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t-Spanner: definition

Given a set S of points in Euclidean plane, network G(S,E) is a t-spanner
(t > 1) of S iff for every u, v ∈ V , distG(u, v) ≤ t.dist(u, v).
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Motivation: designing road networks

10-stretch network for US cities 1.2-stretch network for US cities

Making a network by connecting points given in Euclidean plane. 2

2example figs are from [Narasimhan, Smid ’07]
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Motivation

Asymptotic improvement for algorithms that rely on m.
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Problem

Given a set S of points in Euclidean plane, construct a sparse network G(S,E)
that obeys one/many of the following factors:

• low stretch factor (t = maxp,q∈S
δG(p,q)
δ(p,q) )

• O(|S|) number of edges (sparse)

• low weight (
∑

e∈E we)

• minimize the maximum degree (small size)

• low diameter (conciseness)

• high fault tolerance

• small load factor

• small chromatic number
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Problem description

Let S be a set of n points in R2, and let t > 1 be a real number.

• Does there exist a t-spanner for S having at most O(n) edges?

• If so, find the lower and upper bounds in constructing the same.

• Is it possible to construct t-spanners in O(n lg n) time?

• Weight of such spanner as compared with MST?

• Can we minimize the diameter of the spanner?

• Can we minimize the maximum degree of the spanner?
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An application: minimum Steiner tree

Given a set S of points and S′ of Steiner points,

wight of Steiner minimum tree of S

≤ weight of minimum spanning tree of S

≤ 2.weight of Steiner minimum tree of S 3

3when points are in R2, factor 2 got improved to 2√
3

[Du, Hwang ’90]
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Spanner degree vs diameter

• Any t-spanner whose degree is bounded by a constant must have a
spanner diameter Ω(lg n)
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Another application: t-approximate MST

Let G be a t-spanner of S. Then wt(MST(G)) ≤ t.wt(MST(S)).

unioning paths in G corresp. to each edge of MST(S) results in a
connected spanning graph G′ that is a subgraph of G
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Lower bounds

In the algebraic computation tree model, the worst-case lower bound in
constructing a spanner of n points stands at Ω(n lg n).

— not proved
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Observation

For each p ∈ S, among all near-parallel edges incident on p in the complete
graph, the Θ-graph retains only the shortest one.
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Algorithm: preprocessing

rp
Cp

input: set S of points in R2, number of cones κ (κ ≥ 9; so that the cone angle
θ = 2π

κ ∈ (0, π4 ))

let C be a set of κ cones partitioning the space around origin

(1) introduce each point in S as a vertex in Θ-graph

(2) for each point p of S and for each cone C of C, such that the translated
cone Cp contains at least one point of S\{p}, introduce an edge (p, r)
into Θ-graph if r is a closest point along the bisector of C to p among all
the points in Cp

4

output: undirected graph Θ(S,E) with |E| is O(nκ)
4in case of Yao graphs, among all the points in Cp is chosen, closest point to p is chosen
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Algorithm: query

input: two query points p and q in S

(1) pick a cone C in C such that q ∈ Cp

(2) for r ∈ Cp and pr being an edge of Θ-graph, output r

(3) if r ̸= q, set p← r and go to the stmt (1)

output: a path between p and q

(A few t-Spanners in the Euclidean plane) 15 / 49



Analysis: stretch factor

for any point q in Cp and closest point r to p along bisector of Cp,

• |pr| ≤ |pq|
cos θ

• |rq| ≤ |pq| − (cos θ − sin θ)|pr|
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Analysis: stretch factor (cont)

The stretch factor t = 1/(cos θ − sin θ):

Let p = p0, p1, . . . , pm = q be the path constructed by the query
algorithm.

• |pi+1q| < |piq|
implying that each successive point on this path takes us strictly closer to q

• |pipi+1| ≤ 1
cos θ−sin θ (|piq| − |pi+1q|)

For each real constant t > 1, there exists a sparse t-spanner.
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Analysis: complexity

• O(κn lg n) time (using one plane sweep for each cone)

• using O(nκ) space
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A sketch of sink spanners

A q-sink t-spanner G of a set S of points is a directed graph such that there is
a directed t-spanner path from any p ∈ S to a q ∈ S in G.

