# A few $t$-Spanners in the Euclidean plane ${ }^{1}$ 

R. Inkulu<br>http://www.iitg.ac.in/rinkulu/

[^0]
## Outline

## 1 Introduction

$2 \Theta$-graphs

3 Gap-Greedy
(4) WSPD based

5 Path-Greedy

6 Conclusions

(A few $t$-Spanners in the Euclidean plane)

## $t$-Spanner: definition

Given a set $S$ of points in Euclidean plane, network $G(S, E)$ is a $t$-spanner $(t>1)$ of $S$ iff for every $u, v \in V, \operatorname{dist}_{G}(u, v) \leq t \cdot \operatorname{dist}(u, v)$.

## Motivation: designing road networks



10-stretch network for US cities

1.2-stretch network for US cities

Making a network by connecting points given in Euclidean plane. ${ }^{2}$

[^1](A few $t$-Spanners in the Euclidean plane)

## Motivation

Asymptotic improvement for algorithms that rely on $m$.

## Problem

Given a set $S$ of points in Euclidean plane, construct a sparse network $G(S, E)$ that obeys one/many of the following factors:

- low stretch factor $\left(t=\max _{p, q \in S} \frac{\delta_{G}(p, q)}{\delta(p, q)}\right)$
- $O(|S|)$ number of edges (sparse)
- low weight $\left(\sum_{e \in E} w_{e}\right)$
- minimize the maximum degree (small size)
- low diameter (conciseness)
- high fault tolerance
- small load factor
- small chromatic number


## Problem description

Let $S$ be a set of $n$ points in $R^{2}$, and let $t>1$ be a real number.

- Does there exist a $t$-spanner for $S$ having at most $O(n)$ edges?
- If so, find the lower and upper bounds in constructing the same.
- Is it possible to construct $t$-spanners in $O(n \lg n)$ time?
- Weight of such spanner as compared with MST?
- Can we minimize the diameter of the spanner?
- Can we minimize the maximum degree of the spanner?


## An application: minimum Steiner tree

Given a set $S$ of points and $S^{\prime}$ of Steiner points,
wight of Steiner minimum tree of $S$
$\leq$ weight of minimum spanning tree of $S$
$\leq 2$ weight of Steiner minimum tree of $S^{3}$

[^2]
## Spanner degree vs diameter

- Any $t$-spanner whose degree is bounded by a constant must have a spanner diameter $\Omega(\lg n)$


## Another application: $t$-approximate MST

Let $G$ be a $t$-spanner of $S$. Then $w t(M S T(G)) \leq t . w t(M S T(S))$.
unioning paths in $G$ corresp. to each edge of $\operatorname{MST}(S)$ results in a connected spanning graph $G^{\prime}$ that is a subgraph of $G$

## Lower bounds

In the algebraic computation tree model, the worst-case lower bound in constructing a spanner of $n$ points stands at $\Omega(n \lg n)$.

- not proved


## Outline

## 1 Introduction

$2 \Theta$-graphs
(3) Gap-Greedy

4 WSPD based

5 Path-Greedy

6 Conclusions

(A few $t$-Spanners in the Euclidean plane)

## Observation

For each $p \in S$, among all near-parallel edges incident on $p$ in the complete graph, the $\Theta$-graph retains only the shortest one.

## Algorithm: preprocessing


input: set $S$ of points in $R^{2}$, number of cones $\kappa(\kappa \geq 9$; so that the cone angle
$\left.\theta=\frac{2 \pi}{\kappa} \in\left(0, \frac{\pi}{4}\right)\right)$
let $\mathcal{C}$ be a set of $\kappa$ cones partitioning the space around origin
(1) introduce each point in $S$ as a vertex in $\Theta$-graph
(2) for each point $p$ of $S$ and for each cone $C$ of $\mathcal{C}$, such that the translated cone $C_{p}$ contains at least one point of $S \backslash\{p\}$, introduce an edge $(p, r)$ into $\Theta$-graph if $r$ is a closest point along the bisector of $C$ to $p$ among all the points in $C_{p}{ }^{4}$
output: undirected graph $\Theta(S, E)$ with $|E|$ is $O(n \kappa)$
${ }^{4}$ in case of Yao graphs, among all the points in $C_{p}$ is chosen, elosestipoint to $p$ is chosen

