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Lthese slides are last updated in 2013; in presenting, blackboard is used
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1 Introduction
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t-Spanner: definition

Given a set S of points in Euclidean plane, network G(S, E) is a t-spanner
(t > 1) of S iff for every u,v € V, distg(u,v) < t.dist(u,v).
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Motivation: designing road networks

10-stretch network for US cities

1.2-stretch network for US cities
Making a network by connecting points given in Euclidean plane. 2

example figs are from [Narasimhan, Smid "07]
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Motivation

Asymptotic improvement for algorithms that rely on m.
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Problem

Given a set S of points in Euclidean plane, construct a sparse network G(S, E)
that obeys one/many of the following factors:

® Jow stretch factor (¢ = maxpvq@%)

® O(|S|) number of edges (sparse)

® low weight (3, .z we)

® minimize the maximum degree (small size)
® Jow diameter (conciseness)

® high fault tolerance

e small load factor

® small chromatic number
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Problem description

Let S be a set of n points in R?, and let # > 1 be a real number.

® Does there exist a -spanner for S having at most O(n) edges?

If so, find the lower and upper bounds in constructing the same.

Is it possible to construct z-spanners in O(nlgn) time?

Weight of such spanner as compared with MST?
® Can we minimize the diameter of the spanner?

® Can we minimize the maximum degree of the spanner?
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An application: minimum Steiner tree

Given a set S of points and S’ of Steiner points,
wight of Steiner minimum tree of §
< weight of minimum spanning tree of S

< 2.weight of Steiner minimum tree of S 3

*when points are in R?, factor 2 got improved to iﬁ [Du, Hwang *90]
/3
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Spanner degree vs diameter

® Any t-spanner whose degree is bounded by a constant must have a
spanner diameter 2(lg n)
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Another application: r-approximate MST

Let G be a r-spanner of S. Then wt(MST(G)) < t.wt(MST(S)).

unioning paths in G corresp. to each edge of MST(S) results in a
connected spanning graph G’ that is a subgraph of G
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Lower bounds

In the algebraic computation tree model, the worst-case lower bound in
constructing a spanner of n points stands at Q(nlgn).

— not proved
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2 ©-graphs
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Observation

For each p € §, among all near-parallel edges incident on p in the complete
graph, the ©-graph retains only the shortest one.
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Algorithm: preprocessing

C,

input: set S of points in R?, number of cones  (x > 9; so that the cone angle
0=2¢e(0,%)

let C be a set of k cones partitioning the space around origin

(@ introduce each point in S as a vertex in ©-graph

@) for each point p of S and for each cone C of C, such that the translated
cone C, contains at least one point of S\ {p}, introduce an edge (p, r)
into ©-graph if r is a closest point along the bisector of C to p among all
the points in C,
) with |E| is O(nk)
“in case of Yao graphs, among all the points in C, is chosen, closestpointto p is chosen
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Algorithm: query

input: two query points p and g in S
() pick a cone C in C such that g € Cp
@ for r € C, and pr being an edge of ©-graph, output r

@) if r # g, set p « r and go to the stmt (1)

output: a path between p and ¢
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Analysis: stretch factor

for any point g in C,, and closest point r to p along bisector of C,,
o |prl < 24

cos 6

* |rql < lpg| — (cos 6 — sin)|pr|
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Analysis: stretch factor (cont)

The stretch factor t = 1/(cos 6 — sin6):

Let p = po,p1,--.,Pm = q be the path constructed by the query
algorithm.

* |pit149] < |piq|
implying that each successive point on this path takes us strictly closer to g

® pipiv1| < mﬂpifﬂ — |pit14l)

For each real constant ¢ > 1, there exists a sparse f-spanner.
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Analysis: complexity

® O(knlgn) time (using one plane sweep for each cone)

® using O(nk) space
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A sketch of sink spanners

A g-sink t-spanner G of a set S of points is a directed graph such that there is
a directed ¢-spanner path fromany p € Stoag € Sin G.

® for each cone Cy, introduce an arc from r to g in C;, where r € Cy is the closest point along the
bisector of C, among points in S — {q}

® recursively define the directed subgraph pivoting at r for points located in C; by all possible cones

in C centered at r
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A sketch of sink spanners

A g-sink t-spanner G of a set S of points is a directed graph such that there is
a directed ¢-spanner path fromany p € Stoag € Sin G.