• for each cone Cq, introduce an arc from r to q in Cq, where r ∈ Cq is the closest point along the
bisector of Cq among points in S − {q}

• recursively define the directed subgraph pivoting at r for points located in Cr by all possible cones

in C centered at r

The following transformation to any Θ-graph based
√

t-spanner G, leads to
achieving a 1/(t − 1)2 maximum degreed t-spanner, but with slightly worse
time complexity to compute the same:

• instead of introducing any edge (p, r) into G while considering any cone Cp, introduce arc (p, r)
into G

• for every node q in G, let Vq be the set comprising nodes p in S having arcs (p, q) in G, remove

every arc (p, q), and include the edges of q-sink
√

t-spanner of points Vq ∪ q.

— proofs omitted from this presentation
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Well-separated point sets

Given an n-element point set S in R2, and a separation factor s > 0, two
disjoint sets A ⊆ S and B ⊆ S are s-well separated if the sets A and B can be
enclosed in two Euclidean balls of radius r such that the closest distance
between these balls is at least sr.
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Well-separated pair decomposition

Given a point set S and a separation factor s > 0, a well-separated pair
decomposition (WSPD) is a collection of pairs of subsets of S, denoted
{{A1,B1}, . . . , {Am,Bm}}, such that

1 ∀iAi,Bi ⊆ S, for 1 ≤ i ≤ m,

2 ∀iAi ∩ Bi = ϕ, for 1 ≤ i ≤ m,

3
⋃

i Ai
⊗

Bi = S
⊗

S = {{x, y}|x ∈ S, y ∈ S, x ̸= y}, and

4 ∀iAi,Bi are s-well separated, for 1 ≤ i ≤ m.

It is immediate there exists a WSPD of size O(n2) by setting the {Ai,Bi} pairs
to each of the distinct pair singletons of S; however, the goal is to compute a
s-WSPD of size O(s2n).
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Compressed quadtree for computing a WSPD
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(b) WSPD with ϵ = 1
2

• Each set {Ai,Bi} of the pair decomposition is encoded as a pair of nodes
{u, v} in the quadtree. Implicitly, this pair represents the pairs Su

⊗
Sv.

Here, Su (resp. Sv) is the set of points stored in the subtree rooted at u
(resp. v).
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Computing a WSPD (cont)
compute a compressed quadtree T , and augment T: if u is a leaf node that
contains a point p (resp. no point), then u’s representative, rep(u) = {p}
(resp. rep(u) = ϕ); if u is an internal node, then it must have a child v so that
the subtree rooted at v has at least one point, set rep(u) = rep(v)

computeWSPD(u, v)

1 if (u and v are leaves of T and u = v) return
//do not pair a leaf with itself

2 if (rep(u) or rep(v) is empty) return //no pairs to report

3 else if (u and v are s-well separated) return {{u, v}}
//return the WSP {Su, Sv}

4 else
5 if (level(u) > level(v)) swap u and v

//so that u’s cell is at least as large as v’s
6 return

⋃
ui∈descendant(u) computeWSPD(ui, v)

The initial call is computeWSPD(r, r), where r is the root of T .
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Proof of correctness

• The algorithm terminates.
- terminates if both u and v are leafs

• Correctness of conditions (1), (2), and (4) are obvious.

• For every pair of points p′, p′′ of S, there exists an i such that
p′ ∈ Ai, p′′ ∈ Bi, where {Ai,Bi} ∈ W.

- since p′ and p′′ are well-separated and in the worst-case {p′} and {p′′} are singleton set pair

in the WSPD

• Every unordered pair from S occurs in a unique pair Ai
⊗

Bi.

— homework

• Including the time to build the compressed quadtree, which is O(n lg n),
the time to compute the WSPD is O((n lg n) + s2n).

— not presented in this lecture

(A few t-Spanners in the Euclidean plane) 25 / 49



Proof of correctness

• The algorithm terminates.
- terminates if both u and v are leafs

• Correctness of conditions (1), (2), and (4) are obvious.

• For every pair of points p′, p′′ of S, there exists an i such that
p′ ∈ Ai, p′′ ∈ Bi, where {Ai,Bi} ∈ W.

- since p′ and p′′ are well-separated and in the worst-case {p′} and {p′′} are singleton set pair

in the WSPD

• Every unordered pair from S occurs in a unique pair Ai
⊗

Bi.

— homework

• Including the time to build the compressed quadtree, which is O(n lg n),
the time to compute the WSPD is O((n lg n) + s2n).