## Algorithm: query

input: two query points $p$ and $q$ in $S$
(1) pick a cone $C$ in $\mathcal{C}$ such that $q \in C_{p}$
(2) for $r \in C_{p}$ and $p r$ being an edge of $\Theta$-graph, output $r$
(3) if $r \neq q$, set $p \leftarrow r$ and go to the stmt (1)
output: a path between $p$ and $q$

## Analysis: stretch factor

for any point $q$ in $C_{p}$ and closest point $r$ to $p$ along bisector of $C_{p}$,

- $|p r| \leq \frac{|p q|}{\cos \theta}$
- $|r q| \leq|p q|-(\cos \theta-\sin \theta)|p r|$


## Analysis: stretch factor (cont)

The stretch factor $t=1 /(\cos \theta-\sin \theta)$ :
Let $p=p_{0}, p_{1}, \ldots, p_{m}=q$ be the path constructed by the query algorithm.

- $\left|p_{i+1} q\right|<\left|p_{i} q\right|$
implying that each successive point on this path takes us strictly closer to $q$
- $\left|p_{i} p_{i+1}\right| \leq \frac{1}{\cos \theta-\sin \theta}\left(\left|p_{i} q\right|-\left|p_{i+1} q\right|\right)$

For each real constant $t>1$, there exists a sparse $t$-spanner.

## Analysis: complexity

- $O(\kappa n \lg n)$ time (using plane sweep)
- using $O(n \kappa)$ space


## Optimizing other parameters

max degree of the spanner

- sink spanner


## diameter of the spanner

- skip-list spanner


## Outline

## 1 Introduction

$2 \Theta$-graphs

## 3 Gap-Greedy

## 4 WSPD based

5 Path-Greedy

6 Conclusions

## Gap property



Let $w \geq 0$ be a real number, and let $E$ be a set of directed edges in $R^{d}$

- $E$ satisfies w-gap property whenever for any two distinct edges $(p, q)$ and $(r, s)$ in $E$, we have $|p r|>w \min (|p q|,|r s|)$
- E satisfies strong w-gap property whenever $E$ satisfies w-gap property together with $|q s|>w \min (|p q|,|r s|)$


## Gap theorem



Let $S$ be a set of $n$ points in $R^{d}$, and let $E \subseteq S \times S$ be a set of directed edges that satisfy the $w$-gap property.

- if $w \geq 0$, then each point of $S$ is the source of at most one edge of $E$
- if $w \geq 0$, and $E$ satisfies the strong $w$-gap property, then each point of $S$ is the sink of at most one edge of $E$.


## Gap theorem (cont)

Let $S$ be a set of $n$ points in $R^{d}$, and let $E \subseteq S \times S$ be a set of $m$ directed edges that satisfy the $w$-gap property. If $w>0$, then $w t(E)<\left(1+\frac{2}{w}\right) \cdot w t(\operatorname{MST}(S)) \lg n$.

## Gap theorem (cont)

Let $S$ be a set of $n$ points in $R^{d}$, and let $E \subseteq S \times S$ be a set of $m$ directed edges that satisfy the $w$-gap property. If $w>0$, then $w t(E)<\left(1+\frac{2}{w}\right) \cdot w t(M S T(S)) \lg n$.

- claim: $E$ contains a subset $E^{\prime}$ of size $\frac{m}{2}$, such that $w t\left(E^{\prime}\right)<\left(\frac{2}{w}\right) w t(\operatorname{MST}(S))$.


