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Metric Space: Definition

A metric space is a pair (X, d) where X is a set and d : X × X → [0,∞) is a
metric satisfying:

• dxy ≥ 0

• dxy = 0 iff x = y

• dxy = dyx

• dxy + dyz ≥ dxz (triangle inequality)

ex. Rd
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Finite Metric Space: Definition

A metric space (X, d) is a finite metric space if |X| is finite.

ex. graph metric a.k.a. metric completion of a graph

Any finite metric space can be represented by a complete weighted graph
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Ld
p-Minkowski norms

For p ≥ 1, Ld
p defines the distance between two points x, y ∈ Rd as

‖x− y‖d
p = (

∑d
i=1 |xi − yi|p)1/p. The popular norms include:

• rectilinear norm Ld
1: ‖x− y‖1 =

∑d
i=1 |xi − yi|

• Euclidean norm Ld
2: ‖x− y‖2 =

∑d
i=1 |xi − yi|2

• max norm Ld
∞: ‖x− y‖∞ = maxd

i=1 |xi − yi|

The triangle inequality holds for all Minkowski norms.
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Unit balls in various Minkowski norms

L\infty

L5

L1 L1.5

L2

• For any p ∈ Rd, ‖p‖1√
d
≤ ‖p‖2 ≤ ‖p‖1
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Embedding

Let (X, d′) and (Y, d′′) be two (finite) metric spaces. Any one-to-one map
f : X → Y is termed an embedding.

An embedding that preserves the distance between every two points is
termed an isometric embedding.

An embedding in which no distance shrinks is termed an expansive
embedding.
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Distortion of an embedding

• The mapping f : Rn → Rk is called K-bi-Lipschitz for a subset X ⊆ Rn if
there exists a constant c > 0 such that

cK−1‖p− q‖ ≤ ‖f (p)− f (q)‖ ≤ c‖p− q‖.
The least K for which f is K-bi-Lipschitz is called the distortion of f .

• Let (X, d′) and (Y, d′′) be two (finite) metric spaces. The distortion of an
expansive embedding f : X → Y is maxx,y∈X

d′′(f (x),f (y))
d′(x,y) .
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Algorithm design: typical pipeline

• viewing a combinatorial problem (ex. shortest paths in graphs) as a finite
metric space, say (V, d)

• embed (V, d) into a finite metric space (V ′, d′)

• using an efficient algorithm, solve the problem in (V ′, d′)

distortion corresp. to the function that embeds is an apprx factor
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Advantages of tree metrics

• for many problems, efficient algorithms are available for trees

• trees are embeddable into L1 with no distortion
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Cycle to tree embedding

Embedding a unit weighted cycle C into a tree T while T being a subgraph of
C:

• lower bound stands at Ω(n)
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Tree Metric: definition

An α-distortion embedding of a finite metric space (V, d) into a tree (V ′,T)2:
• V ⊆ V ′

• positive edge length associated to each edge of T

• duv ≤ Tuv ≤ αduv

further, if V = V ′, then (V ′,T) is termed as a spanning tree metric.

w.l.o.g., duv ≥ 1 for all u 6= v in V

2with a few minor adjustments (moving labels on edges to nodes), the tree to be constructed
is a hierarchically well-separated tree
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Embedding cycle into tree metric

Embedding a unit weighted cycle C into a tree T while T being a supergraph
of C:

• again, the lower bound stands at Ω(n) — not proved

how about probabilistically embedding?
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Expected distortion

Probabilistically embedding a metric space (X, d) into convex combination of
trees:

• Let T1,T2, . . . ,Tk be a sequence of metrics Ti : (X, di), and let
α1, α2, . . . , αk be positive reals with

∑
i αi = 1. Then Ts and αs

together define a probabilistic metric. The expected distance between p
and q is

∑
i αidi(p, q).

The expected distortion is maxu,v∈V
E[T(u,v)]

d′uv
.
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Significant results

Bartal’s result ([Bartal96]) devised a randomized polynomial time algorithm
for the following:

for (|X| = n, d′) being an arbitrary metric, and X′ is finite,

(X, d′) ↪→O(lg2 n)expected (X′,T) for X ⊆ X′

Later the expected distortion got improved
to O(lg n) due to a randomized polynomial time algorithm devised in [FRT04].