— not presented in this lecture

(A few t-Spanners in the Euclidean plane) 25 / 49



Proof of correctness

• The algorithm terminates.
- terminates if both u and v are leafs

• Correctness of conditions (1), (2), and (4) are obvious.

• For every pair of points p′, p′′ of S, there exists an i such that
p′ ∈ Ai, p′′ ∈ Bi, where {Ai,Bi} ∈ W.

- since p′ and p′′ are well-separated and in the worst-case {p′} and {p′′} are singleton set pair

in the WSPD

• Every unordered pair from S occurs in a unique pair Ai
⊗

Bi.

— homework

• Including the time to build the compressed quadtree, which is O(n lg n),
the time to compute the WSPD is O((n lg n) + s2n).

— not presented in this lecture

(A few t-Spanners in the Euclidean plane) 25 / 49



Proof of correctness

• The algorithm terminates.
- terminates if both u and v are leafs

• Correctness of conditions (1), (2), and (4) are obvious.

• For every pair of points p′, p′′ of S, there exists an i such that
p′ ∈ Ai, p′′ ∈ Bi, where {Ai,Bi} ∈ W.

- since p′ and p′′ are well-separated and in the worst-case {p′} and {p′′} are singleton set pair

in the WSPD

• Every unordered pair from S occurs in a unique pair Ai
⊗

Bi.

— homework

• Including the time to build the compressed quadtree, which is O(n lg n),
the time to compute the WSPD is O((n lg n) + s2n).

— not presented in this lecture

(A few t-Spanners in the Euclidean plane) 25 / 49



Proof of correctness

• The algorithm terminates.
- terminates if both u and v are leafs

• Correctness of conditions (1), (2), and (4) are obvious.

• For every pair of points p′, p′′ of S, there exists an i such that
p′ ∈ Ai, p′′ ∈ Bi, where {Ai,Bi} ∈ W.

- since p′ and p′′ are well-separated and in the worst-case {p′} and {p′′} are singleton set pair

in the WSPD

• Every unordered pair from S occurs in a unique pair Ai
⊗

Bi.

— homework

• Including the time to build the compressed quadtree, which is O(n lg n),
the time to compute the WSPD is O((n lg n) + s2n).

— not presented in this lecture

(A few t-Spanners in the Euclidean plane) 25 / 49



Algorithm to compute a (1 + ϵ)-spanner

• Given a parameter 0 < ϵ ≤ 1, compute a s-WSPD with s = 4(2+ϵ)
ϵ and

set the representatives for its nodes.

• For every s-WSPD pair {Su, Sv}, include an undirected edge between
rep(u), rep(v).
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Two observations

• If the pair {Su, Sv} is s-well separated and x, x′ ∈ Su and y, y′ ∈ Sv, then

* ∥x− x′∥ ≤ 2r = 2r
sr (sr) ≤ 2r

sr ∥x− y∥ = 2
s ∥x− y∥, and

* ∥x′ − y′∥ ≤ ∥x′ − x∥+ ∥x− y∥+ ∥y− y′∥
≤ 2

s ∥x− y∥+ ∥x− y∥+ 2
s ∥x− y∥ = (1 + 4

s )∥x− y∥.
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Stretch of the spanner is 1 + ϵ

Proving δG(x, y) ≤ (1 + ϵ) · ∥x− y∥ by induction on the number of edges of
the shortest path between x and y in the spanner:

if there is no edge between x and y in G, then

δG(x, y) ≤ δG(x, x′) + δG(x′, y′) + δG(y′, y), where x, y respectively lie in Su, Sv for a WSP
{Su, Sv} with x′ = rep(u), y′ = rep(v)

≤ δG(x, x′) + ∥x′ − y′∥+ δG(y′, y), since there is an edge beween x′ and y′ in G

≤ (1 + ϵ)(∥x − x′∥+ ∥y − y′∥) + ∥x′ − y′∥, indhyp is applied since a shortest path from x to x′

(resp. y to y′) is a subpath of a shortest path from x to y and hence has lesser number of edges

≤ (1 + ϵ)(2 2
s ∥x − y∥) + (1 + 4

s )∥x − y∥, from the above two observations

= (1 +
4(2+ϵ)

s )∥x − y∥

= (1 + ϵ)∥x − y∥, substituting s = 4(2+ϵ)
ϵ

Further, it is immediate that ∥x − y∥ ≤ δG(x, y).
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More analysis

• size is O(s2n), that is, O((4(2+ϵ)
ϵ )2n) = O(( 12

ϵ )
2n)

• time to compute is O(n lg n + s2n), that is, O(n lg n + ( 12
ϵ )

2n).