## Gap theorem (cont)

Let $S$ be a set of $n$ points in $R^{d}$, and let $E \subseteq S \times S$ be a set of $m$ directed edges that satisfy the $w$-gap property. If $w>0$, then $w t(E)<\left(1+\frac{2}{w}\right) \cdot w t(M S T(S)) \lg n$.

- claim: $E$ contains a subset $E^{\prime}$ of size $\frac{m}{2}$, such that $w t\left(E^{\prime}\right)<\left(\frac{2}{w}\right) w t(\operatorname{MST}(S))$.
* number of edges of $E$ according to the order in which their sources are visited by an optimal TSP of $S$; consider the portion $T_{i}=\left(p_{k_{2 i-1}}, p_{k_{2 i-1}}+1, \ldots, p_{k_{2 i}}\right)$ of TSP(S) between the sources of two successive edges $e_{2 i-1}$ and $e_{2 i}$, where $1 \leq i \leq m / 2$


## Gap theorem (cont)

Let $S$ be a set of $n$ points in $R^{d}$, and let $E \subseteq S \times S$ be a set of $m$ directed edges that satisfy the $w$-gap property. If $w>0$, then $w t(E)<\left(1+\frac{2}{w}\right) \cdot w t(M S T(S)) \lg n$.

- claim: $E$ contains a subset $E^{\prime}$ of size $\frac{m}{2}$, such that $w t\left(E^{\prime}\right)<\left(\frac{2}{w}\right) w t(\operatorname{MST}(S))$.
* number of edges of $E$ according to the order in which their sources are visited by an optimal TSP of $S$; consider the portion $T_{i}=\left(p_{k_{2 i-1}}, p_{k_{2 i-1}}+1, \ldots, p_{k_{2 i}}\right)$ of TSP(S) between the sources of two successive edges $e_{2 i-1}$ and $e_{2 i}$, where $1 \leq i \leq m / 2$
* $\left|p_{k_{2 i-1}} p_{k_{2 i}}\right| \leq w t\left(T_{i}\right)$ and
$\left|p_{k_{2 i-1}} p_{k_{2 i}}\right|>w \min \left(\left|e_{2 i-1}\right|,\left|e_{2 i}\right|\right) \Rightarrow \min \left(\left|e_{2 i-1}\right|,\left|e_{2 i}\right|\right)<\frac{1}{w} \cdot w t\left(T_{i}\right)$


## Gap theorem (cont)

Let $S$ be a set of $n$ points in $R^{d}$, and let $E \subseteq S \times S$ be a set of $m$ directed edges that satisfy the $w$-gap property. If $w>0$, then $w t(E)<\left(1+\frac{2}{w}\right) \cdot w t(M S T(S)) \lg n$.

- claim: $E$ contains a subset $E^{\prime}$ of size $\frac{m}{2}$, such that $w t\left(E^{\prime}\right)<\left(\frac{2}{w}\right) w t(\operatorname{MST}(S))$.
* number of edges of $E$ according to the order in which their sources are visited by an optimal TSP of $S$; consider the portion $T_{i}=\left(p_{k_{2 i-1}}, p_{k_{2 i-1}}+1, \ldots, p_{k_{2 i}}\right)$ of TSP(S) between the sources of two successive edges $e_{2 i-1}$ and $e_{2 i}$, where $1 \leq i \leq m / 2$
* $\left|p_{k_{2 i-1}} p_{k_{2 i}}\right| \leq w t\left(T_{i}\right)$ and $\left|p_{k_{2 i-1}} p_{k_{2 i}}\right|>w \min \left(\left|e_{2 i-1}\right|,\left|e_{2 i}\right|\right) \Rightarrow \min \left(\left|e_{2 i-1}\right|,\left|e_{2 i}\right|\right)<\frac{1}{w} \cdot w t\left(T_{i}\right)$
* $\sum_{i=1}^{m / 2} \min \left(\mid e_{2 i-1}, e_{2 i}\right) \leq \frac{1}{w} \cdot w t(T S P(S))$


## Gap theorem (cont)

Let $S$ be a set of $n$ points in $R^{d}$, and let $E \subseteq S \times S$ be a set of $m$ directed edges that satisfy the $w$-gap property. If $w>0$, then $w t(E)<\left(1+\frac{2}{w}\right) \cdot w t(M S T(S)) \lg n$.

