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1 Introduction
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t-Spanner: definition

Given a set S of points in Euclidean plane, network G(S, E) is a t-spanner
(t > 1) of S iff for every u,v € V, distg(u,v) < t.dist(u,v).
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Motivation: designing road networks

10-stretch network for US cities

1.2-stretch network for US cities
Making a network by connecting points given in Euclidean plane. 2

example figs are from [Narasimhan, Smid "07]
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Motivation

Asymptotic improvement for algorithms that rely on m.
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Problem

Given a set S of points in Euclidean plane, construct a sparse network G(S, E)
that obeys one/many of the following factors:

® Jow stretch factor (¢ = maxpvq@%)

® O(|S|) number of edges (sparse)

® low weight (3, .z we)

® minimize the maximum degree (small size)
® Jow diameter (conciseness)

® high fault tolerance

e small load factor

® small chromatic number
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Problem description

Let S be a set of n points in R?, and let # > 1 be a real number.

® Does there exist a -spanner for S having at most O(n) edges?

If so, find the lower and upper bounds in constructing the same.

Is it possible to construct z-spanners in O(nlgn) time?

Weight of such spanner as compared with MST?
® Can we minimize the diameter of the spanner?

® Can we minimize the maximum degree of the spanner?
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An application: minimum Steiner tree

Given a set S of points and S’ of Steiner points,
wight of Steiner minimum tree of §
< weight of minimum spanning tree of S

< 2.weight of Steiner minimum tree of S 3

*when points are in R?, factor 2 got improved to iﬁ [Du, Hwang *90]
/3
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Spanner degree vs diameter

® Any t-spanner whose degree is bounded by a constant must have a
spanner diameter 2(lg n)
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Another application: r-approximate MST

Let G be a r-spanner of S. Then wt(MST(G)) < t.wt(MST(S)).

unioning paths in G corresp. to each edge of MST(S) results in a
connected spanning graph G’ that is a subgraph of G
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Lower bounds

In the algebraic computation tree model, the worst-case lower bound in
constructing a spanner of n points stands at Q(nlgn).

— not proved
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2 ©-graphs
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Observation

For each p € §, among all near-parallel edges incident on p in the complete
graph, the ©-graph retains only the shortest one.
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Algorithm: preprocessing

C,

input: set S of points in R?, number of cones  (x > 9; so that the cone angle
0=2¢e(0,%)

let C be a set of k cones partitioning the space around origin

(@ introduce each point in S as a vertex in ©-graph

@) for each point p of S and for each cone C of C, such that the translated
cone C, contains at least one point of S\ {p}, introduce an edge (p, r)
into ©-graph if r is a closest point along the bisector of C to p among all
the points in C,
) with |E| is O(nk)
“in case of Yao graphs, among all the points in C, is chosen, closestpointto p is chosen
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Algorithm: query

input: two query points p and g in S
() pick a cone C in C such that g € Cp
@ for r € C, and pr being an edge of ©-graph, output r

@) if r # g, set p « r and go to the stmt (1)

output: a path between p and ¢
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Analysis: stretch factor

for any point g in C,, and closest point r to p along bisector of C,,
o |prl < 24

cos 6

* |rql < lpg| — (cos 6 — sin)|pr|
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Analysis: stretch factor (cont)

The stretch factor t = 1/(cos 6 — sin6):

Let p = po,p1,--.,Pm = q be the path constructed by the query
algorithm.

* |pit149] < |piq|
implying that each successive point on this path takes us strictly closer to g

® pipiv1| < mﬂpifﬂ — |pit14l)

For each real constant ¢ > 1, there exists a sparse f-spanner.

(A few r-Spanners in the Euclidean plane) 17/43



Analysis: complexity

® O(knlgn) time (using plane sweep)

® using O(nk) space
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Optimizing other parameters

max degree of the spanner

® sink spanner

diameter of the spanner

® skip-list spanner
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3 Gap-Greedy
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Gap property

Let w > 0 be a real number, and let E be a set of directed edges in R

® F satisfies w-gap property whenever for any two distinct edges (p, ¢) and
(r,s) in E, we have |pr| > wmin(|pg], |rs|)

e F satisfies strong w-gap property whenever E satisfies w-gap property
together with |gs| > wmin(|pg|, |rs|)
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Gap theorem

Let S be a set of n points in R?, and let E C S x S be a set of directed edges
that satisfy the w-gap property.

e if w > 0, then each point of § is the source of at most one edge of £

e if w > 0, and E satisfies the strong w-gap property, then each point of S
is the sink of at most one edge of E.
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Gap theorem (cont)

Let S be a set of n points in R¢, and let E C S x S be a set of m directed edges

that satisfy the w-gap property. If w > 0, then
wt(E) < (1 + 2).wt(MST(S)) Ign.
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Gap theorem (cont)

Let S be a set of n points in R¢, and let E C S x S be a set of m directed edges

that satisfy the w-gap property. If w > 0, then
wt(E) < (1 + 2).wt(MST(S)) Ign.

