A few t-Spanners in the Euclidean plane¹

R. Inkulu

http://www.iitg.ac.in/rinkulu/

Outline

- 1 Introduction
- 2 Θ-graphs
- 3 Gap-Greedy
- 4 WSPD based
- 5 Path-Greedy
- 6 Conclusions

t-Spanner: definition

Given a set *S* of points in Euclidean plane, network G(S, E) is a *t-spanner* (t > 1) of *S* iff for every $u, v \in V$, $dist_G(u, v) \le t.dist(u, v)$.

Motivation: designing road networks

Making a network by connecting points given in Euclidean plane. ²

²example figs are from [Narasimhan, Smid '07]

Motivation

Asymptotic improvement for algorithms that rely on m.

Problem

Given a set S of points in Euclidean plane, construct a sparse network G(S, E) that obeys one/many of the following factors:

- low stretch factor $(t = max_{p,q \in S} \frac{\delta_G(p,q)}{\delta(p,q)})$
- O(|S|) number of edges (sparse)
- low weight $(\sum_{e \in E} w_e)$
- minimize the maximum degree (*small size*)
- low diameter (conciseness)
- high fault tolerance
- small load factor
- small chromatic number

Problem description

Let S be a set of n points in R^2 , and let t > 1 be a real number.

- Does there exist a *t*-spanner for S having at most O(n) edges?
- If so, find the lower and upper bounds in constructing the same.
- Is it possible to construct *t*-spanners in $O(n \lg n)$ time?
- Weight of such spanner as compared with MST?
- Can we minimize the diameter of the spanner?
- Can we minimize the maximum degree of the spanner?

An application: minimum Steiner tree

Given a set S of points and S' of Steiner points,

wight of Steiner minimum tree of S

 \leq weight of minimum spanning tree of S

 \leq 2.weight of Steiner minimum tree of S^3

when points are in \mathbb{R}^2 , factor 2 got improved to $\frac{2}{\sqrt{3}}$ [Du, Hwang (90)] (20)

Spanner degree vs diameter

• Any *t*-spanner whose degree is bounded by a constant must have a spanner diameter $\Omega(\lg n)$

Another application: *t*-approximate MST

Let G be a t-spanner of S. Then $wt(MST(G)) \le t.wt(MST(S))$.

unioning paths in G corresp. to each edge of MST(S) results in a connected spanning graph G' that is a subgraph of G

Lower bounds

In the algebraic computation tree model, the worst-case lower bound in constructing a spanner of n points stands at $\Omega(n \lg n)$.

- not proved

Outline

- 1 Introduction
- Θ -graphs
- 3 Gap-Greedy
- 4 WSPD based
- 5 Path-Greedy
- 6 Conclusions

Observation

For each $p \in S$, among all near-parallel edges incident on p in the complete graph, the Θ -graph retains only the shortest one.

Algorithm: preprocessing

input: set *S* of points in R^2 , number of cones κ ($\kappa \ge 9$; so that the cone angle $\theta = \frac{2\pi}{\kappa} \in (0, \frac{\pi}{4})$)

let \mathcal{C} be a set of κ cones partitioning the space around origin

- (1) introduce each point in S as a vertex in Θ -graph
- (2) for each point p of S and for each cone C of C, such that the translated cone C_p contains at least one point of $S \setminus \{p\}$, introduce an edge (p, r) into Θ -graph if r is a closest point along the bisector of C to p among all the points in C_p ⁴

output: undirected graph $\Theta(S, E)$ with |E| is $O(n\kappa)$

⁴in case of Yao graphs, among all the points in C_p is chosen, elosest point to p is chosen 990

Algorithm: query

input: two query points p and q in S

- ① pick a cone C in $\mathcal C$ such that $q \in C_p$
- (2) for $r \in C_p$ and pr being an edge of Θ -graph, output r
- (3) if $r \neq q$, set $p \leftarrow r$ and go to the stmt (1)

output: a path between p and q

Analysis: stretch factor

for any point q in C_p and closest point r to p along bisector of C_p ,

•
$$|pr| \leq \frac{|pq|}{\cos \theta}$$

•
$$|rq| \le |pq| - (\cos \theta - \sin \theta)|pr|$$

Analysis: stretch factor (cont)

The stretch factor $t = 1/(\cos \theta - \sin \theta)$:

Let $p = p_0, p_1, \dots, p_m = q$ be the path constructed by the query algorithm.

- $|p_{i+1}q| < |p_iq|$ implying that each successive point on this path takes us strictly closer to q
- $|p_i p_{i+1}| \le \frac{1}{\cos \theta \sin \theta} (|p_i q| |p_{i+1} q|)$

For each real constant t > 1, there exists a sparse t-spanner.