- claim: $E$ contains a subset $E^{\prime}$ of size $\frac{m}{2}$, such that $w t\left(E^{\prime}\right)<\left(\frac{2}{w}\right) w t(\operatorname{MST}(S))$.
* number of edges of $E$ according to the order in which their sources are visited by an optimal TSP of $S$; consider the portion $T_{i}=\left(p_{k_{2 i-1}}, p_{k_{2 i-1}}+1, \ldots, p_{k_{2 i}}\right)$ of TSP(S) between the sources of two successive edges $e_{2 i-1}$ and $e_{2 i}$, where $1 \leq i \leq m / 2$
* $\left|p_{k_{2 i-1}} p_{k_{2 i}}\right| \leq w t\left(T_{i}\right)$ and $\left|p_{k_{2 i-1}} p_{k_{2 i}}\right|>w \min \left(\left|e_{2 i-1}\right|,\left|e_{2 i}\right|\right) \Rightarrow \min \left(\left|e_{2 i-1}\right|,\left|e_{2 i}\right|\right)<\frac{1}{w} \cdot w t\left(T_{i}\right)$
* $\sum_{i=1}^{m / 2} \min \left(\mid e_{2 i-1}, e_{2 i}\right) \leq \frac{1}{w} \cdot w t(T S P(S))$
- by induction on $m$


## Observation



Let $t, \theta$, and $w$ be real numbers, such that $0<\theta<\pi / 4$, $0 \leq w<(\cos \theta-\sin \theta) / 2$, and $t \geq 1 /(\cos \theta-\sin \theta-2 w)$. Let $p, q, r$, and $s$ be points in $R^{d}$, such that

- $p \neq q, r \neq s$,
- $\operatorname{angle}(p q, r s) \leq \theta, \quad(r, s)$ is almost parallel to $(p, q)$
- $|r s| \leq|p q| / \cos \theta, \quad|r s|$ is not much larger than $|p q|$
- $|p r| \leq w|r s| . \quad r$ is close to $p$

Then $|p r|<|p q|,|s q|<|p q|$, and $t|p r|+|r s|+t|s q| \leq t|p q|$ - not proved

## Another observation

Let $\theta, w$, and $t$ be real numbers such that $0<\theta<\pi / 4$, $0 \leq w<(\cos \theta-\sin \theta) / 2$, and $t \geq 1 /(\cos \theta-\sin \theta-2 w)$. Let $S$ be a set of $n$ points in the plane, and let $G(S, E)$ be a directed graph, such that the following holds: for any two distinct points $p$ and $q$ of $S$, there is an edge $(r, s) \in E$, such that

- $\operatorname{angle}(p q, r s) \leq \theta$
- $|r s| \leq|p q| / \cos \theta$
- $|p r| \leq w|r s|$ or $|q s| \leq w|r s|$.

Then, the graph $G$ is a $t$-spanner for $S$.

Consider all ordered pairs of distinct points in nondecreasing order of their distances. An edge $(p, q)$ is added iff including $(p, q)$ into the current edge set $E$ does not make the new set to violate the $w$-strong gap property.

