Arora's PTAS for the Euclidean TSP ${ }^{1}$

R. Inkulu
http://www.iitg.ac.in/rinkulu/

[^0]
problem description

Given a set P of points in Euclidean plane, find a tour of minimum cost that visits all the points of P.

problem description

Given a set P of points in Euclidean plane, find a tour of minimum cost that visits all the points of P.

- known to be NP-hard
- objective of this talk: algo (PTAS) to compute an approximate tour whose expected length is $(1+\epsilon) \tau_{O P T}$ in $O\left(n\left(\frac{\lg n}{\epsilon}\right)^{O\left(\frac{1}{\epsilon}\right)}\right)$ time

problem description

Given a set P of points in Euclidean plane, find a tour of minimum cost that visits all the points of P.

- known to be NP-hard
- objective of this talk: algo (PTAS) to compute an approximate tour whose expected length is $(1+\epsilon) \tau_{O P T}$ in $O\left(n\left(\frac{\lg n}{\epsilon}\right)^{O\left(\frac{1}{\epsilon}\right)}\right)$ time
for the convenience, we let the following:

```
\(1>\epsilon>\frac{1}{n}\)
\(P\) is contained in \(\left[\frac{1}{2}, \frac{1}{2}\right] \times[1,1]\)
\(\operatorname{diam}(P) \geq \frac{1}{4}\)
```


Outline

1 algorithm

2 analysis

round the input points to grid points

- set up a grid with sidelength $G=\left\{\left.\frac{1}{n\left\lceil\frac{32}{\epsilon}\right\rceil}(i, j) \right\rvert\, i, j\right.$ are integers $\}$

round the input points to grid points

- set up a grid with sidelength $G=\left\{\left.\frac{1}{n\left\lceil\frac{32}{\epsilon}\right\rceil}(i, j) \right\rvert\, i, j\right.$ are integers $\}$
- round (snap) each point in P to an arbitrary corner (grid point) of the grid cell in which it is located \rightarrow the resultant point set is Q
- this would guarantee the quadtree to be constructed for Q to have logarithmic depth

setting up a quadtree over Q

- consider the unit square with its southwest corner at $\left(\frac{1}{2}, \frac{1}{2}\right)^{2}$ as the square of the root node

[^1]
setting up a quadtree over Q

- consider the unit square with its southwest corner at $\left(\frac{1}{2}, \frac{1}{2}\right)^{2}$ as the square of the root node
- since the minimal distance between a pair of points of Q is at least $\frac{1}{n\left\lceil\frac{32}{\epsilon}\right\rceil}$, it suffices to have the leafnode square sidelength $\frac{1}{n\left\lceil\frac{32}{\epsilon}\right\rceil}$

[^2]
setting up a quadtree over Q

- consider the unit square with its southwest corner at $\left(\frac{1}{2}, \frac{1}{2}\right)^{2}$ as the square of the root node
- since the minimal distance between a pair of points of Q is at least $\frac{1}{n\left\lceil\frac{32}{\epsilon}\right\rceil}$, it suffices to have the leafnode square sidelength $\frac{1}{n\left\lceil\frac{32}{\epsilon}\right\rceil}$
- height H of the quadtree is $O(\lg n)$
level of root is 0 ; for every $0 \leq i \leq H$, grid corresponding to level i is denoted with G^{i} and the length of any edge of G^{i} is $\frac{1}{2^{i}}$

[^3]
setting up a quadtree over Q

- consider the unit square with its southwest corner at $\left(\frac{1}{2}, \frac{1}{2}\right)^{2}$ as the square of the root node
- since the minimal distance between a pair of points of Q is at least $\frac{1}{n\left\lceil\frac{32}{\epsilon}\right\rceil}$, it suffices to have the leafnode square sidelength $\frac{1}{n\left\lceil\frac{32}{\epsilon}\right\rceil}$
- height H of the quadtree is $O(\lg n)$ level of root is 0 ; for every $0 \leq i \leq H$, grid corresponding to level i is denoted with G^{i} and the length of any edge of G^{i} is $\frac{1}{2^{i}}$
- letting no node of the quadtree is empty, the number of nodes is $O(n \lg n)$
${ }^{2}$ later, this corner will be fixed at a point randomly chosen from the square with the southwest and northeast corners respectively at $(0,0)$ and $\left(\frac{1}{2}, \frac{1}{2}\right)$.

portals along the quadtree square sides

introduce equi-spaced $m=\frac{20 H}{\epsilon}$ (which is $O\left(\frac{\lg n}{\epsilon}\right)$) portals along each side of each quadtree square together with four at the corners of the same ${ }^{3}$

[^4]
requisite characteristics of a constrained tour

- tour is permitted to cross an edge e of a quadree square only via portals on e

requisite characteristics of a constrained tour (cont)

- no portal can be used more than twice

requisite characteristics of a constrained tour (cont)

- no portal can be used more than twice
- tour can use at most $r=\frac{90}{\epsilon}$ i.e., $O\left(\frac{1}{\epsilon}\right)$ portals corresponding to any side of any quadtree square i.e., tour need to be r-light w.r.t. any quadtree square edge

requisite characteristics of a constrained tour (cont)

