
Computing an Approximate Minimum Cost Path
among Weighted Regions in the Plane

R. Inkulu
http://www.iitg.ac.in/rinkulu/

(Joint work with Sanjiv Kapoor)

(Approximate weighted shortest path) 1 / 40

Problem description

s
t

t

f1
f2

f3
f5a

b
c

d
g

f4

cost of the red path is
wf1∥sa∥+ wf2∥ab∥+ wf3∥bc∥+min(wf3 ,wf4)∥cd∥+ wf3∥dg∥+ wf5∥gt∥
• Given a triangulation P with O(n) faces, each face associated with a

positive weight, find a path between two input points s and t (both
belonging to P) so that the path has minimum cost among all possible
paths joining s and t that lie on P .

• The cost of any path p is the sum of costs of all line segments in p,
whereas the cost of a line segment is its Euclidean length multiplied by
the weight of the face on which it lies.

(Approximate weighted shortest path) 2 / 40

Hardness of the problem

• Computing an optimal path is believed to be hard; and it is not of interest
to practitioners in particular. 1

Hence, apprx algorithms are of interest; we devise a FPTAS.

1In the algebraic computation model over the rational numbers, computing an optimal path
amid weighted regions in R2 is proven to be unsolvable (refer to De Carufel et al. CGTA 2014).
In R3, even when every face weight belong to 0, ∞, computing an optimal path amid weighted
regions is proven to be NP-hard using a reduction from 3-SAT (refer to Canny and Reif, FOCS
’87).
(Approximate weighted shortest path) 3 / 40

Hardness of the problem

• Computing an optimal path is believed to be hard; and it is not of interest
to practitioners in particular. 1

Hence, apprx algorithms are of interest; we devise a FPTAS.

1In the algebraic computation model over the rational numbers, computing an optimal path
amid weighted regions in R2 is proven to be unsolvable (refer to De Carufel et al. CGTA 2014).
In R3, even when every face weight belong to 0, ∞, computing an optimal path amid weighted
regions is proven to be NP-hard using a reduction from 3-SAT (refer to Canny and Reif, FOCS
’87).
(Approximate weighted shortest path) 3 / 40

Outline

1 Literature

2 Our algorithm

3 Conclusions

(Approximate weighted shortest path) 4 / 40

[Mitchell, Papadimitriou JACM ’91]: characterized
shortest paths in terms of Snell’s laws

p
θc θcf ′

f ′′

y y′ e

θ′

θ′′z

p

f ′

f ′′

e

• If a geodesic path p shares a segment yy′ with edge e, for y not being a
vertex, then both the angle of incidence at y from f ′ and angle of exit into
f ′ at y′ are critical: θc = sin−1(

wf ′′
wf ′

). (This cases arises only when wf ′′ < wf ′ .)

• If a geodesic path p crosses edge e at a point z, then p obeys Snell’s law
of refraction at z: wf ′ sinθ′ = wf ′′ sinθ′′ for θ′ < θc.

• There does not exist a least cost path whose angle of incidence is greater
than θc.

(Approximate weighted shortest path) 5 / 40

[Mitchell, Papadimitriou JACM ’91]: algorithm based
on continuous Dijkstra

f1

sf2

f3

f4

weights of all the faces are same

f1

sf2

f3

f4

weights of faces are not same

(Approximate weighted shortest path) 6 / 40

[Mitchell, Papadimitriou JACM ’91]: progresses
intervals of optimality

v

y
z

s
e

e1

e2

e3

e4

f ′

f ′′

• Simulates the wavefront progress by the progression of intervals of
optimality over the faces of P

- each such interval s denotes one maximal subsection of an edge (wrt a
face f ′) for which the shortest path to any point on s has the same
discrete structure

(Approximate weighted shortest path) 7 / 40

[Lanthier et al. Algorithmica ’01]: reduced to a
graph-theoretic problem

u′ u′′

v′
v′′

• For each face fi of P a graph Gi is constructed: Θ(n2) Steiner points are
evently placed along each edge of fi; a node pair u and v is connected in
Gi whenever u and v belong to distinct edges of fi or they are neighbors
on an edge.