® for each cone Cy, introduce an arc from r to g in C;, where r € Cy is the closest point along the
bisector of C, among points in S — {q}

® recursively define the directed subgraph pivoting at r for points located in C; by all possible cones

in C centered at r

The following transformation to any ©-graph based \/7-spanner G, leads to
achieving a 1/(¢ — 1)? maximum degreed #-spanner, but with slightly worse
time complexity to compute the same:

® instead of introducing any edge (p, r) into G while considering any cone Cp, introduce arc (p, r)
into G

® for every node ¢ in G, let V, be the set comprising nodes p in S having arcs (p, ¢) in G, remove

every arc (p, q), and include the edges of g-sink /7-spanner of points V, U q.
— proofs omitted from this presentation
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3 WSPD based
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Well-separated point sets

Given an n-element point set S in R?, and a separation factor s > 0, two
disjoint sets A C S and B C S are s-well separated if the sets A and B can be
enclosed in two Euclidean balls of radius r such that the closest distance
between these balls is at least sr.
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Well-separated pair decomposition

Given a point set S and a separation factor s > 0, a well-separated pair
decomposition (WSPD) is a collection of pairs of subsets of S, denoted
{{A1,B1},...,{An, Bn}}, such that

Vl'Al',Bi g S, for 1 S I S m,

ViAiNB; = ¢, forl <i<m,

UiAiQBi =SQS ={{x,y}|xeS,ye S,x#y}, and
ViA;, B; are s-well separated, for 1 <i < m.

o

A W N
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Well-separated pair decomposition

Given a point set S and a separation factor s > 0, a well-separated pair
decomposition (WSPD) is a collection of pairs of subsets of S, denoted
{{A1,B1},...,{An, Bn}}, such that

Vl'Al',Bi g S, for 1 S I S m,

ViAiNB; = ¢, forl <i<m,

UiAiQBi =SQS ={{x,y}|xeS,ye S,x#y}, and
ViA;, B; are s-well separated, for 1 <i < m.

—

A W N

It is immediate there exists a WSPD of size O(n?) by setting the {A;, B;} pairs
to each of the distinct pair singletons of S; however, the goal is to compute a
s-WSPD of size O(sn).
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Compressed quadtree for computing a WSPD

ee®

(a) point set (b) WSPD with € = 1

® Each set {A;, B;} of the pair decomposition is encoded as a pair of nodes
{u, v} in the quadtree. Implicitly, this pair represents the pairs S, ) S,.
Here, S, (resp. S,) is the set of points stored in the subtree rooted at u
(resp. v).
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Computing a WSPD (cont)

compute a compressed quadtree 7, and augment 7': if u is a leaf node that
contains a point p (resp. no point), then u’s representative, rep(u) = {p}
(resp. rep(u) = ¢); if u is an internal node, then it must have a child v so that
the subtree rooted at v has at least one point, set rep(u) = rep(v)
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Computing a WSPD (cont)

compute a compressed quadtree 7, and augment 7': if u is a leaf node that
contains a point p (resp. no point), then u’s representative, rep(u) = {p}
(resp. rep(u) = ¢); if u is an internal node, then it must have a child v so that
the subtree rooted at v has at least one point, set rep(u) = rep(v)

computeWSPD(u, v)

1 if (1 and v are leaves of T and u = v) return
//do not pair a leaf with itself

(5]

if (rep(u) or rep(v) is empty) return //no pairs to report

w

else if (v and v are s-well separated) return {{u, v}}
//return the WSP {S,, S, }
else
if (level(u) > level(v)) swap u and v
/Iso that u’s cell is at least as large as v’s
6 return | J compute WSPD(u;, v)

[V I N

ujEdescendant(u)

The initial call is computeWSPD(r, r), where r is the root of 7.
(A few r-Spanners in the Euclidean plane) 24/49



Proof of correctness

® The algorithm terminates.

- terminates if both u and v are leafs
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Proof of correctness

® The algorithm terminates.

- terminates if both u and v are leafs

® Correctness of conditions (1), (2), and (4) are obvious.
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Proof of correctness

® The algorithm terminates.
- terminates if both u and v are leafs

® Correctness of conditions (1), (2), and (4) are obvious.

® For every pair of points p’, p” of S, there exists an i such that
p' € A;,p” € B;, where {A;,B;} € W.

- since p’ and p’’ are well-separated and in the worst-case {p’} and {p’’} are singleton set pair
in the WSPD
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Proof of correctness

® The algorithm terminates.
- terminates if both u and v are leafs

® Correctness of conditions (1), (2), and (4) are obvious.

® For every pair of points p’, p” of S, there exists an i such that
p' € A;,p” € B;, where {A;,B;} € W.

