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problem description
Given a set P of points in Euclidean plane, find a tour of minimum cost that
visits all the points of P.

• known to be NP-hard

• objective of this talk: algo (PTAS) to compute an approximate tour
whose expected length is (1 + ϵ)τOPT in O(n( lg n

ϵ )O( 1
ϵ
)) time

for the convenience, we let the following:
1 > ϵ > 1

n

P is contained in [ 1
2 ,

1
2 ]× [1, 1]

diam(P) ≥ 1
4
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Outline

1 algorithm

2 analysis
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round the input points to grid points

• set up a grid with sidelength G = { 1
n⌈ 32

ϵ
⌉(i, j)|i, j are integers}

• round (snap) each point in P to an arbitrary corner (grid point) of the grid
cell in which it is located → the resultant point set is Q

- this would guarantee the quadtree to be constructed for Q to have logarithmic depth
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setting up a quadtree over Q
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• consider the unit square with its southwest corner at (1
2 ,

1
2)

2 as the square
of the root node

• since the minimal distance between a pair of points of Q is at least 1
n⌈ 32

ϵ
⌉ ,

it suffices to have the leafnode square sidelength 1
n⌈ 32

ϵ
⌉

• height H of the quadtree is O(lg n)
level of root is 0; for every 0 ≤ i ≤ H, grid corresponding to level i is denoted with Gi and the

length of any edge of Gi is 1
2i

• letting no node of the quadtree is empty, the number of nodes is O(n lg n)

2later, this corner will be fixed at a point randomly chosen from the square with the
southwest and northeast corners respectively at (0, 0) and ( 1

2 ,
1
2 )
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portals along the quadtree square sides

introduce equi-spaced m = 20H
ϵ (which is O( lg n

ϵ )) portals along each side of
each quadtree square together with four at the corners of the same 3

3choosing m + 1 as a power of two, each portal on the sides of a level i − 1 square are at the
same location as a portal on the side of some level i square contained in the level i − 1 square
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requisite characteristics of a constrained tour

• tour is permitted to cross an edge e of a quadree square only via portals
on e
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requisite characteristics of a constrained tour (cont)

• no portal can be used more than twice

• tour can use at most r = 90
ϵ i.e., O(1

ϵ ) portals corresponding to any side
of any quadtree square i.e., tour need to be r-light w.r.t. any quadtree
square edge

is it possible to have such a tour while being a good apprx to an optimal
tour?
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nested parenthesis structure of portal-to-portal paths

(4(1, 2)(5, 6)3)(7, 8)(9(11, 12)10)

(4(1)2(5)6)3(7)8(9(11)12)10

• portal-to-portal paths follow parentization; hence, one can try all settings
of parenthesis, translate these into possible layouts of paths and discard
the ones that have intersecting paths

• therefore, the number of layouts of k portal-portal paths in grid square is
the kth Catalan number, which is 1

k+1

(2k
k

)
= O(22k)
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valid solutions of any grid square

• for every 0 to 4r portal combination of 4m + 4 portals on the boundary,
considering that each chosen portal can be used 1 to 2 times, for every
permutation p of the chosen portals, alternately mark portals in p with
enter-exit → number of subproblems ≤

∑8r
i=0

(2(4m+4)
i

)
i! i.e.,

(1
ϵ lg n)O( 1

ϵ
))

• find a minimum cost feasible subtour4

- feasibility criteria: precisely satisfies the portal marking of that quadtree
square; non-intersecting; subtours cover points belonging to quadtree
square

— to achieve efficiency, build the subtours in bottom-to-top fashion: using
memoization of DP, from leaf nodes to root of the quadtree

4a collection of subpaths (which intersect this square) of the apprx tour being constructed
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dynamic programming over squares of quadtree grid

• interaction between problems is according to the organization of
quadtree nodes

• memoize the subproblem solutions

• base case: if a square has O(1
ϵ ) points of Q, then solve that subprobelm

by brute force
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DP: assemble subtours from children

• at every non-leaf node, for every chosen portal permutation, save these
entries in the DP table: portal permutations of each child node which
together caused the minimum cost subtour at the parent

(Arora’s PTAS for the Euclidean TSP) 12 / 25



time complexity

• number of subproblems to pursue at each quadtree node
≤

∑8r
i=0

(2(4m+4)
i

)
i! i.e., (1

ϵ lg n)O( 1
ϵ
))

• subproblem at each quadtree node (ignoring the recursive subproblems)
can be solved in ((1