Analysis: complexity

- $O(\kappa n \lg n)$ time (using plane sweep)
- using $O(n\kappa)$ space

Optimizing other parameters

max degree of the spanner

• sink spanner

diameter of the spanner

• skip-list spanner

Outline

- 1 Introduction
- \bigcirc Θ -graphs
- 3 Gap-Greedy
- 4 WSPD based
- 5 Path-Greedy
- 6 Conclusions

Gap property

Let $w \ge 0$ be a real number, and let E be a set of directed edges in \mathbb{R}^d

- E satisfies w-gap property whenever for any two distinct edges (p,q) and (r,s) in E, we have $|pr| > w \min(|pq|,|rs|)$
- E satisfies strong w-gap property whenever E satisfies w-gap property together with $|qs| > w \min(|pq|, |rs|)$

Gap theorem

Let S be a set of n points in \mathbb{R}^d , and let $E \subseteq S \times S$ be a set of directed edges that satisfy the w-gap property.

- if $w \ge 0$, then each point of S is the source of at most one edge of E
- if w ≥ 0, and E satisfies the strong w-gap property, then each point of S
 is the sink of at most one edge of E.

Let *S* be a set of *n* points in \mathbb{R}^d , and let $E \subseteq S \times S$ be a set of *m* directed edges that satisfy the *w*-gap property. If w > 0, then $wt(E) < (1 + \frac{2}{w}).wt(MST(S)) \lg n$.

Let *S* be a set of *n* points in \mathbb{R}^d , and let $E \subseteq S \times S$ be a set of *m* directed edges that satisfy the *w*-gap property. If w > 0, then $wt(E) < (1 + \frac{2}{w}).wt(MST(S)) \lg n$.

• claim: E contains a subset E' of size $\frac{m}{2}$, such that $wt(E') < (\frac{2}{w})wt(MST(S))$.

Let S be a set of n points in \mathbb{R}^d , and let $E \subseteq S \times S$ be a set of m directed edges that satisfy the w-gap property. If w > 0, then $wt(E) < (1 + \frac{2}{w}) \cdot wt(MST(S)) \lg n$.

- claim: E contains a subset E' of size $\frac{m}{2}$, such that $wt(E') < (\frac{2}{m})wt(MST(S))$.
 - * number of edges of *E* according to the order in which their sources are visited by an optimal TSP of *S*; consider the portion $T_i = (p_{k_{2i-1}}, p_{k_{2i-1}} + 1, \dots, p_{k_{2i}})$ of TSP(S) between the sources of two successive edges e_{2i-1} and e_{2i} , where $1 \le i \le m/2$

Let S be a set of n points in \mathbb{R}^d , and let $E \subseteq S \times S$ be a set of m directed edges that satisfy the w-gap property. If w > 0, then $wt(E) < (1 + \frac{2}{w}).wt(MST(S)) \lg n$.

- claim: E contains a subset E' of size $\frac{m}{2}$, such that $wt(E') < (\frac{2}{w})wt(MST(S))$.
 - * number of edges of *E* according to the order in which their sources are visited by an optimal TSP of *S*; consider the portion $T_i = (p_{k_{2i-1}}, p_{k_{2i-1}} + 1, \dots, p_{k_{2i}})$ of TSP(S) between the sources of two successive edges e_{2i-1} and e_{2i} , where $1 \le i \le m/2$
 - * $|p_{k_{2i-1}}p_{k_{2i}}| \le wt(T_i)$ and $|p_{k_{2i-1}}p_{k_{2i}}| > w \min(|e_{2i-1}|, |e_{2i}|) \Rightarrow \min(|e_{2i-1}|, |e_{2i}|) < \frac{1}{w} \cdot wt(T_i)$

Let S be a set of n points in \mathbb{R}^d , and let $E \subseteq S \times S$ be a set of m directed edges that satisfy the w-gap property. If w > 0, then $wt(E) < (1 + \frac{2}{w}) \cdot wt(MST(S)) \lg n$.

- claim: E contains a subset E' of size $\frac{m}{2}$, such that $wt(E') < (\frac{2}{w})wt(MST(S))$.
 - * number of edges of *E* according to the order in which their sources are visited by an optimal TSP of *S*; consider the portion $T_i = (p_{k_{2i-1}}, p_{k_{2i-1}} + 1, \dots, p_{k_{2i}})$ of TSP(S) between the sources of two successive edges e_{2i-1} and e_{2i} , where $1 \le i \le m/2$
 - * $|p_{k_{2i-1}}p_{k_{2i}}| \le wt(T_i)$ and $|p_{k_{2i-1}}p_{k_{2i}}| > w\min(|e_{2i-1}|, |e_{2i}|) \Rightarrow \min(|e_{2i-1}|, |e_{2i}|) < \frac{1}{w} \cdot wt(T_i)$
 - * $\sum_{i=1}^{m/2} \min(|e_{2i-1}, e_{2i}|) \le \frac{1}{w} \cdot wt(TSP(S))$

Let S be a set of n points in \mathbb{R}^d , and let $E \subseteq S \times S$ be a set of m directed edges that satisfy the w-gap property. If w > 0, then $wt(E) < (1 + \frac{2}{w}).wt(MST(S)) \lg n$.