- since p’ and p’’ are well-separated and in the worst-case {p’} and {p’’} are singleton set pair
in the WSPD

¢ Every unordered pair from S occurs in a unique pair A; Q) B;.

— homework
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Proof of correctness

® The algorithm terminates.

- terminates if both u and v are leafs
® Correctness of conditions (1), (2), and (4) are obvious.

® For every pair of points p’, p” of S, there exists an i such that
p' € A;,p” € B;, where {A;,B;} € W.

- since p’ and p’’ are well-separated and in the worst-case {p’} and {p’’} are singleton set pair

in the WSPD

¢ Every unordered pair from S occurs in a unique pair A; Q) B;.

— homework

¢ Including the time to build the compressed quadtree, which is O(nlgn),
the time to compute the WSPD is O((nlgn) + s2n).

— not presented in this lecture
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Algorithm to compute a (1 + ¢)-spanner

® Given a parameter 0 < € < 1, compute a s-WSPD with s = 4(27:6) and

set the representatives for its nodes.

® For every s-WSPD pair {S,, S, }, include an undirected edge between
rep(u), rep(v).
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Two observations

e If the pair {S,, S,} is s-well separated and x,x’ € S, and y,y’ € S,, then
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Two observations

e If the pair {S,, S,} is s-well separated and x,x’ € S, and y,y’ € S,, then

* flx— o) <2 = 2(sr) < Zflx—y]| = 2[x — y], and

- Sr
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Two observations

e If the pair {S,, S,} is s-well separated and x,x’ € S, and y,y’ € S,, then

* flx— o) <2 = 2(sr) < Zflx—y]| = 2[x — y], and

- Sr

AR =Y < =l 4 e =yl y =Yl
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Two observations

e If the pair {S,, S,} is s-well separated and x,x’ € S, and y,y’ € S,, then

* flx— o) <2 = 2(sr) < Zflx—y]| = 2[x — y], and

- Sr

A =Y < W =l =i+ fly =y
< Sl =yl e =yl 4 Sl =yl = (1 + ) llx = ll.

(A few r-Spanners in the Euclidean plane) 27/49



Stretch of the spanneris 1 + ¢

Proving dG(x,y) < (1 +¢€) - ||x — y|| by induction on the number of edges of
the shortest path between x and y in the spanner:

if there is no edge between x and y in G, then

3 (x,y) < 6g(x,x") + dc(x',y") + 86 (', y), where x, y respectively lie in Sy, S, for a WSP
{Su, S0} with ¥ = rep(u), ¥’ = rep(v)

< ég(x,x") + |IX —¥'|| + 6c(y',y). since there is an edge beween x’ and y’ in G

< (L+€)(llx =[] + [ly = Y'[I) + [I¥" = ¥'||, indhyp is applied since a shortest path from x to x’
(resp. y to y) is a subpath of a shortest path from x to y and hence has lesser number of edges

<1+ e)(2%||x —y)+ 1+ i—‘)Hx — y||, from the above two observations
42

= (14 D) x|

_ stuti _ 4C+e)

= (1 + €)|lx — yl|, substituting s = ==

Further, it is immediate that ||x — y|| < dg(x,y).
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More analysis

® size is O(s’n), that is, 0((@)211) = 0((1—3)271)

® time to compute is O(nlgn + s°n), that is, O(nlgn + (?2) n).

® degree can be made O(E%) with the help of sink spanners and by
choosing the representatives at each node in a specific way
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Heavy path decomposition of a binary tree

¢ By introducing dummy nodes, transform the compressed quadtree 7"
into a binary tree 7.

® Partition the nodes of 7 into n maximal chains, each containing a unique
leaf, wherein for any edge (u, v) belonging to any such path with u being
the parent of v, the number of leaves in 7, is greater than or equal to the
number of leaves in the tree rooted at the other child of .
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Obtaining a spanner with (21gn) — 1 diameter

In constructing a WSPD-based spanner, for every node u of T, by choosing
the leaf whose chain contains u as the representative of points stored at the
leaves of 7, yields a (1 + ¢)-spanner with diameter 2(lgn) — I:

® for any point p € S with p € A; where (A;, B;) is a WSP, by induction on |A;|, there is a ¢-spanner
path of length at most 1g |A;| from p to the rep(A;)

® indeed, due to heavy path decomposition of T, for a WSPD-pair (A;, B;) with p € A;j and
rep(A;) € Bj, rep(A;) must also be the representative of B;

