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problem description

Given a set P of points in Euclidean plane, find a tour of minimum cost that

visits all the points of P.
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® objective of this talk: algo (PTAS) to compute an approximate tour
whose expected length is (1 + €)Topr in O(n(lgT”)O(é)) time
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® objective of this talk: algo (PTAS) to compute an approximate tour
whose expected length is (1 + €)Topr in O(n(lgT”)O(é)) time

for the convenience, we let the following:
1
1 >€e> n
P is contained in [%, %] x [1,1]
diam(P) > 1
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Outline

1 algorithm
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round the input points to grid points

® set up a grid with sidelength G = {ﬁ(i, J)i,Jj are integers }
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round the input points to grid points

® set up a grid with sidelength G = {ﬁ(i, J)i,Jj are integers }
® round (snap) each point in P to an arbitrary corner (grid point) of the grid

cell in which it is located — the resultant point set is Q

- this would guarantee the quadtree to be constructed for Q to have logarithmic depth
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setting up a quadtree over Q
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® consider the unit square with its southwest corner at (
of the root node

L1
202

)? as the square

Hater, this corner will be fixed at a point randomly chosen from the square with the

southwest and northeast corners respectively at (0,0) and (3, 1)
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setting up a quadtree over Q
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b2l b22 b23
® consider the unit square with its southwest corner at (5 %)2 as the square
of the root node

® since the minimal distance between a pair of points of Q is at least m; ,z 7
it suffices to have the leafnode square sidelength m

Hater, this corner will be fixed at a point randomly chosen from the square with the
southwest and northeast corners respectively at (0,0) and (3, 1)

(Arora’s PTAS for the Euclidean TSP) 5/25
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® consider the unit square with its southwest corner at (5 %)2 as the square

of the root node

® since the minimal distance between a pair of points of Q is at least m; ,z 7
it suffices to have the leafnode square sidelength ﬁ
® height H of the quadtree is O(lgn)

level of root is 0; for every 0 < i < H, grid corresponding to level i is denoted with G’ and the

length of any edge of G is o7

Hater, this corner will be fixed at a point randomly chosen from the square with the
southwest and northeast corners respectively at (0,0) and (3, 1)
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setting up a quadtree over Q

O O ©
b2l b22 b23
e consider the unit square with its southwest corner at (4
of the root node

® since the minimal distance between a pair of points of Q is at least

1, 1)? as the square

nf*”
it suffices to have the leafnode square sidelength @ E
® height H of the quadtree is O(lgn)
level of root is 0; for every 0 < i < H, grid corresponding to level i is denoted with G’ and the
length of any edge of G is o7
® letting no node of the quadtree is empty, the number of nodes is O(nlgn)
ater, this corner will be fixed at a point randomly chosen from the square with the

southwest and northeast corners respectively at (0,0) and (3, 1)
(Arora’s PTAS for the Euclidean TSP) 5/25




portals along the quadtree square sides
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introduce equi-spaced m = 2OTH (which is 0(1%")) portals along each side of
each quadtree square together with four at the corners of the same 3

3choosing m + 1 as a power of two, each portal on the sides of a level i — 1 square are at the
same location as a portal on the side of some level i square contained invthe level i =1 square
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requisite characteristics of a constrained tour

on e
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requisite characteristics of a constrained tour (cont)

® 1o portal can be used more than twice
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requisite characteristics of a constrained tour (cont)

® 1o portal can be used more than twice

e tour can use at most r = 2 i.e., 0(%) portals corresponding to any side

€
of any quadtree square i.e., tour need to be r-light w.r.t. any quadtree

square edge
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requisite characteristics of a constrained tour (cont)

® 1o portal can be used more than twice

® tour can use at most r = 9?0 ie., 0(%) portals corresponding to any side

of any quadtree square i.e., tour need to be r-light w.r.t. any quadtree
square edge

is it possible to have such a tour while being a good apprx to an optimal
tour?
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nested parenthesis structure of portal-to-portal paths