- no portal can be used more than twice
- tour can use at most $r=\frac{90}{\epsilon}$ i.e., $O\left(\frac{1}{\epsilon}\right)$ portals corresponding to any side of any quadtree square i.e., tour need to be r-light w.r.t. any quadtree square edge
is it possible to have such a tour while being a good apprx to an optimal tour?

nested parenthesis structure of portal-to-portal paths

- portal-to-portal paths follow parentization; hence, one can try all settings of parenthesis, translate these into possible layouts of paths and discard the ones that have intersecting paths

nested parenthesis structure of portal-to-portal paths

- portal-to-portal paths follow parentization; hence, one can try all settings of parenthesis, translate these into possible layouts of paths and discard the ones that have intersecting paths
- therefore, the number of layouts of k portal-portal paths in grid square is the $k^{t h}$ Catalan number, which is $\frac{1}{k+1}\binom{2 k}{k}=O\left(2^{2 k}\right)$

valid solutions of any grid square

- for every 0 to $4 r$ portal combination of $4 m+4$ portals on the boundary, considering that each chosen portal can be used 1 to 2 times, for every permutation p of the chosen portals, alternately mark portals in p with enter-exit \rightarrow number of subproblems $\leq \sum_{i=0}^{8 r}(\underset{i}{2(4 m+4)}) i$! i.e., $\left.\left(\frac{1}{\epsilon} \lg n\right)^{O\left(\frac{1}{\epsilon}\right)}\right)$

[^5]
valid solutions of any grid square

- for every 0 to $4 r$ portal combination of $4 m+4$ portals on the boundary, considering that each chosen portal can be used 1 to 2 times, for every permutation p of the chosen portals, alternately mark portals in p with enter-exit \rightarrow number of subproblems $\leq \sum_{i=0}^{8 r}(\underset{i}{2(4 m+4)}) i$! i.e., $\left.\left(\frac{1}{\epsilon} \lg n\right)^{O\left(\frac{1}{\epsilon}\right)}\right)$
- find a minimum cost feasible subtour ${ }^{4}$
- feasibility criteria: precisely satisfies the portal marking of that quadtree square; non-intersecting; subtours cover points belonging to quadtree square

[^6]
valid solutions of any grid square

- for every 0 to $4 r$ portal combination of $4 m+4$ portals on the boundary, considering that each chosen portal can be used 1 to 2 times, for every permutation p of the chosen portals, alternately mark portals in p with enter-exit \rightarrow number of subproblems $\leq \sum_{i=0}^{8 r}(\underset{i}{2(4 m+4)}) i$! i.e., $\left.\left(\frac{1}{\epsilon} \lg n\right)^{O\left(\frac{1}{\epsilon}\right)}\right)$
- find a minimum cost feasible subtour ${ }^{4}$
- feasibility criteria: precisely satisfies the portal marking of that quadtree square; non-intersecting; subtours cover points belonging to quadtree square
- to achieve efficiency, build the subtours in bottom-to-top fashion: using memoization of DP, from leaf nodes to root of the quadtree

[^7]
dynamic programming over squares of quadtree grid

- interaction between problems is according to the organization of quadtree nodes

dynamic programming over squares of quadtree grid

- interaction between problems is according to the organization of quadtree nodes
- memoize the subproblem solutions

dynamic programming over squares of quadtree grid

- interaction between problems is according to the organization of quadtree nodes
- memoize the subproblem solutions
- base case: if a square has $O\left(\frac{1}{\epsilon}\right)$ points of Q, then solve that subprobelm by brute force

DP: assemble subtours from children

- at every non-leaf node, for every chosen portal permutation, save these entries in the DP table: portal permutations of each child node which together caused the minimum cost subtour at the parent

time complexity

- number of subproblems to pursue at each quadtree node

$$
\left.\leq \sum_{i=0}^{8 r}\binom{2(4 m+4)}{i} i \text { ! i.e., }\left(\frac{1}{\epsilon} \lg n\right)^{O\left(\frac{1}{\epsilon}\right)}\right)
$$

time complexity

- number of subproblems to pursue at each quadtree node $\leq \sum_{i=0}^{8 r}\binom{2(4 m+4)}{i} i$! i.e., $\left.\left(\frac{1}{\epsilon} \lg n\right)^{O\left(\frac{1}{\epsilon}\right)}\right)$
- subproblem at each quadtree node (ignoring the recursive subproblems) can be solved in $\left.\left(\left(\frac{1}{\epsilon} \lg n\right)^{O\left(\frac{1}{\epsilon}\right)}\right)\right)^{O(1)}$ time
- assembling: each subproblem solution of $1^{s t}$ child with each ... with each subproblem solution of $4^{\text {th }}$ child
- and, checking whether the assembled subtour is according to enter-exit constraints and non-intersecting within the quadtree square

time complexity

- number of subproblems to pursue at each quadtree node
$\leq \sum_{i=0}^{8 r}(\underset{i}{2(4 m+4)}) i$! i.e., $\left.\left(\frac{1}{\epsilon} \lg n\right)^{O\left(\frac{1}{\epsilon}\right)}\right)$
- subproblem at each quadtree node (ignoring the recursive subproblems) can be solved in $\left.\left(\left(\frac{1}{\epsilon} \lg n\right)^{O\left(\frac{1}{\epsilon}\right)}\right)\right)^{O(1)}$ time
- assembling: each subproblem solution of $1^{s t}$ child with each ... with each subproblem solution of $4^{\text {th }}$ child
- and, checking whether the assembled subtour is according to enter-exit constraints and non-intersecting within the quadtree square
- since there are $O(n \lg n)$ nodes in the quadtree, the time is $n\left(\frac{1}{\epsilon} \lg n\right)^{O\left(\frac{1}{\epsilon}\right)}$ (including the time to brute-force enumeration at leaf nodes)

