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Minimum degree spanning tree (MDST): definition

Given an undirected graph G(V,E) with |V| = n, find a spanning tree whose
maximal degree is the smallest among all spanning trees in G.

a spanning tree a minimum degree spanning
tree
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Hardness

It is NP-hard to decide whether a given graph has a minimum-degree
spanning tree of maximum degree d:

HAM-PATH ≤m MDST
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Algorithm based on local search
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(i) start with an arbitrary spanning tree T

(ii) while (true)

for some edge e(v,w) ∈ G− T , if the degree of some node u located on
the unique cycle C in T ∪ {e} can be reduced

then T ← T ∪{e}− {e′} where e′ incident to u and located on C; continue

else break

(iii) return a locally optimal tree LOT (i.e., when no local improvements are possible)
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Few constraints in choosing u
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Always choose a u so that it satisfies:

• max(dT(v), dT(w)) ≤ dT(u)− 2

— otherwise, max(dT(u), dT(v), dT(w)) does not improve

• ∆T ≥ d(u) ≥ ∆T − (lg n) + 1

— helps in analysis
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Key idea in upper bounding the approximation

For an optimal tree with maximum degree ∆∗, ∆∗ ≤ ∆LOT

≤?

From LOT , choose a specific set S of nodes so that

l

≤ average degree of nodes in S in any spanning tree of G

≤ maximum degree of nodes in S in any spanning tree of G

≤ ∆∗

After defining such a set S, we express l as a function of ∆LOT , so that to
upper bound ∆LOT in terms of ∆∗.
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Bounding the apprx factor: choosing the set S
For every r, let Sr be the set of vertices with degree ≥ r in LOT . We show that
there exists an i such that the average degree of vertices in Si−1 in any
spanning tree of G is lower bounded by ∆LOT−lg n

2 . Hence, ∆LOT−lg n
2 ≤ ∆∗.

Si

v

w

u

due to local optimality of LOT, max(d(v), d(w)) ≥ i− 1

• Let F be the set of components in LOT when vertices in Si are removed.
Also, let |F| = t.

Every edge in G− LOT except those ones that are between the vertices
of F incident to some vertex in Si−1.
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Bounding the apprx factor (cont)
Si

Si

• ∆∗ ≥ average degree of vertices in Si−1 in any spanning tree of G is
≥ t+|Si|−1

|Si−1|

* t ≥ i|Si| − 2(|Si| − 1) (since LOT is a tree, at most |Si| − 1 edges are between vertices of Si

in LOT)

* There exists a i ∈ [∆LOT − lg2 n + 1, ∆LOT ] such that |Si−1|
|Si| ≤ 2. (suppose

6 ∃ such a i; then |S∆LOT−lg n| > n|S∆LOT |; since ∀i |Si| ≥ 1, |S∆LOT−lg n| > n)

Hence, ∆∗ ≥ t+|Si|−1
|Si−1| ≥

(i−1)|Si|+1
2|Si| > (i−1)

2

For any i ≥ ∆LOT − lg n + 1, ∆LOT ≤ 2∆∗ + lg2 n.
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Algo terminates: polynomial time algo

Let φ(T) =
∑

v∈V 3dT(v) be the potential of any tree T , for some constant
c > 2.

• note that n ≤ 2.3 + (n− 2)32 ≤ φ(T) ≤ nc∆T ≤ n3n.

• after an iteration of improvement to any tree T (resulting in a tree T ′),
φ(T ′) ≤ (1− 2

27n3 )φ(T)

decrease in potential = (3i − 3i−1)− (2(3i−1 − 3i−2)) = 2.3i−1 − 4.3i−2 > 2
9 3i ≥

2
9.3ln n−1 3∆T ≥ 2

27n2 3∆T ≥ 2
27n3 φ(T)

• after 27
2 n4 ln 3 iterations of improvements, potential is

≤ (1− 2
27n3 )

27
2 n4 ln 3(n3n) ≤ (e−n ln 3)(n3n) = n

hence, the number of local moves is O(n4)
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polynomial time (OPT + 1)-apprx algo is known for this problem

— not presented
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Open problems

• improving apprx factor of directed version of the problem

• d-vertex/edge-connected subgraph with min-degree

• min-degree spanners

• multicriteria optimization problems: max-leaf min-degree

• relation among problems that have no multiplicative error but have small
additive error
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Thanks!
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