® claim: E contains a subset E’ of size %, such that
wi(E') < (%)wt(MST(S)).
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Gap theorem (cont)

Let S be a set of n points in R¢, and let E C S x S be a set of m directed edges

that satisfy the w-gap property. If w > 0, then
wt(E) < (1 + 2).wt(MST(S)) Ign.

® claim: E contains a subset E’ of size %, such that
wi(E') < (2)wr(MST(S)).
* number of edges of E according to the order in which their sources are visited by an optimal

TSP of S; consider the portion T; = (pry,_ |, Pky;_, + 1, -+, Pky;) of TSP(S) between the
sources of two successive edges ep;— and ey;, where 1 < i < m/2
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Gap theorem (cont)

Let S be a set of n points in R¢, and let E C S x S be a set of m directed edges

that satisfy the w-gap property. If w > 0, then
wt(E) < (1 + 2).wt(MST(S)) Ign.

® claim: E contains a subset E’ of size %, such that
wi(E') < (2)wr(MST(S)).
* number of edges of E according to the order in which their sources are visited by an optimal

TSP of S; consider the portion T; = (pry,_ |, Pky;_, + 1, -+, Pky;) of TSP(S) between the
sources of two successive edges ep;— and ey;, where 1 < i < m/2

* |Phy_ Py | < wi(T:) and
[Phos_ 1 Phr;] > wmin(Jezi—1], |ezi]) = min(ley—1], |exi]) < L - wr(T;)
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Gap theorem (cont)

Let S be a set of n points in R¢, and let E C S x S be a set of m directed edges
that satisfy the w-gap property. If w > 0, then
wt(E) < (1 + 2).wt(MST(S)) Ign.

® claim: E contains a subset E’ of size %, such that
wi(E') < (%)wt(MST(S)).

* number of edges of E according to the order in which their sources are visited by an optimal

TSP of S; consider the portion T; = (pry,_ |, Pky;_, + 1, -+, Pky;) of TSP(S) between the
sources of two successive edges ep;— and ey;, where 1 < i < m/2

* |Phy_ Py | < wi(T:) and
[Phos_ 1 Phr;] > wmin(Jezi—1], |ezi]) = min(ley—1], |exi]) < L - wr(T;)

* 3T min(leyi—y, ex) < L wi(TSP(S))
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Gap theorem (cont)

Let S be a set of n points in R¢, and let E C S x S be a set of m directed edges
that satisfy the w-gap property. If w > 0, then
wt(E) < (1 + 2).wt(MST(S)) Ign.

® claim: E contains a subset E’ of size %, such that
wi(E') < (%)wt(MST(S)).

* number of edges of E according to the order in which their sources are visited by an optimal

TSP of S; consider the portion T; = (pry,_ |, Pky;_, + 1, -+, Pky;) of TSP(S) between the
sources of two successive edges ep;— and ey;, where 1 < i < m/2

* |Phy_ Py | < wi(T:) and
[Phos_ 1 Phr;] > wmin(Jezi—1], |ezi]) = min(ley—1], |exi]) < L - wr(T;)

* 3T min(leyi—y, ex) < L wi(TSP(S))

® by induction on m
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Observation

/ | [

14 q p q

Let z,60, and w be real numbers, such that 0 < 6 < 7 /4,
0<w< (cosf —sinh)/2,andt > 1/(cosf — sinf — 2w). Let p,q,r, and s
be points in R?, such that

*PFGrES,

L angle(pq, I"S) <4, (r, 5) is almost parallel to (p, q)
L4 |rs| < \pq\/ cos 0, |rs| is not much larger than |pg|
L ]pr| < W|I’S|. ris close to p

Then |pr| < |pq|, |sq| < |pq|. and t|pr| + |rs| + t|sq| < t|pg|. — not proved
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Another observation

Let 6, w, and ¢ be real numbers such that 0 < § < 7 /4,

0<w< (cosf—sinf)/2,andt > 1/(cos @ —sinf —2w). Let S be a set of n
points in the plane, and let G(S, E) be a directed graph, such that the
following holds: for any two distinct points p and g of S, there is an edge
(r,s) € E, such that

® angle(pq,rs) < 0
® |rs| < |pgl|/cos6
o |pr| < wirs| or |gs| < wirs].