Outline

2 analysis

factors causing errors

(i) building a tour $\pi_{o p t}^{Q}$ of points of Q instead of a tour $\pi_{o p t}$ of points of P

factors causing errors

(i) building a tour $\pi_{o p t}^{Q}$ of points of Q instead of a tour $\pi_{o p t}$ of points of P
(ii) limiting the tour to be r-light

factors causing errors

(i) building a tour $\pi_{o p t}^{Q}$ of points of Q instead of a tour $\pi_{o p t}$ of points of P
(ii) limiting the tour to be r-light
(iii) limiting tour intersection with the edges of the quadtree squares to portals

factors causing errors

(i) building a tour $\pi_{o p t}^{Q}$ of points of Q instead of a tour $\pi_{o p t}$ of points of P
(ii) limiting the tour to be r-light
(iii) limiting tour intersection with the edges of the quadtree squares to portals
these are upper bounded by transforming $\pi_{o p t}$ while making it to obey these specific constraints

factors causing errors

(i) building a tour $\pi_{o p t}^{Q}$ of points of Q instead of a tour $\pi_{o p t}$ of points of P
(ii) limiting the tour to be r-light
(iii) limiting tour intersection with the edges of the quadtree squares to portals
these are upper bounded by transforming $\pi_{o p t}$ while making it to obey these specific constraints

We denote $\left\|\pi_{o p t}\right\|$ with $O P T$ and $\left\|\pi_{o p t}^{Q}\right\|$ with $O P T_{Q}$.

error type (i): rounding points in P to get to Q

- The error in making $\pi_{o p t}^{Q}$ to touch points of P is

$$
\begin{aligned}
& \leq n\left(2 \frac{\sqrt{2}}{n\left[\frac{32}{\epsilon}\right\rceil}\right) \\
& \leq \frac{4 \epsilon}{32} \\
& \leq \frac{\epsilon}{2} O P T \quad\left(\text { since } O P T \geq \operatorname{diam}(P) \text { which is } \frac{1}{4}\right)
\end{aligned}
$$

patching lemma: patch the path with respect to a line segment

find an Eulerian tour in the graph

- replace a polyline π that crosses a line segment s at least three times with a polyline π^{\prime} that crosses s at most twice: construct an Eulerian graph by introducing a few edges (see the above Fig.) to π $\left\|\pi^{\prime}\right\| \leq\|\pi\|+\left(\sum_{i \text { being odd }}\left\|p_{i} p_{i+1}\right\|+\left\|q_{i} q_{i+1}\right\|\right)+2\|s\| \leq\|\pi\|+4\|s\|$ (0)

- replace a polyline π that crosses a line segment s at least three times with a polyline π^{\prime} that crosses s at most twice: construct an Eulerian graph by introducing a few edges (see the above Fig.) to π $\left\|\pi^{\prime}\right\| \leq\|\pi\|+\left(\sum_{i \text { being odd }}\left\|p_{i} p_{i+1}\right\|+\left\|q_{i} q_{i+1}\right\|\right)+2\|s\| \leq\|\pi\|+4\|s\|$ (0)
- corollary: as the length of any edge of G^{i} is $\frac{1}{2^{i}}$, error in patching any one edge of G^{i} is $\leq \frac{4}{2^{i}}$

- replace a polyline π that crosses a line segment s at least three times with a polyline π^{\prime} that crosses s at most twice: construct an Eulerian graph by introducing a few edges (see the above Fig.) to π $\left\|\pi^{\prime}\right\| \leq\|\pi\|+\left(\sum_{i \text { being odd }}\left\|p_{i} p_{i+1}\right\|+\left\|q_{i} q_{i+1}\right\|\right)+2\|s\| \leq\|\pi\|+4\|s\|$ (0)
- corollary: as the length of any edge of G^{i} is $\frac{1}{2^{i}}$, error in patching any one edge of G^{i} is $\leq \frac{4}{2^{i}}$
- corollary: viewing the portal is of zero lengthed segment, any optimal solution need to use a portal at most twice (hence, we are allowing 2 intersections per portal in the apprx tour)

patching grid edges at every level of the quadtree

- while considering quadtree nodes in bottom-to-top ${ }^{5}$, at every level $H \geq i \geq 1^{6}$, patch the tour $\pi_{\text {opt }}$ w.r.t. every grid edge of G^{i} :
if the current tour intersects e more than r times so that it intersects e at most twice after patching