outputs an apprx shortest path with additive error

(Approximate weighted shortest path) 8 / 40

Variants of [Lanthier et al. Algorithmica ’01]
• [Aleksandrov et al. SWAT’98]

Steiner points are placed in a geometric progression along the edge

• [Aleksandrov et al. STOC’00]
Based on Snell’s laws of refraction, prunes edges through which
Dijkstra’s wavefront need to progress

• [Sun and Reif JAlgo ’06]
Prunes further by exploiting the non-crossing property of shortest paths

• [Aleksandrov et al. JACM ’05]
Steiner points are placed in a geometric progression along the three
bisectors of each face

• [Cheng et al. SIAMJC ’10, Cheng et al. SODA ’15]
Prunes P based on the intersection of an ellipse (whose size relies on the
unweighted geodesic distance between s and t) and P before applying
[Aleksandrov et al. JACM ’05]; handles convex distance functions

(Approximate weighted shortest path) 9 / 40

Time complexity comparison chart2

[Mitchell, Papadimitriou JACM ’91] O(n8 lg nNµ
ϵ)

[Mata and Mitchell SoCG ’97] O(µ
ϵθmin

n3)

[Sun and Reif JAlgo ’06] O(nN2

ϵ lg(Nµ) lg n
ϵ lg

1
ϵ)

[Aleksandrov et al. JACM ’05] O(nN2√
ϵ
lg(Nµ) lg n

ϵ lg
1
ϵ)

[Cheng et al. SODA ’15] O(kn+k4 lg(k/ϵ)
ϵ lg2 ρn

ϵ)

Our result O(n5 lg n+n4 lg(µϵ (1+
1

sin θmin
)))

Like [Mitchell, Papadimitriou JACM ’91], our algorithm is polynomial in n.

2n: number of vertices defining P; L: length of the longest edge bounding any face of P;
N: maximum coordinate value used in describing P; wmax: maximum non-infinite weight
associated with any triangle; wmin: minimum weight associated with any triangle; θmin:
minimum among the internal face angles of P; and, µ: ratio of wmax to wmin; k is the smallest
integer such that the sum of the k smallest angles in P is at least π
(Approximate weighted shortest path) 10 / 40

Outline

1 Literature

2 Our algorithm

3 Conclusions

(Approximate weighted shortest path) 11 / 40

Progressing wavefront: continuous Dijkstra in
weighted domains

f1

sf2

f3

f4

(Approximate weighted shortest path) 12 / 40

Progressing wavefront: discretized Dijkstra

v′′

v′ f1

s

v′′′
f3

f4
f2

(Approximate weighted shortest path) 13 / 40

Tracing discrete wavefront

q′1
q′′1 v′′

v′ f1

s

r′1
r′′1

v′′′

f2

f3

f4
r′′2

q′′2

successive rays

sibling rays

ray bundle

• initiate many rays from s but trace only few

• we upper bound the number of rays initiated and the ones that get traced
for the worst-case

(Approximate weighted shortest path) 14 / 40

Tracing discrete wavefront

q′1
q′′1 v′′

v′ f1

s

r′1
r′′1

v′′′

f2

f3

f4
r′′2

q′′2

successive rays

sibling rays

ray bundle

• initiate many rays from s but trace only few

• we upper bound the number of rays initiated and the ones that get traced
for the worst-case

(Approximate weighted shortest path) 14 / 40

Events corresponding to tracing of ray bundles

q′1
q′′1 v′′

v′ f1

s

r′1
r′′1

v′′′

f2

f3

f4
r′′2

q′′2

successive rays

sibling rays

ray bundle

event point pairs are pushed to min-heap:

q′1-q′′1 , etc.,

q′1-q′′2 , etc.,

Note that the bundle of rays are pairwise divergent.

(Approximate weighted shortest path) 15 / 40

Initiating ray bundles from a vertex

qr′
qr′′ v′′

v′ f

v

f ′

r′
r′′

initiate a discrete wavefront from v when blue ray bundle strikes v while
exploiting the non-crossing property of shortest paths

(Approximate weighted shortest path) 16 / 40

Rays in ray bundle

e1 e2
e3

e4
u

r′

r′′

a

b

two rays belong to a ray bundle if they traverse across the same edge
sequence whenever traced

(Approximate weighted shortest path) 17 / 40

Ray bundle split due to a vertex

e1 e2
e3

e4
u

r′

r′′

a

b

c

r′1

r′′1

successive rays r′1 and r′′1 are identified with binary search over the rays in
blue ray bundle

• The rays that belong to the same ray bundle, the edge sequence that they
traverse across is same.

