
implying that each successive point on this path takes us strictly closer to q

• |pipi+1| ≤ 1
cos θ−sin θ (|piq| − |pi+1q|)

For each real constant t > 1, there exists a sparse t-spanner.
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Analysis: complexity

• O(κn lg n) time (using plane sweep)

• using O(nκ) space
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Optimizing other parameters

max degree of the spanner

• sink spanner

diameter of the spanner

• skip-list spanner
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Gap property

p

r

q

s

Let w ≥ 0 be a real number, and let E be a set of directed edges in Rd

• E satisfies w-gap property whenever for any two distinct edges (p, q) and
(r, s) in E, we have |pr| > wmin(|pq|, |rs|)

• E satisfies strong w-gap property whenever E satisfies w-gap property
together with |qs| > wmin(|pq|, |rs|)
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Gap theorem

p

r

q

s

Let S be a set of n points in Rd, and let E ⊆ S× S be a set of directed edges
that satisfy the w-gap property.

• if w ≥ 0, then each point of S is the source of at most one edge of E

• if w ≥ 0, and E satisfies the strong w-gap property, then each point of S
is the sink of at most one edge of E.
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Gap theorem (cont)

Let S be a set of n points in Rd, and let E ⊆ S× S be a set of m directed edges
that satisfy the w-gap property. If w > 0, then
wt(E) < (1 + 2

w).wt(MST(S)) lg n.

• claim: E contains a subset E′ of size m
2 , such that

wt(E′) < ( 2
w)wt(MST(S)).

* number of edges of E according to the order in which their sources are visited by an optimal
TSP of S; consider the portion Ti = (pk2i−1 , pk2i−1 + 1, . . . , pk2i ) of TSP(S) between the
sources of two successive edges e2i−1 and e2i, where 1 ≤ i ≤ m/2

* |pk2i−1 pk2i | ≤ wt(Ti) and
|pk2i−1 pk2i | > wmin(|e2i−1|, |e2i|) ⇒ min(|e2i−1|, |e2i|) < 1

w · wt(Ti)

*
∑m/2

i=1 min(|e2i−1, e2i) ≤ 1
w · wt(TSP(S))

• by induction on m
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Observation

Let t, θ, and w be real numbers, such that 0 < θ < π/4,
0 ≤ w < (cos θ − sin θ)/2, and t ≥ 1/(cos θ − sin θ − 2w). Let p, q, r, and s
be points in Rd, such that

• p ̸= q, r ̸= s,

• angle(pq, rs) ≤ θ, (r, s) is almost parallel to (p, q)

• |rs| ≤ |pq|/ cos θ, |rs| is not much larger than |pq|

• |pr| ≤ w|rs|. r is close to p

Then |pr| < |pq|, |sq| < |pq|, and t|pr|+ |rs|+ t|sq| ≤ t|pq|. — not proved
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Another observation

Let θ,w, and t be real numbers such that 0 < θ < π/4,
0 ≤ w < (cos θ− sin θ)/2, and t ≥ 1/(cos θ− sin θ− 2w). Let S be a set of n
points in the plane, and let G(S,E) be a directed graph, such that the
following holds: for any two distinct points p and q of S, there is an edge
(r, s) ∈ E, such that

• angle(pq, rs) ≤ θ

• |rs| ≤ |pq|/ cos θ

• |pr| ≤ w|rs| or |qs| ≤ w|rs|.

Then, the graph G is a t-spanner for S.
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The gap-greedy algorithm5

Consider all ordered pairs of distinct points in nondecreasing order of their
distances. An edge (p, q) is added iff including (p, q) into the current edge set
E does not make the new set to violate the w-strong gap property.

5from [Arya, Smid ’97]
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Analysis

when 0 < θ < π/4 and 0 ≤ w ≤ (cos θ − sin θ)/2,

• stretch factor 1/(cos θ − sin θ − 2w)

• maximum degree ≤ 2⌈2π/θ⌉

• weight ≤ ⌈2π/θ⌉(1 + 2/w)wt(MST(S)) lg n

• construction time O(n3)
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Analysis: optimizing parameters to minimize the
weight

when θ = (t − 1)/2 and w = (t − 1)/4,

• stretch factor t

• maximum degree is O(1/(t − 1))

• weight is O((1/(t − 1)2) · wt(MST(S)) lg n)

• construction time O(n3) 6

6a modified implementation yields O(n(lg n)2) time.
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WSPD: Definition

uε>= (1/ ) d

u

dv

VU

d

sets that are (1/ϵ)-separated.
For a point set P, a well-separated pair decomposition (WSPD) of P with
parameter ϵ is a set of pairs W = {{A1,B1}, . . . , {Am,Bm}} such that

(1) ∀iAi,Bi ⊂ P

(2) ∀iAi ∩ Bi = ϕ

(3)
⋃

i Ai
⊗

Bi = P
⊗

P = {{x, y}|x ∈ P, y ∈ P, x ̸= y}

(4) ∀iAi,Bi are (1/ϵ)-separated.
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Using quadtree to compute a WSPD

e

f
b

c

a

d

(a) point set

a

b
c

fd e

v
3

v
1

v
2

(b) WSPD with ϵ = 1
2

For the sake of efficiency, we retrieve a WSPD from compressed quadtree.

size of WSPD: O(( 1
ϵ )

dn); construction time: O(n lg n + n
ϵd )
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Spanner construction using WSPD
choose a representative repR ∈ R for every set R in (1/δ)-WSPD; for every
{U,V} ∈ (1/δ)-WSPD, add an edge between repU ∈ U and repV ∈ V
resulting in (1 + ϵ)-spanner G of S.

u

dv

VU

d

δ>= (1/   )d u

x

yv
rep rep  u

induction on the increasing length of pairwise distances’ of points in P
dG(x, y) ≤ (1 + ϵ)dist(x, y)

• dist(repU, repV) ≤ (1 + 2δ)dist(x, y)

• max(dist(repU, x), dist(repV , y)) ≤ δdist(repU, repV)

• further, to apply induction hypotheses, choose a δ such that
max(dist(repU, x), dist(repV , y)) < dist(x, y)
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Analysis

• O(n) size (in practice, size grows with n much faster than Θ-graph based or greedy algorithms)

• weight is O((lg n)wt(MST))

• degree is O(n)

• construction time is O(n lg n)
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The path-greedy algorithm7

Construct spanner G while onsidering pairs of points in nondecreasing order
of distances: add an edge e between the considered pair (u, v) only if
dG(u, v) > t.d(u, v).

7from [Das, Heffernan, Narasimhan ’93]
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Analysis

• t-spanner

• O(n2(m + n lg n)) time (improved algorithms that compute only O(n) SSSPs do exist)
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Analysis (cont)

• O(n) size

• constant degree

• weight is O((lg n)w(MST))

— not proved: analysis is a bit involved

has many good characteristics but the computation time is high
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Comparison of t-spanners

• Greedy← excellent features but the construction time is the bottleneck

• Θ-graph based

• WSPD based
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Current research

• specialized: plane, single-source, pairwise

• amid obstacles

• Steiner

• in R3

• expected analysis

• dynamic spanners

• kinetic spanners

• energy-efficient

• multicriteria

. . .
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Thanks!
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