[^8]
patching grid edges at every level of the quadtree

- while considering quadtree nodes in bottom-to-top ${ }^{5}$, at every level $H \geq i \geq 1^{6}$, patch the tour $\pi_{\text {opt }}$ w.r.t. every grid edge of G^{i} :
if the current tour intersects e more than r times so that it intersects e at most twice after patching
let π_{i} denote the resulting path after patching at G^{i}
let π_{i+1} denote the path just before patching at G^{i}
π_{H+1} is $\pi_{o p t}$, and π_{1} is the patched tour after patching at every level from H to 1

[^9]
exploiting sliding grid

randomly choose the unit grid origin from $[0,0] \times\left[\frac{1}{2}, \frac{1}{2}\right]$:

- for every level $i \geq 1$ of the quadtree, the expected number of intersections of a polyline w with the vertical and horizontal edges of G^{i} is at most $2^{i+1}\|w\| \leftarrow$ probabilistic argument is due to sliding grid
\qquad

exploiting sliding grid

randomly choose the unit grid origin from $[0,0] \times\left[\frac{1}{2}, \frac{1}{2}\right]$:

- for every level $i \geq 1$ of the quadtree, the expected number of intersections of a polyline w with the vertical and horizontal edges of G^{i} is at most $2^{i+1}\|w\| \leftarrow$ probabilistic argument is due to sliding grid

- if a point p belongs to open edges of G^{i} then the point p belongs to open edges of G^{i-1} with probability $\frac{1}{2}$ (as every grid edge of G^{i} has probability $\frac{1}{2}$ to survive and be a grid edge of G^{i-1})

error type (ii): patching $\pi_{o p t}$ at every level from bottom-to-top

F_{i} : number of patching operations performed at $i^{\text {th }}$ level; Y_{i} : number of times the current tour crosses the edges of G^{i} just before considering G^{i} for patching; n_{i} : number of times the current tour crosses the edges of G^{i} after patching

error type (ii): patching $\pi_{o p t}$ at every level from bottom-to-top

F_{i} : number of patching operations performed at $i^{\text {th }}$ level; Y_{i} : number of times the current tour crosses the edges of G^{i} just before considering G^{i} for patching; n_{i} : number of times the current tour crosses the edges of G^{i} after patching expected increase in length of $\pi_{o p t}$ due to patchings at every level

error type (ii): patching $\pi_{o p t}$ at every level from bottom-to-top

F_{i} : number of patching operations performed at $i^{\text {th }}$ level; Y_{i} : number of times the current tour crosses the edges of G^{i} just before considering G^{i} for patching; n_{i} : number of times the current tour crosses the edges of G^{i} after patching
expected increase in length of $\pi_{\text {opt }}$ due to patchings at every level

$$
=E\left[\sum_{i=1}^{H} \frac{4 F_{i}}{2^{i}}\right](\text { due to }(0))
$$

error type (ii): patching $\pi_{o p t}$ at every level from bottom-to-top

F_{i} : number of patching operations performed at $i^{\text {th }}$ level; Y_{i} : number of times the current tour crosses the edges of G^{i} just before considering G^{i} for patching; n_{i} : number of times the current tour crosses the edges of G^{i} after patching
expected increase in length of $\pi_{\text {opt }}$ due to patchings at every level

$$
\begin{aligned}
& =E\left[\sum_{i=1}^{H} \frac{4 F_{i}}{2^{i}}\right] \quad(\text { due to }(0)) \\
& \leq E\left[2 F_{1}+\sum_{i=2}^{H} \frac{4 F_{i}}{2^{i}}\right]
\end{aligned}
$$

error type (ii): patching $\pi_{o p t}$ at every level from bottom-to-top

F_{i} : number of patching operations performed at $i^{\text {th }}$ level; Y_{i} : number of times the current tour crosses the edges of G^{i} just before considering G^{i} for patching; n_{i} : number of times the current tour crosses the edges of G^{i} after patching
expected increase in length of $\pi_{\text {opt }}$ due to patchings at every level

$$
=E\left[\sum_{i=1}^{H} \frac{4 F_{i}}{2^{i}}\right] \quad(\text { due to }(0))
$$

$$
\leq E\left[2 F_{1}+\sum_{i=2}^{H} \frac{4 F_{i}}{2^{i}}\right]
$$

$$
\leq E\left[2 F_{1}\right]+\frac{4}{r-2} \sum_{i=2}^{H} \frac{E\left[Y_{i}\right]-2 E\left[Y_{i-1}\right]}{2^{i}}
$$