The lower bound on the expected distortion in probabilistically approximating
metrics by tree metrics is known to be Ω(lg n). — not proved
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for a given node at level i that corresp. to a set S, vertices in S will be the vertices in a ball of radius < 2i

and ≥ 2i−1 centered at some vertex 3

here, ∆ = minx 2x > 2 · maxu,v∈V duv

• root has the entire V; each leaf node corresp. to a unique point in V

• nodes in each level together partition V

3vertices of T are referred as nodes while the vertices of V are referred as points
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Hierarchical cut decomposition is a tree metric

(V ′,T) is an expansive tree metric embedding of (V, d) due to:

• V ⊆ V ′

• positive edge lengths

• (V ′,T) is an expansive metric
lowest level at which u and v belong to the same is blg2 duvc

• what about the distortion?
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Randomized Algorithm to construct (V ′,T)

1 pick a permutation π of V

2 pick a random number r0 in [1/2, 1); set radius ri = 2ir0 for all balls at
each level i

3 root is associated with points in ball B(any point,∆) i.e., V itself

4 for each node v in each level i (i > 0)

let S be the set of points associated with v
(a) for each j from 1 to n

(i) if S′ = B(π(j), ri−1) ∩ S 6= φ then create a child node to v and associate
points in S′ to it

(ii) S = S− S′

(b) for each edge e that got created in (a), set the weight of e to 2i

takes randomized polynomial time
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Algorithm in Execution
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lower bound on Tuv

∀u,v∈V duv ≤ Tuv

• if u and v are in a set S corresp. to a node at level i, then duv < 2i+1 (since the radius of the ball
containing S is < 2i)

hence, u and v cannot belong to the same node at level blg2 duvc − 1

implies, the lowest level at which u and v can belong to the same node is blg2 duvc

• therefore, the distance Tuv ≥ 2
∑blg2 duvc

j=1 2j ≥ duv
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Upper bounding the expected distortion

• If LCA of u and v is at level i, then Tuv ≤ 2i+2.
• Tuv = 2

∑i
j=1 2j = 2i+2 − 4 ≤ 2i+2

• E[Tuv]

=
∑

w∈V
∑lg ∆−1

i=0 pr(
w is the first vertex in the random permutation of vertices such that at
least one of u, v is in the ball B(w, ri) ∧
exactly one of u and v is in B(w, ri)
) ∗ (Tuv when the LCA of u and v is in level i + 1)

=
∑

w∈V
∑lg ∆−1

i=0 pr(Siw ∧ Xiw)2i+3 (respectively denoted the above two

descriptions with Siw and Xiw)

=
∑

w∈V
∑lg ∆−1

i=0 pr(Siw|Xiw)pr(Xiw)2i+3

from here on, w.l.o.g., we suppose u is nearer to w than v
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Upper bounding the expected distortion: pr(Siw|Xiw)

• pr(Siw|Xiw) ≤ 1
j if w is the jth closest vertex to the pair u, v

• therefore,
∑

w∈V
∑lg ∆−1

i=0 pr(Siw|Xiw)pr(Xiw)2i+3

=
∑n

j=1
1
j

∑lg ∆−1
i=0 pr(Xiw)2i+3 (since for each j, 1 ≤ j ≤ n, there is some vertex w that

is the jth closest to the pair u, v)
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Upper bounding the expected distortion: pr(Xiw)

• pr(Xiw) = pr(u ∈ B(w, ri) and v /∈ B(w, ri))

= |[2i−1,2i)∩[duw,dvw)|
|[2i−1,2i)| (since ri ∈ [2i−1, 2i))

= |[2i−1,2i)∩[duw,dvw)|
2i−1

• ∑lg2 ∆−1
i=0 2i+3pr(Xiw)

= 16
∑lg2 ∆−1

i=0 |[2i−1, 2i) ∩ [duw, dvw)|
≤ 16|[duw, dvw)| (since the intervals [2i−1, 2i) for i = 0 to lg2 ∆− 1 partition the interval