(Approximate weighted shortest path) 18 / 40

Ray bundle split due to a vertex

e1 e2
e3

e4
u

r′

r′′

a

b

c

r′1

r′′1

new ray bundles are formed and the corresponding sibling pairs are defined

(Approximate weighted shortest path) 19 / 40

Detecting critical incidence

> θc≈ θc< θc

vi vj

critical source critical segment

y

wf ′

wf ′′

here the critical angle θc is sin−1(
wf ′′
wf ′

) wherein wf ′′ < wf ′

(Approximate weighted shortest path) 20 / 40

Initiating rays from a critical segment

r

r′

v

v′ v′′

r1

r2

e

e′′e′

x′′

x

y f ′

f

y1

number and position of points from which rays are generated is a
function of ϵ

(Approximate weighted shortest path) 21 / 40

Tracing rays from a critical segment

κ

r

r′

e

x z

v1

v2

v3

z′

r

r′

f

x′

(Approximate weighted shortest path) 22 / 40

Split of a ray bundle initiated at a critical segment

κ

r

r′

e

x z

z′1

z′2

v1

v2

v3

lz′

r

r′

f

x′

r′1

r′2
x′′

• linear interpolation in finding x′′ suffice instead of tracing rays from κ

(Approximate weighted shortest path) 23 / 40

Rays initiated from a critical source

ǫ′
K

θ′
θ′

e

e′′

e′ f ′′

f ′
y

v′

v′′

r′
r

• helps in having sparser sets of rays initiated from vertex and critical
segment sources

• these rays are traced similar to the way rays initiated from a vertex source

(Approximate weighted shortest path) 24 / 40

Recap

sources of ray bundles:

• vertices of P , including s

• critical segments

• critical sources

event points of interest:

• initiating rays from sources

• tracing ray bundles

• ray bundle splits due to new ray bundle sources

(Approximate weighted shortest path) 25 / 40

Recap

sources of ray bundles:

• vertices of P , including s

• critical segments

• critical sources

event points of interest:

• initiating rays from sources

• tracing ray bundles

• ray bundle splits due to new ray bundle sources

(Approximate weighted shortest path) 25 / 40

Recap

sources of ray bundles:

• vertices of P , including s

• critical segments

• critical sources

event points of interest:

• initiating rays from sources

• tracing ray bundles

• ray bundle splits due to new ray bundle sources

(Approximate weighted shortest path) 25 / 40

Recap

sources of ray bundles:

• vertices of P , including s

• critical segments

• critical sources

event points of interest:

• initiating rays from sources

• tracing ray bundles

• ray bundle splits due to new ray bundle sources

(Approximate weighted shortest path) 25 / 40

Recap

sources of ray bundles:

• vertices of P , including s

• critical segments

• critical sources

event points of interest:

• initiating rays from sources

• tracing ray bundles

• ray bundle splits due to new ray bundle sources

(Approximate weighted shortest path) 25 / 40

Recap

sources of ray bundles:

• vertices of P , including s

• critical segments

• critical sources

event points of interest:

• initiating rays from sources

• tracing ray bundles

• ray bundle splits due to new ray bundle sources

(Approximate weighted shortest path) 25 / 40

Recap

sources of ray bundles:

• vertices of P , including s

• critical segments

• critical sources

event points of interest:

• initiating rays from sources

• tracing ray bundles

• ray bundle splits due to new ray bundle sources

(Approximate weighted shortest path) 25 / 40

Recap

sources of ray bundles:

• vertices of P , including s

• critical segments

• critical sources

event points of interest:

• initiating rays from sources

• tracing ray bundles

• ray bundle splits due to new ray bundle sources

(Approximate weighted shortest path) 25 / 40

Algorithm

(1) initiate a set of ray bundles from s

(2) while (t is not struck by a ray bundle)

(i) push new event points to min-heap

(ii) handle event points popped from min-heap

(Approximate weighted shortest path) 26 / 40

Few optimizations: tree of rays

ǫ′
K

θ′
θ′

e

e′′

e′ f ′′

f ′
y

v′

v′′

r′
r

For each vertex v,
• ray bundles from v
• ray bundles from critical sources whose nearest ancestor vertex is v

are organized into a tree, TR(v).

