Computing an approximate minimum degree spanning tree

R. Inkulu http://www.iitg.ac.in/rinkulu/

Minimum degree spanning tree (MDST): definition

Given an undirected graph G(V, E) with |V| = n, find a spanning tree whose maximal degree is the smallest among all spanning trees in *G*.

Hardness

It is NP-hard to decide whether a given graph has a minimum-degree spanning tree of maximum degree *d*:

HAM-PATH \leq_m MDST

Algorithm based on local search

(i) start with an arbitrary spanning tree T

(ii) while (true)

for some edge $e(v, w) \in G - T$, if the degree of some node *u* located on the unique cycle *C* in $T \cup \{e\}$ can be reduced

then $T \leftarrow T \cup \{e\} - \{e'\}$ where e' incident to u and located on C; continue else break

Few constraints in choosing *u*

Always choose a *u* so that it satisfies:

Few constraints in choosing *u*

Always choose a *u* so that it satisfies:

• $\max(d_T(v), d_T(w)) \le d_T(u) - 2$

— otherwise, $\max(d_T(u), d_T(v), d_T(w))$ does not improve

3

イロト イポト イヨト イヨト

Few constraints in choosing *u*

Always choose a *u* so that it satisfies:

• $\max(d_T(v), d_T(w)) \le d_T(u) - 2$

— otherwise, $\max(d_T(u), d_T(v), d_T(w))$ does not improve

•
$$\Delta_T \ge d(u) \ge \Delta_T - (\lg n) + 1$$

- helps in analysis

(An apprx minimum degree spanning tree)

5/13

For an optimal tree with maximum degree Δ^* , $\Delta^* \leq \Delta_{LOT}$

For an optimal tree with maximum degree Δ^* , $\Delta^* \leq \Delta_{LOT} \leq ?$

For an optimal tree with maximum degree Δ^* , $\Delta^* \leq \Delta_{LOT} \leq ?$

From LOT, choose a specific set S of nodes so that

For an optimal tree with maximum degree Δ^* , $\Delta^* \leq \Delta_{LOT} \leq ?$

From LOT, choose a specific set S of nodes so that

 \leq average degree of nodes in *S* in any spanning tree of *G* \leq maximum degree of nodes in *S* in any spanning tree of *G* $\leq \Delta^*$

1

For an optimal tree with maximum degree Δ^* , $\Delta^* \leq \Delta_{LOT} \leq ?$

From LOT, choose a specific set S of nodes so that

 \leq average degree of nodes in *S* in any spanning tree of *G* \leq maximum degree of nodes in *S* in any spanning tree of *G* $\leq \Delta^*$

After defining such a set *S*, we express *l* as a function of Δ_{LOT} , so that to upper bound Δ_{LOT} in terms of Δ^* .

1

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Bounding the apprx factor: choosing the set S

For every *r*, let S_r be the set of vertices with degree $\geq r$ in *LOT*. We show that there exists an *i* such that the average degree of vertices in S_{i-1} in any spanning tree of *G* is lower bounded by $\frac{\Delta_{LOT} - \lg n}{2}$. Hence, $\frac{\Delta_{LOT} - \lg n}{2} \leq \Delta^*$.

Bounding the apprx factor: choosing the set S

For every *r*, let S_r be the set of vertices with degree $\geq r$ in *LOT*. We show that there exists an *i* such that the average degree of vertices in S_{i-1} in any spanning tree of *G* is lower bounded by $\frac{\Delta_{LOT} - \lg n}{2}$. Hence, $\frac{\Delta_{LOT} - \lg n}{2} \leq \Delta^*$.

• Let *F* be the set of components in *LOT* when vertices in S_i are removed. Also, let |F| = t.

Every edge in G - LOT except those ones that are between the vertices of F incident to some vertex in S_{i-1} .

<ロ><四><回><回><回><回><回><回><回><回><回><0<</p>

• $\Delta^* \ge$ average degree of vertices in S_{i-1} in any spanning tree of *G* is $\ge \frac{t+|S_i|-1}{|S_{i-1}|}$

ヘロト 人間 とく ヨン くきとう

- $\Delta^* \ge$ average degree of vertices in S_{i-1} in any spanning tree of *G* is $\ge \frac{t+|S_i|-1}{|S_{i-1}|}$
- * $t \ge i|S_i| 2(|S_i| 1)$ (since LOT is a tree, at most $|S_i| 1$ edges are between vertices of S_i in LOT)

- $\Delta^* \geq$ average degree of vertices in S_{i-1} in any spanning tree of *G* is $\geq \frac{t+|S_i|-1}{|S_{i-1}|}$
- * $t \ge i|S_i| 2(|S_i| 1)$ (since LOT is a tree, at most $|S_i| 1$ edges are between vertices of S_i in LOT)
- * There exists a $i \in [\Delta_{LOT} \lg_2 n + 1, \Delta_{LOT}]$ such that $\frac{|S_{i-1}|}{|S_i|} \leq 2$. (suppose $\not\exists$ such a i; then $|S_{\Delta_{LOT} \lg n}| > n|S_{\Delta_{LOT}}|$; since $\forall_i |S_i| \ge 1$, $|S_{\Delta_{LOT} \lg n}| > n$)

- $\Delta^* \ge$ average degree of vertices in S_{i-1} in any spanning tree of *G* is $\ge \frac{t+|S_i|-1}{|S_{i-1}|}$
- * $t \ge i|S_i| 2(|S_i| 1)$ (since LOT is a tree, at most $|S_i| 1$ edges are between vertices of S_i in LOT)
- * There exists a $i \in [\Delta_{LOT} \lg_2 n + 1, \Delta_{LOT}]$ such that $\frac{|S_{i-1}|}{|S_i|} \leq 2$. (suppose $\not\exists$ such a i; then $|S_{\Delta_{LOT} \lg n}| > n|S_{\Delta_{LOT}}|$; since $\forall_i |S_i| \ge 1$, $|S_{\Delta_{LOT} \lg n}| > n$)

