Lipton & Tarjan's Planar Separator Theorem¹

R. Inkulu http://www.iitg.ac.in/rinkulu/

Prepared in '10; References: The Design and Analysis of Algorithms by D₃C. Kozen. ३ > ३ ✓ ० ०

Let G(V, E) be an undirected planar graph (with $|V| \ge 3$). There exists a partition of V into disjoint sets A, B and S such that:

- $|A|, |B| \leq \frac{2n}{3}$
- $|S| \le 4\sqrt{|V|}$
- $(A \times B) \cap E = \phi$
- Moreover, such a partition can be found in linear time.

Outline

1 An application

2 A constructive proof

3 Other variants

Maximum cardinality matching in planar graphs

Let G(V, E) be a connected undirected graph. For any vertex $v \in V$, let M be a maximum cardinality matching in G - v. Then

Maximum cardinality matching in planar graphs

Let G(V, E) be a connected undirected graph. For any vertex $v \in V$, let M be a maximum cardinality matching in G - v. Then

• if *G* contains no augmenting path with end node *v*, then *M* is a maximum matching in G

Maximum cardinality matching in planar graphs

Let G(V, E) be a connected undirected graph. For any vertex $v \in V$, let M be a maximum cardinality matching in G - v. Then

- if *G* contains no augmenting path with end node *v*, then *M* is a maximum matching in G
- otherwise, for an augmenting path $P, M \oplus P$ is a maximum matching in G.

Maximum cardinality matching in planar graphs (cont)

Recursively do the following: divide G using planar separator theorem; conquer the separated pieces; for each vertex in the separator, apply the above theorem to combine.

Leads to
$$T(n) = 2T(\frac{2}{3}n) + O(n^{3/2})$$
; solving which yields $O(n^{1.709})^2$

²more precise analysis of this algorithm leads to $O(n^{1.5})$

Outline

1 An application

2 A constructive proof

3 Other variants

Embed G in plane

• In linear time using Hopcroft-Tarjan's algorithm.

³figures in this lecture are from Kozen's text (The planar separator theorem)

Find median level using BFS

• Find the median level, say M, in which $\frac{n}{2}$ th element resides in breadth-first ordering.

Find median level using BFS

- Find the median level, say M, in which $\frac{n}{2}$ th element resides in breadth-first ordering.
- Can L(M) be a *valid* separator S?

Find two closest levels L(M') and L(M'') to L(M)

• There exists levels L(M') and L(M'') such that $M' \leq M$ and M'' > M and $|L(M')| \leq \sqrt{n}, |L(M'')| \leq \sqrt{n}$, and $L(M'') - L(M') \leq \sqrt{n}$.

introduce a dummy level with zero nodes as the last layer to guarantee this

Find two closest levels L(M') and L(M'') to L(M)

• There exists levels L(M') and L(M'') such that $M' \leq M$ and M'' > M and $|L(M')| \leq \sqrt{n}, |L(M'')| \leq \sqrt{n}, \text{ and } L(M'') - L(M') \leq \sqrt{n}.$ introduce a dummy level with zero nodes as the last layer to guarantee this

• Can $L(M') \cup L(M'')$ be a *valid* separator *S*?

- * yes it is provided $|D| \leq \frac{2}{3}n$
- otherwise, since $|C| + |E| \le \frac{n}{3}$, we find a $\frac{1}{3} \frac{2}{3}$ separator X-Y of D with $\le 2\sqrt{n}$ vertices and combine this with L(M') and L(M'') to get a separator S of interest; and combine X, Y, C, E 4 D > 4 A > 4 B > 4 B > B appropriately

A property of plane graph and its dual

Let G(V, E) be a connected plane triangulated graph, and let $G^*(V^*, E)$ be its dual. Also, let $E' \subseteq E$.

A property of plane graph and its dual

Let G(V, E) be a connected plane triangulated graph, and let $G^*(V^*, E)$ be its dual. Also, let $E' \subseteq E$.

• The subgraph (V, E') of G has a cycle if and only if the subgraph $(V^*, E - E')$ of G^* is disconnected.

A property of plane graph and its dual

Let G(V, E) be a connected plane triangulated graph, and let $G^*(V^*, E)$ be its dual. Also, let $E' \subseteq E$.