11 12

(4(1,2)(5,6)3)(7,8)(9(11, 12)10)
(4(1)2(5)6)3(7)8(o(11)12) 10

® portal-to-portal paths follow parentization; hence, one can try all settings

of parenthesis, translate these into possible layouts of paths and discard
the ones that have intersecting paths
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4 9 11

nested parenthesis structure of portal-to-portal paths

12

(4(1,2)(5,6)3)(7,8)(9(11, 12)10)
(a(1)2(5)6)3(7)8 (o (11)12) 10
® portal-to-portal paths follow parentization; hence, one can try all settings

of parenthesis, translate these into possible layouts of paths and discard
the ones that have intersecting paths

2k

® therefore, the number of layouts of k portal-portal paths in grid square is
the k™ Catalan number, which is k+L1 (%) = 0(2%)
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valid solutions of any grid square

o for every O to 4r portal combination of 4m + 4 portals on the boundary,
considering that each chosen portal can be used 1 to 2 times, for every
permutation p of the chosen portals, alternately mark portals in p with
enter-exit — number of subproblems < Z?;O (2(4”;+4))i! ie.,

(L1gn)00))

“a collection of subpaths (which intersect this square) of the apprx tour being constructed
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(L1gn)00))

e find a minimum cost feasible subtour*
- feasibility criteria: precisely satisfies the portal marking of that quadtree
square; non-intersecting; subtours cover points belonging to quadtree
square
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valid solutions of any grid square

o for every O to 4r portal combination of 4m + 4 portals on the boundary,
considering that each chosen portal can be used 1 to 2 times, for every
permutation p of the chosen portals, alternately mark portals in p with
enter-exit — number of subproblems < Z?;o (2(4”;+4))i! ie.,

(L1gn)00))

¢ find a minimum cost feasible subtour*

- feasibility criteria: precisely satisfies the portal marking of that quadtree
square; non-intersecting; subtours cover points belonging to quadtree
square

— to achieve efficiency, build the subtours in bottom-to-top fashion: using
memoization of DP, from leaf nodes to root of the quadtree

“a collection of subpaths (which intersect this square) of the apprx tour being constructed
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dynamic programming over squares of quadtree grid

® interaction between problems is according to the organization of
quadtree nodes
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dynamic programming over squares of quadtree grid

® interaction between problems is according to the organization of
quadtree nodes

® memoize the subproblem solutions

® base case: if a square has 0(%) points of Q, then solve that subprobelm
by brute force
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DP: assemble subtours from children

/

® at every non-leaf node, for every chosen portal permutation, save these
entries in the DP table: portal permutations of each child node which
together caused the minimum cost subtour at the parent
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time complexity

® number of subproblems to pursue at each quadtree node
g 1
<% (2(4”;"'4))1! ie., (L1gn)9e)
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time complexity

® number of subproblems to pursue at each quadtree node
g 1
<% (2(4”;"'4))1! ie., (L1gn)9e)

® subproblem at each quadtree node (ignoring the recursive subproblems)
can be solved in ((11g n)2(2))00) time

- assembling: each subproblem solution of 1 child with each . . . with each subproblem
solution of 4 child

- and, checking whether the assembled subtour is according to enter-exit constraints and

non-intersecting within the quadtree square
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time complexity

® number of subproblems to pursue at each quadtree node
g 1
<% (2(4”;"'4))1! ie., (L1gn)9e)

® subproblem at each quadtree node (ignoring the recursive subproblems)
can be solved in ((11g n)2(2))00) time

- assembling: each subproblem solution of 1 child with each . . . with each subproblem
solution of 4 child

- and, checking whether the assembled subtour is according to enter-exit constraints and

non-intersecting within the quadtree square

e since there are O(nlgn) nodes in the quadree, the time is n(1 1g n)O(é)

(including the time to brute-force enumeration at leaf nodes)
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Outline

2 analysis
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factors causing errors

@ building a tour 7r0th of points of Q instead of a tour 7, of points of P
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factors causing errors

@ building a tour 7ront of points of Q instead of a tour 7, of points of P
@ limiting the tour to be r-light

@) limiting tour intersection with the edges of the quadtree squares to
portals

these are upper bounded by transforming 7,,, while making it to obey these
specific constraints
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factors causing errors