ϵ lg n)O( 1
ϵ
)))O(1) time

- assembling: each subproblem solution of 1st child with each . . . with each subproblem
solution of 4th child

- and, checking whether the assembled subtour is according to enter-exit constraints and

non-intersecting within the quadtree square

• since there are O(n lg n) nodes in the quadtree, the time is n(1
ϵ lg n)O( 1

ϵ
)

(including the time to brute-force enumeration at leaf nodes)
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Outline

1 algorithm

2 analysis
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factors causing errors

(i) building a tour πQ
opt of points of Q instead of a tour πopt of points of P

(ii) limiting the tour to be r-light

(iii) limiting tour intersection with the edges of the quadtree squares to
portals

these are upper bounded by transforming πopt while making it to obey these
specific constraints

We denote ∥πopt∥ with OPT and ∥πQ
opt∥ with OPTQ.
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error type (i): rounding points in P to get to Q

• The error in making πQ
opt to touch points of P is

≤ n(2
√

2
n⌈ 32

ϵ ⌉ )

≤ 4ϵ
32

≤ ϵ
2 OPT (since OPT ≥ diam(P) which is 1

4 )
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patching lemma: patch the path with respect to a line
segment

p1

p2

p3

p4

q1

q2

q3

q4

π

s

find an Eulerian tour in the graph

• replace a polyline π that crosses a line segment s at least three times with
a polyline π′ that crosses s at most twice: construct an Eulerian graph by
introducing a few edges (see the above Fig.) to π
∥π′∥ ≤ ∥π∥+ (

∑
i being odd ∥pipi+1∥+ ∥qiqi+1∥) + 2∥s∥ ≤ ∥π∥+ 4∥s∥

————– (0)

• corollary: as the length of any edge of Gi is 1
2i , error in patching any one

edge of Gi is ≤ 4
2i

• corollary: viewing the portal is of zero lengthed segment, any optimal
solution need to use a portal at most twice (hence, we are allowing 2 intersections

per portal in the apprx tour)

(Arora’s PTAS for the Euclidean TSP) 17 / 25



patching lemma: patch the path with respect to a line
segment

p1

p2

p3

p4

q1

q2

q3

q4

π

s

find an Eulerian tour in the graph

• replace a polyline π that crosses a line segment s at least three times with
a polyline π′ that crosses s at most twice: construct an Eulerian graph by
introducing a few edges (see the above Fig.) to π
∥π′∥ ≤ ∥π∥+ (

∑
i being odd ∥pipi+1∥+ ∥qiqi+1∥) + 2∥s∥ ≤ ∥π∥+ 4∥s∥

————– (0)
• corollary: as the length of any edge of Gi is 1

2i , error in patching any one
edge of Gi is ≤ 4

2i

• corollary: viewing the portal is of zero lengthed segment, any optimal
solution need to use a portal at most twice (hence, we are allowing 2 intersections

per portal in the apprx tour)

(Arora’s PTAS for the Euclidean TSP) 17 / 25



patching lemma: patch the path with respect to a line
segment

p1

p2

p3

p4

q1

q2

q3

q4

π

s

find an Eulerian tour in the graph

• replace a polyline π that crosses a line segment s at least three times with
a polyline π′ that crosses s at most twice: construct an Eulerian graph by
introducing a few edges (see the above Fig.) to π
∥π′∥ ≤ ∥π∥+ (

∑
i being odd ∥pipi+1∥+ ∥qiqi+1∥) + 2∥s∥ ≤ ∥π∥+ 4∥s∥

————– (0)
• corollary: as the length of any edge of Gi is 1

2i , error in patching any one
edge of Gi is ≤ 4

2i

• corollary: viewing the portal is of zero lengthed segment, any optimal
solution need to use a portal at most twice (hence, we are allowing 2 intersections

per portal in the apprx tour)
(Arora’s PTAS for the Euclidean TSP) 17 / 25



patching grid edges at every level of the quadtree

• while considering quadtree nodes in bottom-to-top5, at every level
H ≥ i ≥ 16, patch the tour πopt w.r.t. every grid edge of Gi:

if the current tour intersects e more than r times so that it intersects e at
most twice after patching

let πi denote the resulting path after patching at Gi

let πi+1 denote the path just before patching at Gi

πH+1 is πopt , and π1 is the patched tour after patching at every level from H to 1

