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lPrepared in *10; References: The Design and Analysis of Algorithms by DaC. Kozen.
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Let G(V, E) be an undirected planar graph (with |V| > 3). There exists a
partition of V into disjoint sets A, B and S such that:

Al B < %
S| < 4y/1V]
(AXB)NE=2¢

® Moreover, such a partition can be found in linear time.
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1 An application
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Maximum cardinality matching in planar graphs

Let G(V, E) be a connected undirectected graph. For any vertex v € V, let M
be a maximum cardinality matching in G — v. Then

(The planar separator theorem) 4/18



Maximum cardinality matching in planar graphs

Let G(V, E) be a connected undirectected graph. For any vertex v € V, let M
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® if G contains no augmenting path with end node v, then M is a maximum
matching in G
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Maximum cardinality matching in planar graphs

Let G(V, E) be a connected undirectected graph. For any vertex v € V, let M
be a maximum cardinality matching in G — v. Then

® if G contains no augmenting path with end node v, then M is a maximum
matching in G

® otherwise, for an augmenting path P, M & P is a maximum matching in
G.
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Maximum cardinality matching in planar graphs (cont)

Recursively do the following: divide G using planar separator theorem;
conquer the separated pieces; for each vertex in the separator, apply the above
theorem to combine.

Leads to T'(n) = 2T(%n) + O(n3/?); solving which yields O(n'7%)2

more precise analysis of this algorithm leads to O(n'-)
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2 A constructive proof
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Embed G in plane

® In linear time using Hopcroft-Tarjan’s algorithm.

3figures in this lecture are from Kozen’s text
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Find median level using BFS

LM)

® Find the median level, say M, in which 5th element resides in
breadth-first ordering.
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Find median level using BFS

LM)

® Find the median level, say M, in which 5th element resides in
breadth-first ordering.
® Can L(M) be a valid separator S?
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Find two closest levels L(M') and L(M") to L(M)
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o There exists levels (M) and L(M") such that M’ < M and M" > M and
L(M)| < i, [L(M")| < /n, and L(M") — L(M') < v/n.

introduce a dummy level with zero nodes as the last layer to guarantee this
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Find two closest levels L(M') and L(M") to L(M)
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e There exists levels L(M’) and L(M") such that M’ < M and M" > M and
L(M)| < Vi, [L(M")| < v/, and L(M") — L(M") < v/,
introduce a dummy level with zero nodes as the last layer to guarantee this
e Can L(M') U L(M") be a valid separator S?
* yes it is provided |D| < %n
* otherwise, since |C| + |E| < 5, we find a %—% separator X-Y of D with < 24/n vertices and
combine this with L(M") and L(M"") to get a separator S of interest; and combine X, Y, C, E

appropriatelv
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A property of plane graph and its dual

Let G(V, E) be a connected plane triangulated graph, and let G*(V*, E) be its
dual. Also, let E' C E.
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A property of plane graph and its dual

Let G(V, E) be a connected plane triangulated graph, and let G*(V*, E) be its
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® The subgraph (V, E’) of G has a cycle if and only if the subgraph
(V*,E — E') of G* is disconnected.
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A property of plane graph and its dual

Let G(V, E) be a connected plane triangulated graph, and let G*(V*, E) be its
dual. Also, let E' C E.
® The subgraph (V, E’) of G has a cycle if and only if the subgraph
(V*,E — E') of G* is disconnected.
e (V,FE’') is a spanning tree in G if and only if (V*, E — E’) is a spanning
tree in G™.
For a set E’ of edges of a spanning tree T of G, the edges in E — E’ are
fronds; all the fronds together define a spanning tree 7*(V*,E — E') in
G*.
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Role of graph induced by nodes in D

source vertex connected to vertices in level M’ + 1

® Now the objective is to compute a %—% separator for D in the above
figure.
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Triangulating graph induced by nodes in D U {1}

® Obtain a triangulation 7R to utilize the property mentioned above.
e Compute a spanning tree 7* of D* from a spanning tree T of TR.

Make an arbitrary node of T* as the root of 7*; and, orient all the edges
of T* away from the root.
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Construct spanning tree 7* in D* from a spanning tree
T of TR

21 29

® For any frond f(u, v), unique path from u to v in 7 is a separator for TR,
thought it may not necessarily a valid separator.

(The planar separator theorem) 13/18



Construct spanning tree 7* in D* from a spanning tree

T of TR -
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® For any frond f(u, v), unique path from u to v in 7 is a separator for TR,
thought it may not necessarily a valid separator.

e Since the diameter of T is < 24/n, the cardinality of separator that
correspond to a frond is upper bounded as well.
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Do DFS on T* to find separator for D

case 1:
case 2:
case 3:
case 4:

internal(e) = 0; oncycle(e) = 3 Case 4
internal(e) = internal(e’); oncycle(e) = oncycle(e’) + 1
internal(e) = internal(e’) + 1; oncycle(e) = oncycle(e') — 1

internal(e) = internal(e’) + internal(e”) + |p| — 1; oncycle(e) =

oncycle(e') + oncycle(e”) — 2|p| + 1
and, maintain nodes on each cycle in each case (in linear time)
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J a frond that correspond to a %% separator for D

For the first frond e encountered on the way out from the leaves of 7* to the
root such that internal(e) + onccyle(e) > 5, note that outside(e) < %” and

more importantly internal(e) < 27” Hence, the cycle corresponding to e is a

1-2 separator (X, Y) for D. Indeed, such a e always exists.

e case 1: internal(e) = 0

® case 2
internal(e) 4 oncycle(e) < internal(e') + oncycle(e') +1 < § + 1

® case 3: internal(e) 4 oncycle(e) < internal(e’) + oncycle(e') < §

e case 4: internal(e) + oncycle(e) =
inside(e') + inside(e") + oncycle(e') + oncycle(e”) — |p| < 2 — |p|
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Output

e vertices in S ® vertices in A @ vertices in B

® [et XY,4 be the maximum cardinality set among X and Y. Let XY},;, be
the minimum cardinality set among X and Y. Let CE,,;, be the maximum
cardinality set among C and E. Also, let CE,,;;,, be the minimum
cardinality set among C and E. Following are the required sets:
A = XYy U CEpin
B = XY, U CEmax
S = vertices along S’ unioned with M’ and M”'.
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3 Other variants
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Other planar separator theorems of interest

® Planar separator theorem with edge- weights There is a linear-time
algorithm that, for a plane graph G and 1 3-proper assignment 4 of
nonnegative weights to edges, returns subgraphs G and G, such that
E(G1),E(Gy)isa %-balanced partition of E(G), and

[V(G1) N V(G2)| < 44/V(G).

® Planar cycle separator theorem: There is a linear-time algorithm that,
for any simple undirected biconnected triangulated plane graph and any
3 -proper assignment of nonnegative weights to faces, edges, and
Vertlces returns a f—balanced cycle separator C of size at most 4/n.

— neither of these are proved in this talk

“an assignment is c--proper if it does not assign more than o times of the total weight of
edges (resp. faces) to any edge (resp. face)
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