@ building a tour 7ront of points of Q instead of a tour 7, of points of P
@ limiting the tour to be r-light

@) limiting tour intersection with the edges of the quadtree squares to
portals

these are upper bounded by transforming 7,,, while making it to obey these
specific constraints

We denote ||7,,|| with OPT and Hrrgp,H with OPT).
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error type (i): rounding points in P to get to Q

® The error in making 7@%, to touch points of P is

V2
< n(2py)
4
<%
< SOPT (since OPT > diam(P) which is ;)
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patching lemma: patch the path with respect to a line
segment

a |

® replace a polyline 7 that crosses a line segment s at least three times with
a polyline 7’ that crosses s at most twice: construct an Eulerian graph by
introducing a few edges (see the above Fig.) to 7

171 < Ml + (32 being oaa IPiPiv1 [l + lgigisr|]) + 2[lsl] < ]| + 4lls]]
—©O

find an Eulerian tour in the graph
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segment

a |

find an Eulerian tour in the graph

® replace a polyline 7 that crosses a line segment s at least three times with
a polyline 7’ that crosses s at most twice: construct an Eulerian graph by
introducing a few edges (see the above Fig.) to 7
171 < Ml + (32 being oaa IPiPiv1 [l + lgigisr|]) + 2[lsl] < ]| + 4lls]]

0)

e corollary: as the length of any edge of G' is -

edge of G is < %

57, error in patching any one
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patching lemma: patch the path with respect to a line
segment

—a ’—\‘h'

/q:‘ ,: /1'34

find an Eulerian tour in the graph

® replace a polyline 7 that crosses a line segment s at least three times with
a polyline 7’ that crosses s at most twice: construct an Eulerian graph by
introducing a few edges (see the above Fig.) to 7
170 < 1l 4+ (s veing oaa P21 1|+ llgigitll) + 2[sl] < 1]l + 4ls]

0)

e corollary: as the length of any edge of G' is -
edge of G' is < %

® corollary: viewing the portal is of zero lengthed segment, any optimal
solution need to use a portal at most twice (hence, we are allowing 2 intersections

57, error in patching any one

per portal in the apprx tour)
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patching grid edges at every level of the quadtree

e while considering quadtree nodes in bottom-to-top>, at every level
H > i > 1, patch the tour Topr W.IL. every grid edge of G':

if the current tour intersects e more than r times so that it intersects e at
most twice after patching

Swhen we fix an edge of a grid so that the tour does not intersect it too many times, the
number of times the patched tour crosses boundaries of higher-level nodes of the quadtree also
goes down; similarly, the total number of crossings (of the tour with the grids) drop
exponentially as we use larger and larger grids; thus requiring fewer fix-ups; thus, intuitively,
one can think about all the patching happening in the bottom level of the quadtree

8G° does not intersect the generated path
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patching grid edges at every level of the quadtree

e while considering quadtree nodes in bottom-to-top>, at every level
H > i > 1, patch the tour Topr W.IL. every grid edge of G':

if the current tour intersects e more than r times so that it intersects e at

most twice after patching

let 7r; denote the resulting path after patching at G*
let 7;+1 denote the path just before patching at G

TH+1 18 Topr, and 7y is the patched tour after patching at every level from H to 1

Swhen we fix an edge of a grid so that the tour does not intersect it too many times, the
number of times the patched tour crosses boundaries of higher-level nodes of the quadtree also
goes down; similarly, the total number of crossings (of the tour with the grids) drop
exponentially as we use larger and larger grids; thus requiring fewer fix-ups; thus, intuitively,
one can think about all the patching happening in the bottom level of the quadtree

8G° does not intersect the generated path
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exploiting sliding grid

1 1]:

randomly choose the unit grid origin from [0,0] x [5, 5

e for every level i > 1 of the quadtree, the expected number of
intersections of a polyline w with the vertical and horizontal edges of G*
is at most 2l+1 ”WH <— probabilistic argument is due to sliding grid