(noting that due to (2), $E\left[Y_{i-1}\right]=E\left[E\left[Y_{i-1} \mid n_{i}\right]\right]=E\left[\frac{n_{i}}{2}\right]$, and $\left.E\left[Y_{i}\right]=E\left[\frac{n_{i}}{2}\right] \leq E\left[\frac{Y_{i}-(r-2) F_{i}}{2}\right]=\frac{1}{2} E\left[Y_{i}\right]-\frac{k-2}{2} E\left[F_{i}\right]\right)$

error type (ii): patching $\pi_{o p t}$ at every level from bottom-to-top

F_{i} : number of patching operations performed at $i^{\text {th }}$ level; Y_{i} : number of times the current tour crosses the edges of G^{i} just before considering G^{i} for patching; n_{i} : number of times the current tour crosses the edges of G^{i} after patching
expected increase in length of $\pi_{\text {opt }}$ due to patchings at every level

$$
\begin{aligned}
&= E\left[\sum_{i=1}^{H} \frac{4 F_{i}}{2^{i}}\right] \quad(\text { due to }(0)) \\
& \leq E\left[2 F_{1}+\sum_{i=2}^{H} \frac{4 F_{i}}{2^{i}}\right] \\
& \leq E\left[2 F_{1}\right]+\frac{4}{r-2} \sum_{i=2}^{H} \frac{E\left[Y_{i}\right]-2 E\left[Y_{i-1}\right]}{2^{i}} \\
& \quad \quad \quad \text { (noting that due to }(2), E\left[Y_{i-1}\right]=E\left[E\left[Y_{i-1} \mid n_{i}\right]\right]=E\left[\frac{n_{i}}{2}\right], \text { and } \\
&\left.E\left[Y_{i}\right]=E\left[\frac{n_{i}}{2}\right] \leq E\left[\frac{Y_{i}-(r-2) F_{i}}{2}\right]=\frac{1}{2} E\left[Y_{i}\right]-\frac{k-2}{2} E\left[F_{i}\right]\right) \\
& \leq E\left[2 \frac{Y_{1}}{r-2}\right]+\frac{4}{r-2}\left(\frac{E\left[Y_{H}\right]}{2^{H}}-\frac{E\left[Y_{1}\right]}{2}\right) \quad\left(\text { since } F_{1} \leq \frac{Y_{1}}{r} \leq \frac{Y_{1}}{(r-2)}\right)
\end{aligned}
$$

error type (ii): patching $\pi_{o p t}$ at every level from bottom-to-top

F_{i} : number of patching operations performed at $i^{\text {th }}$ level; Y_{i} : number of times the current tour crosses the edges of G^{i} just before considering G^{i} for patching; n_{i} : number of times the current tour crosses the edges of G^{i} after patching
expected increase in length of $\pi_{\text {opt }}$ due to patchings at every level

$$
\begin{aligned}
& =E\left[\sum_{i=1}^{H} \frac{4 F_{i}}{2^{i}}\right] \quad(\text { due to }(0)) \\
& \leq E\left[2 F_{1}+\sum_{i=2}^{H} \frac{4 F_{i}}{2^{i}}\right] \\
& \leq E\left[2 F_{1}\right]+\frac{4}{r-2} \sum_{i=2}^{H} \frac{E\left[Y_{i}\right]-2 E\left[Y_{i-1}\right]}{2^{i}} \\
& \quad \quad\left(\text { noting that due to }(2), E\left[Y_{i-1}\right]=E\left[E\left[Y_{i-1} \mid n_{i}\right]\right]=E\left[\frac{n_{i}}{2}\right],\right. \text { and } \\
& \left.\quad E\left[Y_{i}\right]=E\left[\frac{n_{i}}{2}\right] \leq E\left[\frac{Y_{i}-(r-2) F_{i}}{2}\right]=\frac{1}{2} E\left[Y_{i}\right]-\frac{k-2}{2} E\left[F_{i}\right]\right) \\
& \leq E\left[2 \frac{Y_{1}}{r-2}\right]+\frac{4}{r-2}\left(\frac{E\left[Y_{H}\right]}{2^{H}}-\frac{E\left[Y_{1}\right]}{2}\right) \quad\left(\text { since } F_{1} \leq \frac{Y_{1}}{r} \leq \frac{Y_{1}}{(r-2)}\right) \\
& = \\
& \frac{4}{r-2}\left(\frac{E\left[Y_{1}\right]}{2}+\frac{E\left[Y_{H}\right]}{2^{H}}-\frac{E\left[Y_{1}\right]}{2}\right)
\end{aligned}
$$

error type (ii): patching $\pi_{o p t}$ at every level from bottom-to-top

F_{i} : number of patching operations performed at $i^{\text {th }}$ level; Y_{i} : number of times the current tour crosses the edges of G^{i} just before considering G^{i} for patching; n_{i} : number of times the current tour crosses the edges of G^{i} after patching
expected increase in length of $\pi_{\text {opt }}$ due to patchings at every level

$$
\begin{aligned}
& =E\left[\sum_{i=1}^{H} \frac{4 F_{i}}{2^{i}}\right] \quad(\text { due to }(0)) \\
& \leq E\left[2 F_{1}+\sum_{i=2}^{H} \frac{4 F_{i}}{2^{i}}\right] \\
& \leq E\left[2 F_{1}\right]+\frac{4}{r-2} \sum_{i=2}^{H} \frac{E\left[Y_{i}\right]-2 E\left[Y_{i-1}\right]}{2^{i}}
\end{aligned}
$$

$$
\text { (noting that due to (2), } E\left[Y_{i-1}\right]=E\left[E\left[Y_{i-1} \mid n_{i}\right]\right]=E\left[\frac{n_{i}}{2}\right] \text {, and }
$$