5when we fix an edge of a grid so that the tour does not intersect it too many times, the
number of times the patched tour crosses boundaries of higher-level nodes of the quadtree also
goes down; similarly, the total number of crossings (of the tour with the grids) drop
exponentially as we use larger and larger grids; thus requiring fewer fix-ups; thus, intuitively,
one can think about all the patching happening in the bottom level of the quadtree

6G0 does not intersect the generated path
(Arora’s PTAS for the Euclidean TSP) 18 / 25
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exploiting sliding grid

randomly choose the unit grid origin from [0, 0]× [1
2 ,

1
2 ]:

• for every level i ≥ 1 of the quadtree, the expected number of
intersections of a polyline w with the vertical and horizontal edges of Gi

is at most 2i+1∥w∥ ← probabilistic argument is due to sliding grid

————– (1)

• if a point p belongs to open edges of Gi then the point p belongs to open
edges of Gi−1 with probability 1

2 (as every grid edge of Gi has probability 1
2 to survive

and be a grid edge of Gi−1)

————– (2)

(Arora’s PTAS for the Euclidean TSP) 19 / 25
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error type (ii): patching πopt at every level from
bottom-to-top
Fi: number of patching operations performed at ith level; Yi: number of times the current tour crosses the

edges of Gi just before considering Gi for patching; ni: number of times the current tour crosses the edges

of Gi after patching

expected increase in length of πopt due to patchings at every level
= E[

∑H
i=1

4Fi
2i ] (due to (0))

≤ E[2F1 +
∑H

i=2
4Fi
2i ]

≤ E[2F1] +
4

r−2
∑H

i=2
E[Yi]−2E[Yi−1]

2i

(noting that due to (2), E[Yi−1] = E[E[Yi−1|ni]] = E[ ni
2 ], and

E[Yi] = E[ ni
2 ] ≤ E[ Yi−(r−2)Fi

2 ] = 1
2 E[Yi]− k−2

2 E[Fi])

≤ E[2 Y1
r−2 ] +

4
r−2(

E[YH ]
2H − E[Y1]

2 ) (since F1 ≤ Y1
r ≤

Y1
(r−2) )

= 4
r−2(

E[Y1]
2 + E[YH ]

2H − E[Y1]
2 )

≤ 4
r−2

E[YH ]
2H (note that YH is the number of times πopt crosses the edges of GH)

= 4
r−2

2H+1OPT
2H (due to (1))

= 8
r−2 OPT
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error type (iii): expected error due to snapping tour to
portals
• as noted, after applying patching lemma to grid squares at all levels from

bottom-to-top, the tour intersects with any edge of any grid square at
most twice

• as the distance between any two successive portals along any edge of Gi

is 1/2i

m+1 , a single snapping operation on an edge of Gi introduces an error

≤ 2( 1/2i

2(m+1)) =
1

2i(m+1)

• let Zi be the number of intersections of πopt with Gi for i ≥ 1 7

due to (1), E[Zi] ≤ 2i+1OPT

• expected increase in length due to snapping π1 to the portals of the
quadtree (summed over all the levels)8 ≤ E[

∑H
i=1

Zi
2i(m+1) ] ≤

2H
m+1 OPT

7for i ≥ 1, tour πi (esp. π1) has at least as many crossings with Gi as πopt has with Gi
8if a grid edge has portals from several levels, the snapped tour used only the portals on this

edge that belong to the highest level
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overall apprx factor

• (1 + ϵ
2)(1 + 8

r−2)(1 + 2H
m+1)OPT

≤ (1 + ϵ
2)(1 + ϵ

10)
2OPT (by choosing r = 90

ϵ
= O( 1

ϵ
) and m ≥ 20H

ϵ
= O( lg n

ϵ
))

≤ (1 + ϵ)OPT

hence, the apprx factor in expectation is (1 + ϵ) and the time complexity is
n( lg n

ϵ )O(1/ϵ) i.e., randomized PTAS
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take-home lessons

• PTAS in expectation

• rounding input points

• Steiner points (portals) along grid edges

• dynamic programming

• locally patching a path

• Hochbaum-Mass shifting grid technique

• applicable in various contexts: minimum Steiner tree, k-TSP, k-MST,
Euclidean min-cost perfect matching

hence, the Godel award for the result!
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other important results

• O(nd+1polylog) time PTAS — Arora ’97

• O(n lg n) time PTAS — Rao and Smith ’98

• NP-hard to get (1 + ϵ)-apprx in RO(lg n), for some ϵ > 0 — Trevisan ’97
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