[1/2,∆/2))

= 16(dvw − duw)

≤ 16duv
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Upper bounding the expected distortion: E[Tuv]

• E[Tuv]

=
∑n

j=1
1
j

∑lg ∆−1
i=0 pr(Xiw)2i+3

≤
∑n

j=1
1
j (16duv)

= 16duv
∑n

j=1
1
j

hence, E[Tuv] is O(lg n)duv

(Tree Metrics) 27 / 41



Outline

1 Intro to metric embeddings

2 Intro to tree metrics

3 Hierarchical cut decomposition

4 Bounding the distortion of tree metric

5 Spanning tree metrics

6 An application: metric k-median clustering

7 Conclusions

(Tree Metrics) 28 / 41



Transforming Tree Metric (V ′,T) to a Spanning Tree
Metric (V,T ′)

1 repeat until there does not exist a vertex pair u,w such that u ∈ V , w /∈ V
and w is the parent of u

(a) contract edge uw

(b) identify merged node with u(∈ V)

2 multiply the length of every remaining edge by four
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Distortion in Spanning Tree Metric

• T ′(u, v) ≤ 4T(u, v) for any u, v ∈ V
immediate from the construction

• T(u, v) ≤ T ′(u, v) for any u, v ∈ V
- if LCA of u and v is in T was a node w at level i so that Tuv = 2i+2 − 4

- the contraction process only moves u and v upward in T , the distance T′uv must be at least 4

times the length of the edge from w to one of its children

hence, duv ≤ T ′uv and E[T ′uv] is O(lg n)duv
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Metric k-median clustering problem

Given a set P of n points in metric space, find a set S ⊆ P of k > 0 points
(a.k.a., cluster centers), such that the sum of the distances of points of P to
their closest point in S is minimized.

min
S⊆P,|S|=k

∑
p∈P

dist(p, S)

(hence, a.k.a. min-sum clustering)
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Algorithm

(1) embed the finite metric space (P, d) into a tree metric (T, dT)

(2) convert T into a binary tree; optimally solve k-median clustering
problem on the resultant tree with points at the leaves

(3) output the so obtained set C of k-centers together with the corresponding
clusters

(Tree Metrics) 33 / 41



DP to solve k-median clustering problem on a tree with
points at leaves

• observation: for the leaf nodes 1, . . . , i, . . . , j, . . . , r, . . . , n of the tree
metric, d(i, j) ≤ d(i, k)

• let optr(i, j) denote the optimal solution with r-centers and points at
leaves li, . . . , lj
then, optk(1, n) =

= min1≤j≤n−k(opt1(1, j) + optk−1(j + 1, n))

— O(k2n) time
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Expected Approximation

• costC(P, d)

≤ costC(P, dT)

≤ costCopt(P, dT)

=
∑

p∈P dT(p,Copt)

≤
∑

p∈P dT(p, center associated to p in Copt)

• hence, E[costC(P, d)] is O(OPT · lg n)
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A few more applications

• Uniform buy-at-bulk network design

• Group Steiner tree

• Vehicle routing

• Communication spanning trees
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Other popular metric embeddings

Let |X| = n, d′ is an arbitrary metric, d denotes the number of dimensions,
and X′ is finite. Then,

• Bourgain’s theorem:
existence of (X, d′) ↪→O(lg n) (RO(lg2 n),Lp)

• dimension reduction due to the Johnson-Lindenstrauss lemma:
existence of (X,Ld

2) ↪→(1+ε) (RO(ε−2 lg n),L2)

• Feige’s volume respecting embeddings:
Vol(X) = supf :X→l2 Evol(f (X)) (f requires to be a contraction)

k-distortion of f is supP⊂X,|P|=k(
Vol(P)

Evol(f (P)) )
1

k−1

* It is known that Ω(lg n) distortion is necessary in the worst-case.
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Possible future work

• improving the apprx factor in case of shortest path metrics from special
graphs

• several metric embedding conjectures listed in [Indyk01]

• simpler algorithms for non-uniform buy-at-bulk

• finding more applications for tree metrics
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Thanks!
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