[^3](A few $t$-Spanners in the Euclidean plane)

## Analysis

when $0<\theta<\pi / 4$ and $0 \leq w \leq(\cos \theta-\sin \theta) / 2$,

- stretch factor $1 /(\cos \theta-\sin \theta-2 w)$


## Analysis

when $0<\theta<\pi / 4$ and $0 \leq w \leq(\cos \theta-\sin \theta) / 2$,

- stretch factor $1 /(\cos \theta-\sin \theta-2 w)$
- maximum degree $\leq 2\lceil 2 \pi / \theta\rceil$


## Analysis

when $0<\theta<\pi / 4$ and $0 \leq w \leq(\cos \theta-\sin \theta) / 2$,

- stretch factor $1 /(\cos \theta-\sin \theta-2 w)$
- maximum degree $\leq 2\lceil 2 \pi / \theta\rceil$
- weight $\leq\lceil 2 \pi / \theta\rceil(1+2 / w) w t(\operatorname{MST}(S)) \lg n$


## Analysis

when $0<\theta<\pi / 4$ and $0 \leq w \leq(\cos \theta-\sin \theta) / 2$,

- stretch factor $1 /(\cos \theta-\sin \theta-2 w)$
- maximum degree $\leq 2\lceil 2 \pi / \theta\rceil$
- weight $\leq\lceil 2 \pi / \theta\rceil(1+2 / w) w t(M S T(S)) \lg n$
- construction time $O\left(n^{3}\right)$


## Analysis: optimizing parameters to minimize the weight

when $\theta=(t-1) / 2$ and $w=(t-1) / 4$,

- stretch factor $t$
- maximum degree is $O(1 /(t-1))$
- weight is $O\left(\left(1 /(t-1)^{2}\right) \cdot w t(M S T(S)) \lg n\right)$
- construction time $O\left(n^{3}\right)^{6}$

[^4]
## Outline

## 1 Introduction

$2 \Theta$-graphs

3 Gap-Greedy

4 WSPD based

5 Path-Greedy

6 Conclusions

sets that are $(1 / \epsilon)$-separated.
For a point set $P$, a well-separated pair decomposition (WSPD) of $P$ with parameter $\epsilon$ is a set of pairs $W=\left\{\left\{A_{1}, B_{1}\right\}, \ldots,\left\{A_{m}, B_{m}\right\}\right\}$ such that
(1) $\forall_{i} A_{i}, B_{i} \subset P$
(2) $\forall_{i} A_{i} \cap B_{i}=\phi$
(3) $\bigcup_{i} A_{i} \otimes B_{i}=P \otimes P=\{\{x, y\} \mid x \in P, y \in P, x \neq y\}$
(4) $\forall_{i} A_{i}, B_{i}$ are $(1 / \epsilon)$-separated.

## Using quadtree to compute a WSPD


(a) point set

(b) WSPD with $\epsilon=\frac{1}{2}$

For the sake of efficiency, we retrieve a WSPD from compressed quadtree. size of WSPD: $O\left(\left(\frac{1}{\epsilon}\right)^{d} n\right)$; construction time: $O\left(n \lg n+\frac{n}{\epsilon^{d}}\right)$

## Spanner construction using WSPD

choose a representative rep $_{R} \in R$ for every set $R$ in $(1 / \delta)$-WSPD; for every $\{U, V\} \in(1 / \delta)$-WSPD, add an edge between rep $_{U} \in U$ and rep ${ }_{V} \in V$ resulting in $(1+\epsilon)$-spanner $G$ of $S$.

induction on the increasing length of pairwise distances' of points in $P$ $d_{G}(x, y) \leq(1+\epsilon) \operatorname{dist}(x, y)$

- $\operatorname{dist}\left(\right.$ rep $_{U}$, rep $\left._{V}\right) \leq(1+2 \delta) \operatorname{dist}(x, y)$
- $\max \left(\operatorname{dist}\left(\right.\right.$ rep $\left.\left._{U}, x\right), \operatorname{dist}\left(r e p_{V}, y\right)\right) \leq \delta \operatorname{dist}\left(\right.$ rep $_{U}$, rep $\left._{V}\right)$
- further, to apply induction hypotheses, choose a $\delta$ such that $\max \left(\operatorname{dist}\left(\right.\right.$ rep $\left._{U}, x\right), \operatorname{dist}\left(\right.$ rep $\left.\left._{V}, y\right)\right)<\operatorname{dist}(x, y)$


## Analysis

- $O(n)$ size (in practice, size grows with $n$ much faster than $\Theta$-graph based or greedy algorithms)