- claim: E contains a subset E' of size $\frac{m}{2}$, such that $wt(E') < (\frac{2}{w})wt(MST(S))$.
 - * number of edges of *E* according to the order in which their sources are visited by an optimal TSP of *S*; consider the portion $T_i = (p_{k_{2i-1}}, p_{k_{2i-1}} + 1, \dots, p_{k_{2i}})$ of TSP(S) between the sources of two successive edges e_{2i-1} and e_{2i} , where $1 \le i \le m/2$
 - * $|p_{k_{2i-1}}p_{k_{2i}}| \le wt(T_i)$ and $|p_{k_{2i-1}}p_{k_{2i}}| > w \min(|e_{2i-1}|, |e_{2i}|) \Rightarrow \min(|e_{2i-1}|, |e_{2i}|) < \frac{1}{w} \cdot wt(T_i)$
 - * $\sum_{i=1}^{m/2} \min(|e_{2i-1}, e_{2i}) \le \frac{1}{w} \cdot wt(TSP(S))$
- by induction on m

Observation

Let t, θ , and w be real numbers, such that $0 < \theta < \pi/4$, $0 \le w < (\cos \theta - \sin \theta)/2$, and $t \ge 1/(\cos \theta - \sin \theta - 2w)$. Let p, q, r, and s be points in R^d , such that

- $p \neq q, r \neq s$,
- $angle(pq, rs) \le \theta$, (r, s) is almost parallel to (p, q)
- $|rs| \le |pq|/\cos\theta$, |rs| is not much larger than |pq|
- $|pr| \le w|rs|$. r is close to p

Then
$$|pr| < |pq|$$
, $|sq| < |pq|$, and $t|pr| + |rs| + t|sq| \le t|pq|$. — not proved

Another observation

Let θ , w, and t be real numbers such that $0 < \theta < \pi/4$, $0 \le w < (\cos \theta - \sin \theta)/2$, and $t \ge 1/(\cos \theta - \sin \theta - 2w)$. Let S be a set of n points in the plane, and let G(S, E) be a directed graph, such that the following holds: for any two distinct points p and q of S, there is an edge $(r, s) \in E$, such that

- $angle(pq, rs) \leq \theta$
- $|rs| \le |pq|/\cos\theta$
- $|pr| \le w|rs|$ or $|qs| \le w|rs|$.

Then, the graph *G* is a *t*-spanner for *S*.

The gap-greedy algorithm⁵

Consider all ordered pairs of distinct points in nondecreasing order of their distances. An edge (p,q) is added iff including (p,q) into the current edge set E does not make the new set to violate the w-strong gap property.

⁵from [Arya, Smid '97]

when
$$0 < \theta < \pi/4$$
 and $0 \le w \le (\cos \theta - \sin \theta)/2$,

• stretch factor $1/(\cos\theta - \sin\theta - 2w)$

when
$$0 < \theta < \pi/4$$
 and $0 \le w \le (\cos \theta - \sin \theta)/2$,

- stretch factor $1/(\cos\theta \sin\theta 2w)$
- maximum degree $\leq 2\lceil 2\pi/\theta \rceil$

when
$$0 < \theta < \pi/4$$
 and $0 \le w \le (\cos \theta - \sin \theta)/2$,

- stretch factor $1/(\cos\theta \sin\theta 2w)$
- maximum degree $\leq 2\lceil 2\pi/\theta \rceil$
- weight $\leq \lceil 2\pi/\theta \rceil (1+2/w)wt(MST(S)) \lg n$

when
$$0 < \theta < \pi/4$$
 and $0 \le w \le (\cos \theta - \sin \theta)/2$,

- stretch factor $1/(\cos\theta \sin\theta 2w)$
- maximum degree $\leq 2\lceil 2\pi/\theta \rceil$
- weight $\leq \lceil 2\pi/\theta \rceil (1 + 2/w) wt(MST(S)) \lg n$
- construction time $O(n^3)$

Analysis: optimizing parameters to minimize the weight

when
$$\theta = (t - 1)/2$$
 and $w = (t - 1)/4$,

- stretch factor t
- maximum degree is O(1/(t-1))
- weight is $O((1/(t-1)^2) \cdot wt(MST(S)) \lg n)$
- construction time $O(n^3)^6$

⁶a modified implementation yields $O(n(\lg n)^2)$ time.