Two rays in a ray bundle are siblings whenever the edge sequence associated
with one is a suffix of the edge sequence of the other;
binary search for ray pairs in TR(v) is possible due to pairwise divergence of
rays in TR(v).

(Approximate weighted shortest path) 27 / 40

Few optimizations: tree of rays

ǫ′
K

θ′
θ′

e

e′′

e′ f ′′

f ′
y

v′

v′′

r′
r

For each vertex v,
• ray bundles from v
• ray bundles from critical sources whose nearest ancestor vertex is v

are organized into a tree, TR(v).

Two rays in a ray bundle are siblings whenever the edge sequence associated
with one is a suffix of the edge sequence of the other;
binary search for ray pairs in TR(v) is possible due to pairwise divergence of
rays in TR(v).
(Approximate weighted shortest path) 27 / 40

Few more optimizations: interpolate when the angle is
small

r′

r′′

q′

q′′

e1

e

r

traced

interpolated

q

ǫ
nn

• avoid tracing rays across lengthy (O(n2)) edge sequence: instead
interpolate when the angle between traced rays is small

(Approximate weighted shortest path) 28 / 40

Properties exploited in the analysis

• Let p be a geodesic path. Then either (i) between any two consecutive
vertices on p, there is at most one critical point of entry to an edge e, and
at most one critical point of exit from an edge e′ (possibly equal to e); or
(ii) the path p can be modified in such a way that case (i) holds without
altering the length of the path.

• The length of any edge sequence of a shortest locally f -free path p to a
point on the boundary of f is O(n2).

• Any shortest geodesic path p, passes through O(n) critical points of entry
on any given edge e.

• Non-crossing property of shortest paths: Any two shortest geodesic paths
with the same source point cannot intersect in the interior of any region.

(Approximate weighted shortest path) 29 / 40

Properties exploited in the analysis

• Let p be a geodesic path. Then either (i) between any two consecutive
vertices on p, there is at most one critical point of entry to an edge e, and
at most one critical point of exit from an edge e′ (possibly equal to e); or
(ii) the path p can be modified in such a way that case (i) holds without
altering the length of the path.

• The length of any edge sequence of a shortest locally f -free path p to a
point on the boundary of f is O(n2).

• Any shortest geodesic path p, passes through O(n) critical points of entry
on any given edge e.

• Non-crossing property of shortest paths: Any two shortest geodesic paths
with the same source point cannot intersect in the interior of any region.

(Approximate weighted shortest path) 29 / 40

Properties exploited in the analysis

• Let p be a geodesic path. Then either (i) between any two consecutive
vertices on p, there is at most one critical point of entry to an edge e, and
at most one critical point of exit from an edge e′ (possibly equal to e); or
(ii) the path p can be modified in such a way that case (i) holds without
altering the length of the path.

• The length of any edge sequence of a shortest locally f -free path p to a
point on the boundary of f is O(n2).

• Any shortest geodesic path p, passes through O(n) critical points of entry
on any given edge e.

• Non-crossing property of shortest paths: Any two shortest geodesic paths
with the same source point cannot intersect in the interior of any region.

(Approximate weighted shortest path) 29 / 40

Properties exploited in the analysis

• Let p be a geodesic path. Then either (i) between any two consecutive
vertices on p, there is at most one critical point of entry to an edge e, and
at most one critical point of exit from an edge e′ (possibly equal to e); or
(ii) the path p can be modified in such a way that case (i) holds without
altering the length of the path.

• The length of any edge sequence of a shortest locally f -free path p to a
point on the boundary of f is O(n2).

• Any shortest geodesic path p, passes through O(n) critical points of entry
on any given edge e.

• Non-crossing property of shortest paths: Any two shortest geodesic paths
with the same source point cannot intersect in the interior of any region.