• degree can be made O( 1
ϵ3 ) with the help of sink spanners and by

choosing the representatives at each node in a specific way
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Heavy path decomposition of a binary tree

• By introducing dummy nodes, transform the compressed quadtree T ′

into a binary tree T .

• Partition the nodes of T into n maximal chains, each containing a unique
leaf, wherein for any edge (u, v) belonging to any such path with u being
the parent of v, the number of leaves in Tv is greater than or equal to the
number of leaves in the tree rooted at the other child of u.
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Obtaining a spanner with (2 lg n)− 1 diameter

In constructing a WSPD-based spanner, for every node u of T , by choosing
the leaf whose chain contains u as the representative of points stored at the
leaves of Tu yields a (1 + ϵ)-spanner with diameter 2(lg n)− 1:

• for any point p ∈ S with p ∈ Ai where (Ai,Bi) is a WSP, by induction on |Ai|, there is a t-spanner
path of length at most lg |Ai| from p to the rep(Ai)

• indeed, due to heavy path decomposition of T , for a WSPD-pair (Aj,Bj) with p ∈ Aj and
rep(Ai) ∈ Bj, rep(Ai) must also be the representative of Bj

• again, due to heavy path decomposition of T , |Aj| ≤ |Ai|/2

• for any two points p, q ∈ S with p ∈ Ak and q ∈ Bk , the length of a (1 + ϵ)-spanner path between p

and q is at most (lg |Ak|) + 1 + (lg |Bk|), which is 2(lg n)− 1

(A few t-Spanners in the Euclidean plane) 31 / 49



Outline

1 Introduction

2 Θ-graphs

3 WSPD based

4 Gap-greedy

5 Path-greedy

6 Conclusions

(A few t-Spanners in the Euclidean plane) 32 / 49



Gap property

p

r

q

s

Let w ≥ 0 be a real number, and let E be a set of directed edges in Rd

• E satisfies w-gap property whenever for any two distinct edges (p, q) and
(r, s) in E, we have |pr| > wmin(|pq|, |rs|)

• E satisfies strong w-gap property whenever E satisfies w-gap property
together with |qs| > wmin(|pq|, |rs|)
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Gap theorem

p

r

q

s

Let S be a set of n points in Rd, and let E ⊆ S× S be a set of directed edges
that satisfy the w-gap property.

• if w ≥ 0, then each point of S is the source of at most one edge of E

• if w ≥ 0, and E satisfies the strong w-gap property, then each point of S
is the sink of at most one edge of E.
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Gap theorem (cont)

Let S be a set of n points in Rd, and let E ⊆ S× S be a set of m directed edges
that satisfy the w-gap property. If w > 0, then
wt(E) < (1 + 2

w).wt(MST(S)) lg n.

• claim: E contains a subset E′ of size m
2 , such that

wt(E′) < ( 2
w)wt(MST(S)).

* number of edges of E according to the order in which their sources are visited by an optimal
TSP of S; consider the portion Ti = (pk2i−1 , pk2i−1 + 1, . . . , pk2i ) of TSP(S) between the
sources of two successive edges e2i−1 and e2i, where 1 ≤ i ≤ m/2

* |pk2i−1 pk2i | ≤ wt(Ti) and
|pk2i−1 pk2i | > wmin(|e2i−1|, |e2i|) ⇒ min(|e2i−1|, |e2i|) < 1

w · wt(Ti)

*
∑m/2

i=1 min(|e2i−1, e2i) ≤ 1
w · wt(TSP(S))

• by induction on m
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Observation

Let t, θ, and w be real numbers, such that 0 < θ < π/4,
0 ≤ w < (cos θ − sin θ)/2, and t ≥ 1/(cos θ − sin θ − 2w). Let p, q, r, and s
be points in Rd, such that

• p ̸= q, r ̸= s,

• angle(pq, rs) ≤ θ, (r, s) is almost parallel to (p, q)

• |rs| ≤ |pq|/ cos θ, |rs| is not much larger than |pq|

• |pr| ≤ w|rs|. r is close to p

Then |pr| < |pq|, |sq| < |pq|, and t|pr|+ |rs|+ t|sq| ≤ t|pq|. — not proved
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Another observation