$$
\left.E\left[Y_{i}\right]=E\left[\frac{n_{i}}{2}\right] \leq E\left[\frac{Y_{i}-(r-2) F_{i}}{2}\right]=\frac{1}{2} E\left[Y_{i}\right]-\frac{k-2}{2} E\left[F_{i}\right]\right)
$$

$$
\leq E\left[2 \frac{Y_{1}}{r-2}\right]+\frac{4}{r-2}\left(\frac{E\left[Y_{H}\right]}{2^{H}}-\frac{E\left[Y_{1}\right]}{2}\right) \quad\left(\text { since } F_{1} \leq \frac{Y_{1}}{r} \leq \frac{Y_{1}}{(r-2)}\right)
$$

$$
=\frac{4}{r-2}\left(\frac{E\left[Y_{1}\right]}{2}+\frac{E\left[Y_{H}\right]}{2^{H}}-\frac{E\left[Y_{1}\right]}{2}\right)
$$

$$
\leq \frac{4}{r-2} \frac{E\left[Y_{H}\right]}{2^{H}} \quad \text { (note that } Y_{H} \text { is the number of times } \pi_{o p t} \text { crosses the edges of } G^{H} \text {) }
$$

error type (ii): patching $\pi_{o p t}$ at every level from bottom-to-top

F_{i} : number of patching operations performed at $i^{\text {th }}$ level; Y_{i} : number of times the current tour crosses the edges of G^{i} just before considering G^{i} for patching; n_{i} : number of times the current tour crosses the edges of G^{i} after patching
expected increase in length of $\pi_{\text {opt }}$ due to patchings at every level

$$
\begin{aligned}
& =E\left[\sum_{i=1}^{H} \frac{4 F_{i}}{2^{i}}\right] \quad(\text { due to }(0)) \\
& \leq E\left[2 F_{1}+\sum_{i=2}^{H} \frac{4 F_{i}}{2^{i}}\right] \\
& \leq E\left[2 F_{1}\right]+\frac{4}{r-2} \sum_{i=2}^{H} \frac{E\left[Y_{i}\right]-2 E\left[Y_{i-1}\right]}{2^{i}} \\
& \quad \quad \quad \text { noting that due to }(2), E\left[Y_{i-1}\right]=E\left[E\left[Y_{i-1} \mid n_{i}\right]\right]=E\left[\frac{n_{i}}{2}\right] \text {, and } \\
& \left.\quad E\left[Y_{i}\right]=E\left[\frac{n_{i}}{2}\right] \leq E\left[\frac{Y_{i}-(r-2) F_{i}}{2}\right]=\frac{1}{2} E\left[Y_{i}\right]-\frac{k-2}{2} E\left[F_{i}\right]\right) \\
& \left.\leq E\left[2 \frac{Y_{1}}{r-2}\right]+\frac{4}{r-2}\left(\frac{E\left[Y_{H}\right]}{2^{H}}-\frac{E\left[Y_{1}\right]}{2}\right) \quad \text { (since } F_{1} \leq \frac{Y_{1}}{r} \leq \frac{Y_{1}}{(r-2)}\right) \\
& = \\
& \frac{4}{r-2}\left(\frac{E\left[Y_{1}\right]}{2}+\frac{E\left[Y_{H}\right]}{2^{H}}-\frac{E\left[Y_{1}\right]}{2}\right) \\
& \left.\leq \frac{4}{r-2} \frac{E\left[Y_{H}\right]}{2^{H}} \quad \text { (note that } Y_{H} \text { is the number of times } \pi_{\text {opt }} \text { crosses the edges of } G^{H}\right) \\
& =\frac{4}{r-2} \frac{2^{H+1} O P T}{2^{H}} \quad \text { (due to (1)) }
\end{aligned}
$$

error type (ii): patching $\pi_{o p t}$ at every level from bottom-to-top

F_{i} : number of patching operations performed at $i^{\text {th }}$ level; Y_{i} : number of times the current tour crosses the edges of G^{i} just before considering G^{i} for patching; n_{i} : number of times the current tour crosses the edges of G^{i} after patching
expected increase in length of $\pi_{\text {opt }}$ due to patchings at every level

$$
\begin{aligned}
& =E\left[\sum_{i=1}^{H} \frac{4 F_{i}}{2^{i}}\right] \quad(\text { due to }(0)) \\
& \leq E\left[2 F_{1}+\sum_{i=2}^{H} \frac{4 F_{i}}{2^{i}}\right] \\
& \leq E\left[2 F_{1}\right]+\frac{4}{r-2} \sum_{i=2}^{H} \frac{E\left[Y_{i}\right]-2 E\left[Y_{i-1}\right]}{2^{i}} \\
& \quad \text { (noting that due to }(2), E\left[Y_{i-1}\right]=E\left[E\left[Y_{i-1} \mid n_{i}\right]\right]=E\left[\frac{n_{i}}{2}\right], \text { and } \\
& \left.\quad E\left[Y_{i}\right]=E\left[\frac{n_{i}}{2}\right] \leq E\left[\frac{Y_{i}-(r-2) F_{i}}{2}\right]=\frac{1}{2} E\left[Y_{i}\right]-\frac{k-2}{2} E\left[F_{i}\right]\right) \\
& \leq E\left[2 \frac{Y_{1}}{r-2}\right]+\frac{4}{r-2}\left(\frac{E\left[Y_{H}\right]}{2^{H}}-\frac{E\left[Y_{1}\right]}{2}\right) \quad\left(\text { since } F_{1} \leq \frac{Y_{1}}{r} \leq \frac{Y_{1}}{(r-2)}\right) \\
& = \\
& \frac{4}{r-2}\left(\frac{E\left[Y_{1}\right]}{2}+\frac{E\left[Y_{H}\right]}{2^{H}}-\frac{E\left[Y_{1}\right]}{2}\right) \\
& \leq \frac{4}{r-2} \frac{E\left[Y_{H}\right]}{2^{H}} \quad\left(\text { note that } Y_{H} \text { is the number of times } \pi_{o p t} \text { crosses the edges of } G^{H}\right) \\
& =\frac{4}{r-2} \frac{2^{H+1} O P T}{2^{H}} \quad \text { (due to (1)) } \\
& =\frac{8}{r-2} O P T
\end{aligned}
$$