- The subgraph (V, E') of G has a cycle if and only if the subgraph $(V^*, E E')$ of G^* is disconnected.
- (V, E') is a spanning tree in G if and only if $(V^*, E E')$ is a spanning tree in G^* .

For a set E' of edges of a spanning tree T of G, the edges in E - E' are f ronds; all the fronds together define a spanning tree $T^*(V^*, E - E')$ in G^* .

Role of graph induced by nodes in D

source vertex connected to vertices in level M' + 1

• Now the objective is to compute a $\frac{1}{3}$ - $\frac{2}{3}$ separator for *D* in the above figure.

Triangulating graph induced by nodes in $D \cup \{1\}$

- Obtain a triangulation TR to utilize the property mentioned above.
- Compute a spanning tree T^* of D^* from a spanning tree T of TR. Make an arbitrary node of T^* as the root of T^* ; and, orient all the edges of T^* away from the root.

(The planar separator theorem)

Construct spanning tree T^* in D^* from a spanning tree T of TR

• For any frond f(u, v), unique path from u to v in T is a separator for TR, thought it may not necessarily a *valid* separator.

Construct spanning tree T^* in D^* from a spanning tree T of TR

- For any frond f(u, v), unique path from u to v in T is a separator for TR, thought it may not necessarily a *valid* separator.
- Since the diameter of T is $\leq 2\sqrt{n}$, the cardinality of separator that correspond to a frond is upper bounded as well.

Do DFS on T^* **to find separator for** D

- case 1: internal(e) = 0; oncycle(e) = 3
- case 2: internal(e) = internal(e'); oncycle(e) = oncycle(e') + 1
- case 3: internal(e) = internal(e') + 1; oncycle(e) = oncycle(e') 1
- case 4: internal(e) = internal(e') + internal(e'') + |p| 1; oncycle(e) = oncycle(e') + oncycle(e'') 2|p| + 1

and, maintain nodes on each cycle in each case (in linear time)

$$\exists$$
 a frond that correspond to a $\frac{1}{3}$ - $\frac{2}{3}$ separator for D

For the first frond e encountered on the way out from the leaves of T^* to the root such that $internal(e) + onccyle(e) \geq \frac{n}{3}$, note that $outside(e) \leq \frac{2n}{3}$ and more importantly $internal(e) \leq \frac{2n}{3}$. Hence, the cycle corresponding to e is a $\frac{1}{3}$ - $\frac{2}{3}$ separator (X,Y) for D. Indeed, such a e always exists.

- case 1: internal(e) = 0
- case 2: $internal(e) + oncycle(e) < internal(e') + oncycle(e') + 1 < \frac{n}{3} + 1$
- case 3: $internal(e) + oncycle(e) < internal(e') + oncycle(e') < \frac{n}{3}$
- case 4: $internal(e) + oncycle(e) = inside(e') + inside(e'') + oncycle(e'') + oncycle(e'') |p| \le \frac{2n}{3} |p|$

Output

• Let XY_{max} be the maximum cardinality set among X and Y. Let XY_{min} be the minimum cardinality set among X and Y. Let CE_{max} be the maximum cardinality set among C and E. Also, let CE_{min} be the minimum cardinality set among C and E. Following are the required sets:

 $A = XY_{max} \cup CE_{min}$

 $B = XY_{min} \cup CE_{max}$

S = vertices along S' unioned with M' and M'' and

Outline

1 An application

2 A constructive proof

3 Other variants

Other planar separator theorems of interest

- Planar separator theorem with edge-weights: There is a linear-time algorithm that, for a plane graph G and $\frac{1}{3}$ -proper assignment 4 of nonnegative weights to edges, returns subgraphs G_1 and G_2 such that $E(G_1), E(G_2)$ is a $\frac{2}{3}$ -balanced partition of E(G), and $|V(G_1) \cap V(G_2)| \le 4\sqrt{V(G)}$.
- *Planar cycle separator theorem*: There is a linear-time algorithm that, for any simple undirected biconnected triangulated plane graph and any $\frac{3}{4}$ -proper assignment of nonnegative weights to faces, edges, and vertices, returns a $\frac{3}{4}$ -balanced cycle separator C of size at most $4\sqrt{n}$.

— neither of these are proved in this talk

⁴an assignment is α -proper if it does not assign more than α times of the total weight of edges (resp. faces) to any edge (resp. face)