Then, the graph G is a ¢-spanner for S.
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The gap-greedy algorithm’

Consider all ordered pairs of distinct points in nondecreasing order of their
distances. An edge (p, q) is added iff including (p, ¢) into the current edge set
E does not make the new set to violate the w-strong gap property.

Sfrom [Arya, Smid *97]
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Analysis

when0 < 0 < 7/4and 0 < w < (cosf —sinf)/2,

e stretch factor 1/(cos € — sinf — 2w)
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Analysis

when0 < 0 < 7/4and 0 < w < (cosf —sinf)/2,

e stretch factor 1/(cos € — sinf — 2w)

¢ maximum degree < 2[27/6|
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Analysis

when0 < 0 < 7/4and 0 < w < (cosf —sinf)/2,

e stretch factor 1/(cos € — sinf — 2w)
¢ maximum degree < 2[27/6]

o weight < [27/01](1 + 2/w)wt(MST(S))lgn
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Analysis

when0 < 0 < 7/4and 0 < w < (cosf —sinf)/2,

e stretch factor 1/(cos € — sinf — 2w)
¢ maximum degree < 2[27/6|
o weight < [27/01](1 + 2/w)wt(MST(S))lgn

e construction time O(n?)
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Analysis: optimizing parameters to minimize the
weight

whenf = (r—1)/2andw = (t —1)/4,

® stretch factor ¢
® maximum degree is O(1/(t — 1))
o weightis O((1/(t — 1)?) - wt(MST(S)) g n)

e construction time O(n?) ¢

®a modified implementation yields O(n(lgn)?) time.
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4 WSPD based
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WSPD: Definition

“ >= (l/s)d i

sets that are (1/¢)-separated.

For a point set P, a well-separated pair decomposition (WSPD) of P with
parameter € is a set of pairs W = {{A,By},...,{Am, Bn}} such that

@ VA, B; C P
@ YA NB =¢

@ UAQB =PQP={{xy}xePyePx#y}
@ V;A;, B; are (1/¢)-separated.
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Using quadtree to compute a WSPD

ce

C‘/

b~ -~

(a) point set (b) WSPD with € = %

For the sake of efficiency, we retrieve a WSPD from compressed quadtree.

size of WSPD: O((1)7n); construction time: O(nlgn + )
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Spanner construction using WSPD

choose a representative repg € R for every set R in (1/6)-WSPD; for every
{U,V} € (1/6)-WSPD, add an edge between repy € U and repy € V
resulting in (1 + €)-spanner G of S.

d

u

<. >=UR”)Hd, d,
D \\‘*—\\
U

induction on the increasing length of pairwise distances’ of points in P
dg(x,y) < (1 + €)dist(x,y)

® dist(repy,repy) < (1 + 29)dist(x,y)

® max(dist(repy, x), dist(repy,y)) < ddist(repy, repy)

o further, to apply induction hypotheses, choose a  such that
max(dist(repy, x), dist(repy,y)) < dist(x,y)
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Analysis

LIN0) (I’l) size (in practice, size grows with n much faster than ©-graph based or greedy algorithms)
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Analysis

LIN0) (I’l) size (in practice, size grows with n much faster than ©-graph based or greedy algorithms)

e weight is O((lgn)wt(MST))
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Analysis

LIN0) (I’l) size (in practice, size grows with n much faster than ©-graph based or greedy algorithms)
e weight is O((lgn)wt(MST))

® degree is O(n)
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Analysis

LIN0) (I’l) size (in practice, size grows with n much faster than ©-graph based or greedy algorithms)

e weight is O((lgn)wt(MST))

degree is O(n)

® construction time is O(nlgn)
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5 Path-Greedy
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The path-greedy algorithm’

Construct spanner G while onsidering pairs of points in nondecreasing order
of distances: add an edge e between the considered pair (u, v) only if
dg(u,v) > t.d(u,v).

"from [Das, Heffernan, Narasimhan ’93]
(A few r-Spanners in the Euclidean plane) 35/43



Analysis

® f-spanner

L4 0(712 (m +nlg n)) time (improved algorithms that compute only O(n) SSSPs do exist)
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Analysis (cont)

® O(n) size
® constant degree

o weight is O((lgn)w(MST))

— not proved: analysis is a bit involved

has many good characteristics but the computation time is high
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6 Conclusions
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Comparison of 7-spanners

® Greedy < excellent features but the construction time is the bottleneck
® O-graph based

o WSPD based
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Current research

® gspecialized: plane, single-source, pairwise

amid obstacles
Steiner

in R3

expected analysis
dynamic spanners
kinetic spanners
energy-efficient

multicriteria
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Thanks!
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