error type (iii): expected error due to snapping tour to portals

- as noted, after applying patching lemma to grid squares at all levels from bottom-to-top, the tour intersects with any edge of any grid square at most twice

[^10]
error type (iii): expected error due to snapping tour to portals

- as noted, after applying patching lemma to grid squares at all levels from bottom-to-top, the tour intersects with any edge of any grid square at most twice
- as the distance between any two successive portals along any edge of G^{i} is $\frac{1 / 2^{i}}{m+1}$, a single snapping operation on an edge of G^{i} introduces an error $\leq 2\left(\frac{1 / 2^{i}}{2(m+1)}\right)=\frac{1}{2^{i}(m+1)}$

[^11]
error type (iii): expected error due to snapping tour to portals

- as noted, after applying patching lemma to grid squares at all levels from bottom-to-top, the tour intersects with any edge of any grid square at most twice
- as the distance between any two successive portals along any edge of G^{i} is $\frac{1 / 2^{i}}{m+1}$, a single snapping operation on an edge of G^{i} introduces an error $\leq 2\left(\frac{1 / 2^{i}}{2(m+1)}\right)=\frac{1}{2^{i}(m+1)}$
- let Z_{i} be the number of intersections of $\pi_{\text {opt }}$ with G^{i} for $i \geq 1^{7}$
due to (1), $E\left[Z_{i}\right] \leq 2^{i+1} O P T$

[^12]
error type (iii): expected error due to snapping tour to portals

- as noted, after applying patching lemma to grid squares at all levels from bottom-to-top, the tour intersects with any edge of any grid square at most twice
- as the distance between any two successive portals along any edge of G^{i} is $\frac{1 / 2^{i}}{m+1}$, a single snapping operation on an edge of G^{i} introduces an error $\leq 2\left(\frac{1 / 2^{i}}{2(m+1)}\right)=\frac{1}{2^{i}(m+1)}$
- let Z_{i} be the number of intersections of $\pi_{\text {opt }}$ with G^{i} for $i \geq 1^{7}$
due to (1), $E\left[Z_{i}\right] \leq 2^{i+1} O P T$
- expected increase in length due to snapping π_{1} to the portals of the quadtree $\left(\right.$ summed over all the levels) ${ }^{8} \leq E\left[\sum_{i=1}^{H} \frac{Z_{i}}{2^{i}(m+1)}\right] \leq \frac{2 H}{m+1} O P T$

[^13]
overall apprx factor

- $\left(1+\frac{\epsilon}{2}\right)\left(1+\frac{8}{r-2}\right)\left(1+\frac{2 H}{m+1}\right) O P T$
$\leq\left(1+\frac{\epsilon}{2}\right)\left(1+\frac{\epsilon}{10}\right)^{2}$ OPT (by choosing $r=\frac{90}{\epsilon}=O\left(\frac{1}{\epsilon}\right)$ and $m \geq \frac{20 H}{\epsilon}=O\left(\frac{\lg n}{\epsilon}\right)$)
$\leq(1+\epsilon) O P T$

overall apprx factor

- $\left(1+\frac{\epsilon}{2}\right)\left(1+\frac{8}{r-2}\right)\left(1+\frac{2 H}{m+1}\right) O P T$

$$
\begin{aligned}
& \left.\leq\left(1+\frac{\epsilon}{2}\right)\left(1+\frac{\epsilon}{10}\right)^{2} O P T \quad \text { (by choosing } r=\frac{90}{\epsilon}=O\left(\frac{1}{\epsilon}\right) \text { and } m \geq \frac{20 H}{\epsilon}=O\left(\frac{\lg n}{\epsilon}\right)\right) \\
& \leq(1+\epsilon) O P T
\end{aligned}
$$

hence, the apprx factor in expectation is $(1+\epsilon)$ and the time complexity is $n\left(\frac{\lg n}{\epsilon}\right)^{O(1 / \epsilon)}$ i.e., randomized PTAS

take-home lessons

- PTAS in expectation
- rounding input points
- Steiner points (portals) along grid edges
- dynamic programming
- locally patching a path
- Hochbaum-Mass shifting grid technique
- applicable in various contexts: minimum Steiner tree, k-TSP, k-MST, Euclidean min-cost perfect matching
hence, the Godel award for the result!