Outline

- 1 Introduction
- 2 Θ-graphs
- 3 Gap-Greedy
- 4 WSPD based
- 5 Path-Greedy
- 6 Conclusions

WSPD: Definition

sets that are $(1/\epsilon)$ -separated.

For a point set P, a well-separated pair decomposition (WSPD) of P with parameter ϵ is a set of pairs $W = \{\{A_1, B_1\}, \dots, \{A_m, B_m\}\}$ such that

- (1) $\forall_i A_i, B_i \subset P$
- $(2) \ \forall_i A_i \cap B_i = \phi$
- (4) $\forall_i A_i, B_i$ are $(1/\epsilon)$ -separated.

Using quadtree to compute a WSPD

For the sake of efficiency, we retrieve a WSPD from compressed quadtree.

size of WSPD: $O((\frac{1}{\epsilon})^d n)$; construction time: $O(n \lg n + \frac{n}{\epsilon^d})$

Spanner construction using WSPD

choose a representative $rep_R \in R$ for every set R in $(1/\delta)$ -WSPD; for every $\{U, V\} \in (1/\delta)$ -WSPD, add an edge between $rep_U \in U$ and $rep_V \in V$ resulting in $(1 + \epsilon)$ -spanner G of S.

induction on the increasing length of pairwise distances' of points in P $d_G(x, y) \le (1 + \epsilon) dist(x, y)$

- $dist(rep_U, rep_V) \le (1 + 2\delta)dist(x, y)$
- $max(dist(rep_U, x), dist(rep_V, y)) \le \delta dist(rep_U, rep_V)$
- further, to apply induction hypotheses, choose a δ such that $max(dist(rep_U, x), dist(rep_V, y)) < dist(x, y)$

• O(n) size (in practice, size grows with n much faster than Θ -graph based or greedy algorithms)

- O(n) Size (in practice, size grows with n much faster than Θ -graph based or greedy algorithms)
- weight is $O((\lg n)wt(MST))$

- O(n) Size (in practice, size grows with n much faster than Θ -graph based or greedy algorithms)
- weight is $O((\lg n)wt(MST))$
- degree is O(n)

- O(n) size (in practice, size grows with n much faster than Θ -graph based or greedy algorithms)
- weight is $O((\lg n)wt(MST))$
- degree is O(n)
- construction time is $O(n \lg n)$

Outline

- 1 Introduction
- 2 Θ-graphs
- 3 Gap-Greedy
- 4 WSPD based
- **5** Path-Greedy
- 6 Conclusions

The path-greedy algorithm⁷

Construct spanner G while onsidering pairs of points in nondecreasing order of distances: add an edge e between the considered pair (u, v) only if $d_G(u, v) > t.d(u, v)$.

⁷from [Das, Heffernan, Narasimhan '93]

- *t*-spanner
- $O(n^2(m+n\lg n))$ time (improved algorithms that compute only O(n) SSSPs do exist)

Analysis (cont)

- O(n) size
- constant degree
- weight is $O((\lg n)w(MST))$

- not proved: analysis is a bit involved

has many good characteristics but the computation time is high

Outline

- 1 Introduction
- Θ -graphs
- 3 Gap-Greedy
- 4 WSPD based
- 5 Path-Greedy
- **6** Conclusions

Comparison of *t***-spanners**

- ullet Greedy \leftarrow excellent features but the construction time is the bottleneck
- Θ-graph based
- WSPD based

Current research

- specialized: plane, single-source, pairwise
- amid obstacles
- Steiner
- in \mathbb{R}^3
- expected analysis
- dynamic spanners
- kinetic spanners
- energy-efficient
- multicriteria

. . .

References

- Giri Narasimhan, Michiel Smid. Geometric Spanner Networks. Cambridge University Press, 2007.
- Sunil Arya, Michiel Smid. Efficient construction of a bounded-degree spanner with low weight. Algorithmica, 1997.
- B. Chandra, G. Das, G. Narasimhan, J. Soares. New sparseness results on graph spanners. IJCGA, 1995.
- P. B. Callahan, S. R. Kosaraju. A decomposition of multidimensional point sets with applications to *k*-nearest-neighbors and *n*-body potential fields. JACM, 1995.

References (cont)

- Sunil Arya, Gautam Das, Dave M. Mount, J. S. Salow, Michiel Smid. Euclidean spanners: short, thin, and lanky. STOC, 1995.
 - Sunil Arya, David M. Mount, Michiel Smid. Randomized and deterministic algorithms for geometric spanners of small diameter. FOCS, 1994.
- G. Das, P. Heffernan, G. Narasimhan. Optimally sparse spanners in 3-dimensional Euclidean space. SoCG, 1993.
- Kenneth L. Clarkson. Approximation alorithms for shortest path motion planning. STOC, 1987.

Thanks!