(Approximate weighted shortest path) 29 / 40

Bounding the ray density at sources to obtain a PTAS

Considering refraction/reflection paths of any two successive rays initiated
from any type of source, initiating O(2µ

ϵ′ (
1
ϵ′)

n2
) suffice to achieve

ϵ-apprximation, where ϵ′ = ϵ
n3µ(1+ 1

sin θmin
)
.

(Approximate weighted shortest path) 30 / 40

Time complexity

• ray bundle splits at vertices

• ray bundle splits at critical sources

• number of ray bundles from vertex sources

• number of ray bundles from critical sources

• splits of ray bundles from critical segments

• tracing ray bundles across edge sequences

savings due to tree of rays and interpolations

Takes O(n5 lg n + n4 lg(µϵ (1 + 1
sinθmin

))) time to find an ϵ-approximate shortest
path from s to t.

(Approximate weighted shortest path) 31 / 40

Time complexity

• ray bundle splits at vertices

• ray bundle splits at critical sources

• number of ray bundles from vertex sources

• number of ray bundles from critical sources

• splits of ray bundles from critical segments

• tracing ray bundles across edge sequences

savings due to tree of rays and interpolations

Takes O(n5 lg n + n4 lg(µϵ (1 + 1
sinθmin

))) time to find an ϵ-approximate shortest
path from s to t.

(Approximate weighted shortest path) 31 / 40

Time complexity

• ray bundle splits at vertices

• ray bundle splits at critical sources

• number of ray bundles from vertex sources

• number of ray bundles from critical sources

• splits of ray bundles from critical segments

• tracing ray bundles across edge sequences

savings due to tree of rays and interpolations

Takes O(n5 lg n + n4 lg(µϵ (1 + 1
sinθmin

))) time to find an ϵ-approximate shortest
path from s to t.

(Approximate weighted shortest path) 31 / 40

Time complexity

• ray bundle splits at vertices

• ray bundle splits at critical sources

• number of ray bundles from vertex sources

• number of ray bundles from critical sources

• splits of ray bundles from critical segments

• tracing ray bundles across edge sequences

savings due to tree of rays and interpolations

Takes O(n5 lg n + n4 lg(µϵ (1 + 1
sinθmin

))) time to find an ϵ-approximate shortest
path from s to t.

(Approximate weighted shortest path) 31 / 40

Time complexity

• ray bundle splits at vertices

• ray bundle splits at critical sources

• number of ray bundles from vertex sources

• number of ray bundles from critical sources

• splits of ray bundles from critical segments

• tracing ray bundles across edge sequences

savings due to tree of rays and interpolations

Takes O(n5 lg n + n4 lg(µϵ (1 + 1
sinθmin

))) time to find an ϵ-approximate shortest
path from s to t.

(Approximate weighted shortest path) 31 / 40

Time complexity

• ray bundle splits at vertices

• ray bundle splits at critical sources

• number of ray bundles from vertex sources

• number of ray bundles from critical sources

• splits of ray bundles from critical segments

• tracing ray bundles across edge sequences

savings due to tree of rays and interpolations

Takes O(n5 lg n + n4 lg(µϵ (1 + 1
sinθmin

))) time to find an ϵ-approximate shortest
path from s to t.

(Approximate weighted shortest path) 31 / 40

Time complexity

• ray bundle splits at vertices

• ray bundle splits at critical sources

• number of ray bundles from vertex sources

• number of ray bundles from critical sources

• splits of ray bundles from critical segments

• tracing ray bundles across edge sequences

savings due to tree of rays and interpolations

Takes O(n5 lg n + n4 lg(µϵ (1 + 1
sinθmin

))) time to find an ϵ-approximate shortest
path from s to t.

(Approximate weighted shortest path) 31 / 40

Time complexity

• ray bundle splits at vertices

• ray bundle splits at critical sources

• number of ray bundles from vertex sources

• number of ray bundles from critical sources

• splits of ray bundles from critical segments

• tracing ray bundles across edge sequences

savings due to tree of rays and interpolations

Takes O(n5 lg n + n4 lg(µϵ (1 + 1
sinθmin

))) time to find an ϵ-approximate shortest
path from s to t.