## Analysis

- $O(n)$ size (in practice, size grows with $n$ much faster than $\Theta$-graph based or greedy algorithms)
- weight is $O((\lg n) w t(M S T))$


## Analysis

- $O(n)$ size (in practice, size grows with $n$ much faster than $\Theta$-graph based or greedy algorithms)
- weight is $O((\lg n) w t(M S T))$
- degree is $O(n)$


## Analysis

- $O(n)$ size (in practice, size grows with $n$ much faster than $\Theta$-graph based or greedy algorithms)
- weight is $O((\lg n) w t(M S T))$
- degree is $O(n)$
- construction time is $O(n \lg n)$


## Outline

## 1 Introduction

$2 \Theta$-graphs

3 Gap-Greedy

4 WSPD based

5 Path-Greedy

## 6 Conclusions

(A few $t$-Spanners in the Euclidean plane)

Construct spanner $G$ while onsidering pairs of points in nondecreasing order of distances: add an edge $e$ between the considered pair $(u, v)$ only if $d_{G}(u, v)>t . d(u, v)$.

[^5]
## Analysis

- $t$-spanner
- $O\left(n^{2}(m+n \lg n)\right)$ time (improved algorithms that compute only $O(n)$ SSSPs do exist)


## Analysis (cont)

- $O(n)$ size
- constant degree
- weight is $O((\lg n) w(M S T))$
- not proved: analysis is a bit involved
has many good characteristics but the computation time is high


## Outline

## 1 Introduction

$2 \Theta$-graphs

3 Gap-Greedy

4 WSPD based

5 Path-Greedy

## 6 Conclusions

(A few $t$-Spanners in the Euclidean plane)

## Comparison of $t$-spanners

- Greedy $\leftarrow$ excellent features but the construction time is the bottleneck
- $\Theta$-graph based
- WSPD based


## Current research

- specialized: plane, single-source, pairwise
- amid obstacles
- Steiner
- in $R^{3}$
- expected analysis
- dynamic spanners
- kinetic spanners
- energy-efficient
- multicriteria


## References

回 Giri Narasimhan，Michiel Smid．Geometric Spanner Networks． Cambridge University Press， 2007.

围 Sunil Arya，Michiel Smid．Efficient construction of a bounded－degree spanner with low weight．Algorithmica， 1997.

國 B．Chandra，G．Das，G．Narasimhan，J．Soares．New sparseness results on graph spanners．IJCGA， 1995.

P．B．Callahan，S．R．Kosaraju．A decomposition of multidimensional point sets with applications to $k$－nearest－neighbors and $n$－body potential fields．JACM， 1995.

## References (cont)



Sunil Arya, Gautam Das, Dave M. Mount, J. S. Salow, Michiel Smid. Euclidean spanners: short, thin, and lanky. STOC, 1995.

目 Sunil Arya, David M. Mount, Michiel Smid. Randomized and deterministic algorithms for geometric spanners of small diameter. FOCS, 1994.

比 G. Das, P. Heffernan, G. Narasimhan. Optimally sparse spanners in 3-dimensional Euclidean space. SoCG, 1993.

Kenneth L. Clarkson. Approximation alorithms for shortest path motion planning. STOC, 1987.

## Thanks!


[^0]:    ${ }^{1}$ these slides are last updated in 2013; in presenting, blackboard is used

[^1]:    ${ }^{2}$ example figs are from [Narasimhan, Smid '07]

[^2]:    ${ }^{3}$ when points are in $\mathbb{R}^{2}$, factor 2 got improved to $\frac{2}{\sqrt{3}}$ [Du, Hwang '90]

[^3]:    ${ }^{5}$ from [Arya, Smid '97]

[^4]:    ${ }^{6}$ a modified implementation yields $O\left(n(\lg n)^{2}\right)$ time.

[^5]:    ${ }^{7}$ from [Das, Heffernan, Narasimhan '93]