® again, due to heavy path decomposition of 7, |A;| < |A;]/2

® for any two points p, ¢ € S with p € Ay and g € By, the length of a (1 + €)-spanner path between p
and ¢ is at most (Ig |Ax|) + 1 + (lg |Bx|), which is 2(1gn) — 1
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4 Gap-greedy
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Gap property

Let w > 0 be a real number, and let E be a set of directed edges in R

® F satisfies w-gap property whenever for any two distinct edges (p, ¢) and
(r,s) in E, we have |pr| > wmin(|pg], |rs|)

e F satisfies strong w-gap property whenever E satisfies w-gap property
together with |gs| > wmin(|pg|, |rs|)
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Gap theorem

Let S be a set of n points in R?, and let E C S x S be a set of directed edges
that satisfy the w-gap property.

e if w > 0, then each point of § is the source of at most one edge of £

e if w > 0, and E satisfies the strong w-gap property, then each point of S
is the sink of at most one edge of E.
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Gap theorem (cont)

Let S be a set of n points in R¢, and let E C S x S be a set of m directed edges

that satisfy the w-gap property. If w > 0, then
wt(E) < (1 + 2).wt(MST(S)) Ign.
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Gap theorem (cont)

Let S be a set of n points in R¢, and let E C S x S be a set of m directed edges

that satisfy the w-gap property. If w > 0, then
wt(E) < (1 + 2).wt(MST(S)) Ign.

® claim: E contains a subset E’ of size %, such that
wi(E') < (%)wt(MST(S)).
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Gap theorem (cont)

Let S be a set of n points in R¢, and let E C S x S be a set of m directed edges

that satisfy the w-gap property. If w > 0, then
wt(E) < (1 + 2).wt(MST(S)) Ign.

® claim: E contains a subset E’ of size %, such that
wi(E') < (2)wr(MST(S)).
* number of edges of E according to the order in which their sources are visited by an optimal

TSP of S; consider the portion T; = (pry,_ |, Pky;_, + 1, -+, Pky;) of TSP(S) between the
sources of two successive edges ep;— and ey;, where 1 < i < m/2
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Gap theorem (cont)

Let S be a set of n points in R¢, and let E C S x S be a set of m directed edges

that satisfy the w-gap property. If w > 0, then
wt(E) < (1 + 2).wt(MST(S)) Ign.

® claim: E contains a subset E’ of size %, such that
wi(E') < (2)wr(MST(S)).
* number of edges of E according to the order in which their sources are visited by an optimal

TSP of S; consider the portion T; = (pry,_ |, Pky;_, + 1, -+, Pky;) of TSP(S) between the
sources of two successive edges ep;— and ey;, where 1 < i < m/2

* |Phy_ Py | < wi(T:) and
[Phos_ 1 Phr;] > wmin(Jezi—1], |ezi]) = min(ley—1], |exi]) < L - wr(T;)
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Gap theorem (cont)

Let S be a set of n points in R¢, and let E C S x S be a set of m directed edges
that satisfy the w-gap property. If w > 0, then
wt(E) < (1 + 2).wt(MST(S)) Ign.

® claim: E contains a subset E’ of size %, such that
wi(E') < (%)wt(MST(S)).

* number of edges of E according to the order in which their sources are visited by an optimal

TSP of S; consider the portion T; = (pry,_ |, Pky;_, + 1, -+, Pky;) of TSP(S) between the
sources of two successive edges ep;— and ey;, where 1 < i < m/2

* |Phy_ Py | < wi(T:) and
[Phos_ 1 Phr;] > wmin(Jezi—1], |ezi]) = min(ley—1], |exi]) < L - wr(T;)

* 3T min(leyi—y, ex) < L wi(TSP(S))
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Gap theorem (cont)

Let S be a set of n points in R¢, and let E C S x S be a set of m directed edges
that satisfy the w-gap property. If w > 0, then
wt(E) < (1 + 2).wt(MST(S)) Ign.

® claim: E contains a subset E’ of size %, such that
wi(E') < (%)wt(MST(S)).