(Approximate weighted shortest path) 31 / 40

Time complexity

• ray bundle splits at vertices

• ray bundle splits at critical sources

• number of ray bundles from vertex sources

• number of ray bundles from critical sources

• splits of ray bundles from critical segments

• tracing ray bundles across edge sequences

savings due to tree of rays and interpolations

Takes O(n5 lg n + n4 lg(µϵ (1 + 1
sinθmin

))) time to find an ϵ-approximate shortest
path from s to t.

(Approximate weighted shortest path) 31 / 40

Major ideas

• discrete wavefront as sets of rays

• partitioning the wavefront into ray bundles

• lazy tracing of rays in ray bundles

• binary search within tree of rays

• interpolating instead of tracing wherever it is possible

(Approximate weighted shortest path) 32 / 40

Major ideas

• discrete wavefront as sets of rays

• partitioning the wavefront into ray bundles

• lazy tracing of rays in ray bundles

• binary search within tree of rays

• interpolating instead of tracing wherever it is possible

(Approximate weighted shortest path) 32 / 40

Major ideas

• discrete wavefront as sets of rays

• partitioning the wavefront into ray bundles

• lazy tracing of rays in ray bundles

• binary search within tree of rays

• interpolating instead of tracing wherever it is possible

(Approximate weighted shortest path) 32 / 40

Major ideas

• discrete wavefront as sets of rays

• partitioning the wavefront into ray bundles

• lazy tracing of rays in ray bundles

• binary search within tree of rays

• interpolating instead of tracing wherever it is possible

(Approximate weighted shortest path) 32 / 40

Major ideas

• discrete wavefront as sets of rays

• partitioning the wavefront into ray bundles

• lazy tracing of rays in ray bundles

• binary search within tree of rays

• interpolating instead of tracing wherever it is possible

(Approximate weighted shortest path) 32 / 40

Major ideas

• discrete wavefront as sets of rays

• partitioning the wavefront into ray bundles

• lazy tracing of rays in ray bundles

• binary search within tree of rays

• interpolating instead of tracing wherever it is possible

(Approximate weighted shortest path) 32 / 40

Single-source apprx shortest path queries

• Achieves constructing a least cost path in O(n4 lg n
ϵ) query time with

O(n5(lg n
ϵ)(lg

µ√
ϵ
)(lgN)) preprocessing time.

while the best polynomial query time stands at O(n7polylog)
([Mitchell, Papadimitriou JACM ’91])

(Approximate weighted shortest path) 33 / 40

Outline

1 Literature

2 Our algorithm

3 Conclusions

(Approximate weighted shortest path) 34 / 40

Take-homes

• A generalization of well-known Euclidean shortest path problem

• Continuous vs discrete-Dijkstra wavefront

• Reducing the geometric problem to a graph-theoretic one vs

solving the problem in the geometric domain itself

(Approximate weighted shortest path) 35 / 40

Take-homes

• A generalization of well-known Euclidean shortest path problem

• Continuous vs discrete-Dijkstra wavefront

• Reducing the geometric problem to a graph-theoretic one vs

solving the problem in the geometric domain itself

(Approximate weighted shortest path) 35 / 40

Take-homes

• A generalization of well-known Euclidean shortest path problem

• Continuous vs discrete-Dijkstra wavefront

• Reducing the geometric problem to a graph-theoretic one vs

solving the problem in the geometric domain itself

(Approximate weighted shortest path) 35 / 40

Open problems

• since the known worst-case lower bound on the number of event points
in the continuous Dijkstra amid weighted regions is known to be Ω(n4)
(from [Mitchell, Papadimitriou JACM ’91]) , the next objective could be to design an
algorithm with O(n4 polylog) time.

• more efficient single-source queries and two-point queries

• extending to polyhedral weighted surfaces and to R3

• using more complicated weight functions, ex. anistropic ones

• several optimization problems in weighted regions, ex. tours, matchings,
transportation, routing

(Approximate weighted shortest path) 36 / 40

Open problems

• since the known worst-case lower bound on the number of event points
in the continuous Dijkstra amid weighted regions is known to be Ω(n4)
(from [Mitchell, Papadimitriou JACM ’91]) , the next objective could be to design an
algorithm with O(n4 polylog) time.