Hence,
$$\Delta^* \ge \frac{t+|S_i|-1}{|S_{i-1}|} \ge \frac{(i-1)|S_i|+1}{2|S_i|} > \frac{(i-1)}{2}$$

- $\Delta^* \ge$ average degree of vertices in S_{i-1} in any spanning tree of *G* is $\ge \frac{t+|S_i|-1}{|S_{i-1}|}$
- * $t \ge i|S_i| 2(|S_i| 1)$ (since LOT is a tree, at most $|S_i| 1$ edges are between vertices of S_i in LOT)
- * There exists a $i \in [\Delta_{LOT} \lg_2 n + 1, \Delta_{LOT}]$ such that $\frac{|S_{i-1}|}{|S_i|} \leq 2$. (suppose $\not\exists$ such a i; then $|S_{\Delta_{LOT} \lg n}| > n|S_{\Delta_{LOT}}|$; since $\forall_i |S_i| \ge 1$, $|S_{\Delta_{LOT} \lg n}| > n$)

Hence,
$$\Delta^* \ge \frac{t+|S_i|-1}{|S_{i-1}|} \ge \frac{(i-1)|S_i|+1}{2|S_i|} > \frac{(i-1)}{2}$$

For any $i \ge \Delta_{LOT} - \lg n + 1$, $\Delta_{LOT} \le 2\Delta^* + \lg_2 n$.

Let $\phi(T) = \sum_{v \in V} 3^{d_T(v)}$ be the potential of any tree *T*, for some constant c > 2.

Let $\phi(T) = \sum_{v \in V} 3^{d_T(v)}$ be the potential of any tree *T*, for some constant c > 2.

• note that $n \le 2.3 + (n-2)3^2 \le \phi(T) \le nc^{\Delta_T} \le n3^n$.

Let $\phi(T) = \sum_{v \in V} 3^{d_T(v)}$ be the potential of any tree *T*, for some constant c > 2.

- note that $n \le 2.3 + (n-2)3^2 \le \phi(T) \le nc^{\Delta_T} \le n3^n$.
- after an iteration of improvement to any tree *T* (resulting in a tree *T'*), $\phi(T') \leq (1 - \frac{2}{27n^3})\phi(T)$ decrease in potential = $(3^i - 3^{i-1}) - (2(3^{i-1} - 3^{i-2})) = 2.3^{i-1} - 4.3^{i-2} > \frac{2}{9}3^i \geq \frac{2}{9}3^{1}n^{n-1}3^{\Delta_T} \geq \frac{2}{27n^3}3^{\Delta_T} \geq \frac{2}{27n^3}\phi(T)$

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○

Let $\phi(T) = \sum_{v \in V} 3^{d_T(v)}$ be the potential of any tree *T*, for some constant c > 2.

- note that $n \le 2.3 + (n-2)3^2 \le \phi(T) \le nc^{\Delta_T} \le n3^n$.
- after an iteration of improvement to any tree *T* (resulting in a tree *T'*), $\phi(T') \leq (1 - \frac{2}{27n^3})\phi(T)$ decrease in potential = $(3^i - 3^{i-1}) - (2(3^{i-1} - 3^{i-2})) = 2.3^{i-1} - 4.3^{i-2} > \frac{2}{9}3^i \geq \frac{2}{9.3^{\ln n-1}}3^{\Delta_T} \geq \frac{2}{27n^2}3^{\Delta_T} \geq \frac{2}{27n^3}\phi(T)$
- after $\frac{27}{2}n^4 \ln 3$ iterations of improvements, potential is $\leq (1 - \frac{2}{27n^3})^{\frac{27}{2}n^4 \ln 3} (n3^n) \leq (e^{-n \ln 3})(n3^n) = n$

Let $\phi(T) = \sum_{v \in V} 3^{d_T(v)}$ be the potential of any tree *T*, for some constant c > 2.

- note that $n \le 2.3 + (n-2)3^2 \le \phi(T) \le nc^{\Delta_T} \le n3^n$.
- after an iteration of improvement to any tree *T* (resulting in a tree *T'*), $\phi(T') \leq (1 - \frac{2}{27n^3})\phi(T)$ decrease in potential = $(3^i - 3^{i-1}) - (2(3^{i-1} - 3^{i-2})) = 2.3^{i-1} - 4.3^{i-2} > \frac{2}{9}3^i \geq \frac{2}{9.3^{\ln n-1}}3^{\Delta_T} \geq \frac{2}{27n^2}3^{\Delta_T} \geq \frac{2}{27n^3}\phi(T)$
- after $\frac{27}{2}n^4 \ln 3$ iterations of improvements, potential is $\leq (1 - \frac{2}{27n^3})^{\frac{27}{2}n^4 \ln 3} (n3^n) \leq (e^{-n \ln 3})(n3^n) = n$

hence, the number of local moves is $O(n^4)$

(An apprx minimum degree spanning tree)

polynomial time (OPT + 1)-apprx algo is known for this problem

- not presented

Open problems

- improving apprx factor of directed version of the problem
- d-vertex/edge-connected subgraph with min-degree
- min-degree spanners
- multicriteria optimization problems: max-leaf min-degree
- relation among problems that have no multiplicative error but have small additive error

References

- M. Furer and B. Raghavachari. Approximating the minimum degree spanning tree to within one from the optimal degree. SODA, 1992.
- David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms. Cambridge University Press, 2011.
- M. Furer and B. Raghavachari. Approximating the minimum degree spanning tree to within one from the optimal degree. Journal of Algorithms, 1994.

Thanks!