other important results

- $O\left(n^{d+1}\right.$ polylog $)$ time PTAS - Arora '97
- $O(n \lg n)$ time PTAS - Rao and Smith '98
- NP-hard to get $(1+\epsilon)$-apprx in $\mathbb{R}^{O(\lg n)}$, for some $\epsilon>0-$ Trevisan '97

references

- S. Har-Peled. Geometric Approximation Algorithms. American Mathematical Society, 2011.
- D. P. Williamson and D. B. Shmoys. The Design of Approximation Algorithms. Cambridge University Press, 2011.
- S. Arora. Polynomial time approximation schemes for Euclidean TSP and other geometric problems. Journal of ACM, 1998.

references

- S. Har-Peled. Geometric Approximation Algorithms. American Mathematical Society, 2011.
- D. P. Williamson and D. B. Shmoys. The Design of Approximation Algorithms. Cambridge University Press, 2011.
- S. Arora. Polynomial time approximation schemes for Euclidean TSP and other geometric problems. Journal of ACM, 1998.

Parallel/further significant work -

- J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple new method for the geometric TSP, k-MST, and related problems. SIAM Journal on Computing, 1999.
- S. B. Rao and W. D. Smith. Approximating geometric graphs via "spanners" and "banyans". Symposium on Theory of Computing, 1998.

[^0]: ${ }^{1}$ most of the figures in this presentation are from the references mentioned (Arora's PTAS for the Euclidean TSP)

[^1]: ${ }^{2}$ later, this corner will be fixed at a point randomly chosen from the square with the southwest and northeast corners respectively at $(0,0)$ and $\left(\frac{1}{2}, \frac{1}{2}\right)$

[^2]: ${ }^{2}$ later, this corner will be fixed at a point randomly chosen from the square with the southwest and northeast corners respectively at $(0,0)$ and $\left(\frac{1}{2}, \frac{1}{2}\right) \square$

[^3]: ${ }^{2}$ later, this corner will be fixed at a point randomly chosen from the square with the southwest and northeast corners respectively at $(0,0)$ and $\left(\frac{1}{2}, \frac{1}{2}\right)$. (Arora's PTAS for the Euclidean TSP)

[^4]: ${ }^{3}$ choosing $m+1$ as a power of two, each portal on the sides of a level $i-1$ square are at the same location as a portal on the side of some level i square contained in the level $i \equiv 1$ square ac (Arora's PTAS for the Euclidean TSP)

[^5]: ${ }^{4}$ a collection of subpaths (which intersect this square) of the apprx tour being censtrueted

[^6]: ${ }^{4}$ a collection of subpaths (which intersect this square) of the apprx tour being censtrueted

[^7]: ${ }^{4}$ a collection of subpaths (which intersect this square) of the apprx tour being censtrueted ace (Arora's PTAS for the Euclidean TSP)

[^8]: ${ }^{5}$ when we fix an edge of a grid so that the tour does not intersect it too many times, the number of times the patched tour crosses boundaries of higher-level nodes of the quadtree also goes down; similarly, the total number of crossings (of the tour with the grids) drop exponentially as we use larger and larger grids; thus requiring fewer fix-ups; thus, intuitively, one can think about all the patching happening in the bottom level of the quadtree
 ${ }^{6} G^{0}$ does not intersect the generated path

[^9]: ${ }^{5}$ when we fix an edge of a grid so that the tour does not intersect it too many times, the number of times the patched tour crosses boundaries of higher-level nodes of the quadtree also goes down; similarly, the total number of crossings (of the tour with the grids) drop exponentially as we use larger and larger grids; thus requiring fewer fix-ups; thus, intuitively, one can think about all the patching happening in the bottom level of the quadtree
 ${ }^{6} G^{0}$ does not intersect the generated path

[^10]: ${ }^{7}$ for $i \geq 1$, tour π_{i} (esp. π_{1}) has at least as many crossings with G_{i} as $\pi_{\text {opt }}$ has with G_{i}
 ${ }^{8}$ if a grid edge has portals from several levels, the snapped tour used only the portals on this edge that belong to the highest level
 (Arora's PTAS for the Euclidean TSP)

[^11]: ${ }^{7}$ for $i \geq 1$, tour π_{i} (esp. π_{1}) has at least as many crossings with G_{i} as $\pi_{\text {opt }}$ has with G_{i}
 ${ }^{8}$ if a grid edge has portals from several levels, the snapped tour used only the portals on this edge that belong to the highest level

[^12]: ${ }^{7}$ for $i \geq 1$, tour π_{i} (esp. π_{1}) has at least as many crossings with G_{i} as $\pi_{\text {opt }}$ has with G_{i}
 ${ }^{8}$ if a grid edge has portals from several levels, the snapped tour used only the portals on this edge that belong to the highest level

[^13]: ${ }^{7}$ for $i \geq 1$, tour π_{i} (esp. π_{1}) has at least as many crossings with G_{i} as $\pi_{\text {opt }}$ has with G_{i}
 ${ }^{8}$ if a grid edge has portals from several levels, the snapped tour used only the portals on this edge that belong to the highest level