• more efficient single-source queries and two-point queries

• extending to polyhedral weighted surfaces and to R3

• using more complicated weight functions, ex. anistropic ones

• several optimization problems in weighted regions, ex. tours, matchings,
transportation, routing

(Approximate weighted shortest path) 36 / 40

Open problems

• since the known worst-case lower bound on the number of event points
in the continuous Dijkstra amid weighted regions is known to be Ω(n4)
(from [Mitchell, Papadimitriou JACM ’91]) , the next objective could be to design an
algorithm with O(n4 polylog) time.

• more efficient single-source queries and two-point queries

• extending to polyhedral weighted surfaces and to R3

• using more complicated weight functions, ex. anistropic ones

• several optimization problems in weighted regions, ex. tours, matchings,
transportation, routing

(Approximate weighted shortest path) 36 / 40

Open problems

• since the known worst-case lower bound on the number of event points
in the continuous Dijkstra amid weighted regions is known to be Ω(n4)
(from [Mitchell, Papadimitriou JACM ’91]) , the next objective could be to design an
algorithm with O(n4 polylog) time.

• more efficient single-source queries and two-point queries

• extending to polyhedral weighted surfaces and to R3

• using more complicated weight functions, ex. anistropic ones

• several optimization problems in weighted regions, ex. tours, matchings,
transportation, routing

(Approximate weighted shortest path) 36 / 40

Open problems

• since the known worst-case lower bound on the number of event points
in the continuous Dijkstra amid weighted regions is known to be Ω(n4)
(from [Mitchell, Papadimitriou JACM ’91]) , the next objective could be to design an
algorithm with O(n4 polylog) time.

• more efficient single-source queries and two-point queries

• extending to polyhedral weighted surfaces and to R3

• using more complicated weight functions, ex. anistropic ones

• several optimization problems in weighted regions, ex. tours, matchings,
transportation, routing

(Approximate weighted shortest path) 36 / 40

References: polynomial time algo

Joseph Mitchell and Christos Papadimitriou.
The weighted region problem: Finding shortest paths through a weighted
planar subdivision.
Journal of the ACM, 38(1):18–73, 1991.

R. Inkulu and Sanjiv Kapoor
A polynomial time algorithm for finding an approximate shortest path
amid weighted regions.
Under review.
Available at CoRR abs/1501.00340.

(Approximate weighted shortest path) 37 / 40

http://arxiv.org/abs/1501.00340

References

Christian Mata and Joseph Mitchell.
A new algorithm for computing shortest paths in weighted planar
subdivisions (extended abstract).
SoCG, pages 264–273, 1997.

Lyudmil Aleksandrov, Anil Maheshwari, and Jörg-Rüdiger Sack.
Determining approximate shortest path on weighted polyhedral surface.
Journal of the ACM, 52(1):25–53, 2005.

Zheng Sun and John H. Reif.
On finding approximate optimal paths in weighted regions.
Journal of Algorithms, 58(1):1–32, 2006.

S.-W. Cheng, H.-S. Na, A. Vigneron, and Y. Wang.
Querying approximate shortest paths in anisotropic regions.
SIAM Journal on Computing, 39(5):1888–1918, 2010.

(Approximate weighted shortest path) 38 / 40

Few more references
Mark Lanthier, Anil Maheshwari, and Jörg-Rüdiger Sack.
Approximating shortest paths on weighted polyhedral surfaces.
Algorithmica, 30(4):527–562, 2001.

Lyudmil Aleksandrov, Mark Lanthier, Anil Maheshwari, and
Jörg-Rüdiger Sack.
An ϵ-approximation for weighted shortest paths on polyhedral surfaces
SWAT, pages 11-22, 1998.

Lyudmil Aleksandrov, Anil Maheshwari, and Jörg-Rüdiger Sack.
Approximation algorithms for geometric shortest path problems
STOC, pages 286-295, 2000.

Siu-Wing Cheng, J. Jin, and A. Vigneron.
Triangulation Refinement and Approximate Shortest Paths in Weighted
Regions.
SODA, pages 1626–1640. SIAM, 2015.

(Approximate weighted shortest path) 39 / 40

Thanks!

(Approximate weighted shortest path) 40 / 40

	Literature
	Our algorithm
	Conclusions