Let θ,w, and t be real numbers such that 0 < θ < π/4,
0 ≤ w < (cos θ− sin θ)/2, and t ≥ 1/(cos θ− sin θ− 2w). Let S be a set of n
points in the plane, and let G(S,E) be a directed graph, such that the
following holds: for any two distinct points p and q of S, there is an edge
(r, s) ∈ E, such that

• angle(pq, rs) ≤ θ

• |rs| ≤ |pq|/ cos θ

• |pr| ≤ w|rs| or |qs| ≤ w|rs|.

Then, the graph G is a t-spanner for S.
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The gap-greedy algorithm5

Consider all ordered pairs of distinct points in nondecreasing order of their
distances. An edge (p, q) is added iff including (p, q) into the current edge set
E does not make the new set to violate the w-strong gap property.

5from [Arya, Smid ’97]
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Analysis

when 0 < θ < π/4 and 0 ≤ w ≤ (cos θ − sin θ)/2,

• stretch factor 1/(cos θ − sin θ − 2w)

• maximum degree ≤ 2⌈2π/θ⌉

• weight ≤ ⌈2π/θ⌉(1 + 2/w)wt(MST(S)) lg n

• construction time O(n3)
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Analysis: optimizing parameters to minimize the
weight

when θ = (t − 1)/2 and w = (t − 1)/4,

• stretch factor t

• maximum degree is O(1/(t − 1))

• weight is O((1/(t − 1)2) · wt(MST(S)) lg n)

• construction time O(n3) 6

6a modified implementation yields O(n(lg n)2) time.
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The path-greedy algorithm7

Construct spanner G while onsidering pairs of points in nondecreasing order
of distances: add an edge e between the considered pair (u, v) only if
dG(u, v) > t.d(u, v).

7from [Das, Heffernan, Narasimhan ’93]
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Analysis

• t-spanner

• O(n2(m + n lg n)) time to compute

• node degree is O(1/(t − 1)) — not proved: analysis is a bit involved

• O(n) size with weight O((lg n)w(MST)) — not proved: analysis is a bit involved

has many good characteristics but the computation time is high

several optimizations in constructing an approximate path-greedy spanner led
to achiving a computation time of O(n(lg n)2/(lg lg n)) while the resulting
spanner being sparse with weight O( 1

(t−1)4 w(MST)) and degree O(1/(t− 1)3)
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Comparison of t-spanners

• Parameters based on which spanners presented here are compared:
stretch, time to compute, size, weight, diameter, and maximum node
degree

• Θ-graph based

• WSPD based

• Greedy algorithms: gap-greedy, path-greedy ← excellent features but
the construction time is a bottleneck
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Current research

• specialized: plane, single-source, pairwise

• amid obstacles

• Steiner

• in R3

• expected analysis

• dynamic spanners

• kinetic spanners

• energy-efficient

• multicriteria

. . .

(A few t-Spanners in the Euclidean plane) 46 / 49



References

Giri Narasimhan, Michiel Smid. Geometric Spanner Networks.
Cambridge University Press, 2007.

Sunil Arya, Michiel Smid. Efficient construction of a bounded-degree
spanner with low weight. Algorithmica, 1997.

B. Chandra, G. Das, G. Narasimhan, J. Soares. New sparseness results on
graph spanners. IJCGA, 1995.

P. B. Callahan, S. R. Kosaraju. A decomposition of multidimensional
point sets with applications to k-nearest-neighbors and n-body potential
fields. JACM, 1995.

(A few t-Spanners in the Euclidean plane) 47 / 49



References (cont)

Sunil Arya, Gautam Das, Dave M. Mount, J. S. Salow, Michiel Smid.
Euclidean spanners: short, thin, and lanky. STOC, 1995.

Sunil Arya, David M. Mount, Michiel Smid. Randomized and
deterministic algorithms for geometric spanners of small diameter.
FOCS, 1994.

G. Das, P. Heffernan, G. Narasimhan. Optimally sparse spanners in
3-dimensional Euclidean space. SoCG, 1993.

Kenneth L. Clarkson. Approximation alorithms for shortest path motion
planning. STOC, 1987.

(A few t-Spanners in the Euclidean plane) 48 / 49



Thanks!
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