* number of edges of E according to the order in which their sources are visited by an optimal

TSP of S; consider the portion T; = (pry,_ |, Pky;_, + 1, -+, Pky;) of TSP(S) between the
sources of two successive edges ep;— and ey;, where 1 < i < m/2

* |Phy_ Py | < wi(T:) and
[Phos_ 1 Phr;] > wmin(Jezi—1], |ezi]) = min(ley—1], |exi]) < L - wr(T;)

* 3T min(leyi—y, ex) < L wi(TSP(S))

® by induction on m
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Observation

/ | [

14 q p q

Let z,60, and w be real numbers, such that 0 < 6 < 7 /4,
0<w< (cosf —sinh)/2,andt > 1/(cosf — sinf — 2w). Let p,q,r, and s
be points in R?, such that

*PFGrES,

L angle(pq, I"S) <4, (r, 5) is almost parallel to (p, q)
L4 |rs| < \pq\/ cos 0, |rs| is not much larger than |pg|
L ]pr| < W|I’S|. ris close to p

Then |pr| < |pq|, |sq| < |pq|. and t|pr| + |rs| + t|sq| < t|pg|. — not proved
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Another observation

Let 6, w, and ¢ be real numbers such that 0 < § < 7 /4,

0<w< (cosf—sinf)/2,andt > 1/(cos @ —sinf —2w). Let S be a set of n
points in the plane, and let G(S, E) be a directed graph, such that the
following holds: for any two distinct points p and g of S, there is an edge
(r,s) € E, such that

® angle(pq,rs) < 0
® |rs| < |pgl|/cos6
o |pr| < wirs| or |gs| < wirs].

Then, the graph G is a ¢-spanner for S.
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The gap-greedy algorithm’

Consider all ordered pairs of distinct points in nondecreasing order of their
distances. An edge (p, q) is added iff including (p, ¢) into the current edge set
E does not make the new set to violate the w-strong gap property.

Sfrom [Arya, Smid *97]
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Analysis

when0 < 0 < 7/4and 0 < w < (cosf —sinf)/2,

e stretch factor 1/(cos € — sinf — 2w)
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Analysis

when0 < 0 < 7/4and 0 < w < (cosf —sinf)/2,

e stretch factor 1/(cos € — sinf — 2w)

¢ maximum degree < 2[27/6|
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Analysis

when0 < 0 < 7/4and 0 < w < (cosf —sinf)/2,

e stretch factor 1/(cos € — sinf — 2w)
¢ maximum degree < 2[27/6]

o weight < [27/01](1 + 2/w)wt(MST(S))lgn
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Analysis

when0 < 0 < 7/4and 0 < w < (cosf —sinf)/2,

e stretch factor 1/(cos € — sinf — 2w)
¢ maximum degree < 2[27/6|
o weight < [27/01](1 + 2/w)wt(MST(S))lgn

e construction time O(n?)
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Analysis: optimizing parameters to minimize the
weight

whenf = (r—1)/2andw = (t —1)/4,

® stretch factor ¢
® maximum degree is O(1/(t — 1))
o weightis O((1/(t — 1)?) - wt(MST(S)) g n)

e construction time O(n?) ¢

®a modified implementation yields O(n(lgn)?) time.

(A few r-Spanners in the Euclidean plane)
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Outline

5 Path-greedy
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The path-greedy algorithm’

Construct spanner G while onsidering pairs of points in nondecreasing order
of distances: add an edge e between the considered pair (u, v) only if
dg(u,v) > t.d(u,v).

"from [Das, Heffernan, Narasimhan ’93]
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Analysis

® f-spanner

® O(n*(m+ nlgn)) time to compute

node degree is 0(1/(l — 1)) — not proved: analysis is a bit involved
L4 0(11) size with weight 0((lg n)W(MST)) — not proved: analysis is a bit involved

has many good characteristics but the computation time is high
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Analysis

® ;-spanner

® O(n*(m+ nlgn)) time to compute

® node degree is O(1/(f — 1)) — not proved: analysis is a bit involved

® O(n) size with weight O((1gn)w(MST)) — not proved: analysis is a bit involved

has many good characteristics but the computation time is high

several optimizations in constructing an approximate path-greedy spanner led
to achiving a computation time of O(n(lgn)?/(1glgn)) while the resulting
spanner being sparse with weight O(ﬁw(MST)) and degree O(1/(t —1)3)

(A few r-Spanners in the Euclidean plane) 43/49



Outline

6 Conclusions
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Comparison of 7-spanners

® Parameters based on which spanners presented here are compared:
stretch, time to compute, size, weight, diameter, and maximum node
degree
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Comparison of 7-spanners

® Parameters based on which spanners presented here are compared:
stretch, time to compute, size, weight, diameter, and maximum node
degree

® O-graph based
® WSPD based

® Greedy algorithms: gap-greedy, path-greedy <— excellent features but
the construction time is a bottleneck
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Current research

® gspecialized: plane, single-source, pairwise

amid obstacles
Steiner

in R3

expected analysis
dynamic spanners
kinetic spanners
energy-efficient

multicriteria
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Thanks!
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