— @
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exploiting sliding grid

randomly choose the unit grid origin from [0, 0] x [4, 1]:
e for every level i > 1 of the quadtree, the expected number of
intersections of a polyline w with the vertical and horizontal edges of G’

is at most 2i+1 ”W” <— probabilistic argument is due to sliding grid

— @

e if a point p belongs to open edges of G' then the point p belongs to open
edges of G~ with probability % (as every grid edge of G' has probability % to survive
and be a grid edge of G'—1)

—
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error type (ii): patching 7, at every level from
bottom-to-top

F;: number of patching operations performed at i’ level; ¥;: number of times the current tour crosses the
edges of G' just before considering G’ for patching; n;: number of times the current tour crosses the edges

of G' after patching
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error type (ii): patching 7, at every level from
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F;: number of patching operations performed at i’ level; ¥;: number of times the current tour crosses the
edges of G' just before considering G’ for patching; n;: number of times the current tour crosses the edges
of G' after patching

expected increase in length of 7,,, due to patchings at every level

=E[>7 %] (due to (0)
< E[2F + Y1, 4]
SE[2F1] 4 2ZH E[Y, 2E[l 1]
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error type (iii): expected error due to snapping tour to
portals

® as noted, after applying patching lemma to grid squares at all levels from
bottom-to-top, the tour intersects with any edge of any grid square at
most twice

for i > 1, tour 7; (esp. ) has at least as many crossings with G; as 7, has with G;

8if a grid edge has portals from several levels, the snapped tour used only the portals on this
edge that belong to the highest level
(Arora’s PTAS for the Euclidean TSP) 21/25
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® as noted, after applying patching lemma to grid squares at all levels from
bottom-to-top, the tour intersects with any edge of any grid square at
most twice

® as the distance between any two successive portals along any edge of G’
.12

. . . l .
is .=, a single snapping operation on an edge of G' introduces an error

120\ 1
< 2(2(m+1))  2i(m+1)

® et Z; be the number of intersections of Topt With G fori >1 7

due to (1), E[Z)] < 2H'oPT

for i > 1, tour 7; (esp. 1) has at least as many crossings with G; as 7, has with G;

8if a grid edge has portals from several levels, the snapped tour used only the portals on this
edge that belong to the highest level
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error type (iii): expected error due to snapping tour to
portals

® as noted, after applying patching lemma to grid squares at all levels from
bottom-to-top, the tour intersects with any edge of any grid square at
most twice

® as the distance between any two successive portals along any edge of G’

is ’11112 ; , a single snapping operation on an edge of G’ introduces an error
120\ 1
< 2(2(m+1))  2i(m+1)

® et Z; be the number of intersections of Topt With G fori >1 7

due to (1), E[Z)] < 2H'oPT

® expected increase in length due to snapping 7| to the portals of the

quadtree (summed over all the levels)® < E [Z{i 137 rfjrl)] < W%—flOPT

for i > 1, tour 7; (esp. 1) has at least as many crossings with G; as 7, has with G;

8if a grid edge has portals from several levels, the snapped tour used only the portals on this
edge that belong to the highest level
(Arora’s PTAS for the Euclidean TSP) 21/25



overall apprx factor

o (1491 + )1+ 25)0PT

< (1 + %)(1 + %)ZOPT (by choosing r = 2 ? = O(é) and m > ZOTH = 0(%))

< (1 +¢€)OPT
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overall apprx factor

° (1+501+ 251+ 25)0PT
< (1+%)(1+%)20PT (bychoosmgr—?ZO(é)andmzonHZO(%))
< (14 €)OPT

hence, the apprx factor in expectation is (1 + ¢€) and the time complexity is
n(£2)00/) j e, randomized PTAS
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take-home lessons

® PTAS in expectation

® rounding input points

® Steiner points (portals) along grid edges
® dynamic programming

® Jocally patching a path

® Hochbaum-Mass shifting grid technique

® applicable in various contexts: minimum Steiner tree, k-TSP, k-MST,
Euclidean min-cost perfect matching

hence, the Godel award for the result!
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other important results

® O(n?*!'polylog) time PTAS — Arora *97
® O(nlgn) time PTAS — Rao and Smith 98

® NP-hard to get (1 + €)-apprx in R1£7) for some € > 0 — Trevisan 97
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