A simple experiment to estimate π

R. Inkulu http://www.iitg.ac.in/rinkulu/

(Estimating π)

Significance of π

- 1 radian is defined as the angle subtended when the length of the arc is r; naturally, with 2π radians of angle at the center leads to perimeter being $2\pi r$.
- area of a circle is πr^2

Well known approximations of π are

•
$$\frac{22}{7}$$
 (accuracy 2.10⁻⁴)

•
$$\frac{355}{113}$$
 (accuracy 8.10⁻⁸)

Unit grid vs area of circle

Let *C* be a circle of radius *r* centered at (0,0); let the plane be tesselated with unit squares. Any such unit square can either be -

- interior to C
- exterior to C
- neither interior nor exterior to $C \rightarrow$ this leads to approximation

Unit grid vs area of circle

Let *C* be a circle of radius *r* centered at (0,0); let the plane be tesselated with unit squares. Any such unit square can either be -

- interior to C
- exterior to C
- neither interior nor exterior to $C \rightarrow$ this leads to approximation

$$\pi = \lim_{r \to \infty} \sum_{x=-r}^{r} \sum_{y=-r}^{r} \begin{cases} 1 \text{ if } \sqrt{x^2 + y^2} \le r \\ 0 \text{ if } \sqrt{x^2 + y^2} > r \end{cases}$$

(Estimating π)

Srinivasa Ramanujan's rapidly converging infinite series of π

$$\frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4k)!(1103+26390k)}{(k!)^4(396)^{4k}}$$

* this computes a eight more decimal places of π with each term in the series

Polygon approximation to a circle

Let P_n and P^n respectively denote the perimeters of inscribed and circumscribed *n*-sided polygons with respect to circle *C*. Then,

- $P^{2n} = \frac{2p_n P_n}{p_n + P_n}$
- $P_{2n} = \sqrt{p_n P_{2n}}$

As $n \to \infty$, P^n or P_n approximates the perimter of C.

(Estimating π)

Buffon's needle: claim

• If a short needle of length ℓ is dropped on paper that is ruled with equally spaced lines of distance $d \ge \ell$, then the probability *p* that the needle comes to lie in a position where it crosses one of the lines is exactly $\frac{2\ell}{\pi d}$.

Buffon's needle: using calculus

• If α is the angle made by the needle with horizontal when it falls, then the probability that it crosses a horizontal line is $\frac{\ell \sin \alpha}{d}$.

• Hence,
$$p = \frac{1}{\pi/2} \int_0^{\frac{\pi}{2}} \frac{\ell \sin \alpha}{d} = \frac{2}{\pi} \frac{\ell}{d}$$
.

(Estimating π)

• Let p_i be the probability that the needle crosses exactly *i* lines. The probability that it crosses at least one line is $p_1 + p_2 + p_3 \dots$

- Let p_i be the probability that the needle crosses exactly *i* lines. The probability that it crosses at least one line is $p_1 + p_2 + p_3 \dots$
- The expected number of crossings of a needle of length ℓ is $E[\ell] = 1(p_1) + 2(p_2) + 3(p_3) + \ldots = p_1.$
 - * since $\ell \leq d$, all terms except p_1 are 0.

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○

- Let p_i be the probability that the needle crosses exactly *i* lines. The probability that it crosses at least one line is $p_1 + p_2 + p_3 \dots$
- The expected number of crossings of a needle of length ℓ is $E[\ell] = 1(p_1) + 2(p_2) + 3(p_3) + \ldots = p_1.$

* since $\ell \leq d$, all terms except p_1 are 0.

• Due to linearity of expectation $E[\ell] \propto \ell$, i.e., $E[\ell] = c\ell$ for some constant *c*.

• For any horizontal line ℓ' , if ℓ' crosses P_n , then ℓ' crosses C; analogously, if ℓ' crosses C then ℓ' crosses P^n . Hence, $E[P_n] \leq E[C] \leq E[P^n]$.

- For any horizontal line ℓ' , if ℓ' crosses P_n , then ℓ' crosses C; analogously, if ℓ' crosses C then ℓ' crosses P^n . Hence, $E[P_n] \leq E[C] \leq E[P^n]$.
- When circle *C* is chosen with diameter *d*, E[C] = 2; leading to *c.perimeter*(P_n) $\leq 2 \leq c.perimter(P^n)$.

- For any horizontal line ℓ' , if ℓ' crosses P_n , then ℓ' crosses C; analogously, if ℓ' crosses C then ℓ' crosses P^n . Hence, $E[P_n] \leq E[C] \leq E[P^n]$.
- When circle *C* is chosen with diameter *d*, E[C] = 2; leading to *c.perimeter*(P_n) $\leq 2 \leq c.perimter(P^n)$.
- As $n \to \infty$, $perimeter(P_n) = perimeter(P^n) = \pi d$; therefore $c = \frac{2}{\pi d}$.

(Estimating π)

・ロット 御マ キョット 中国 うくの

- For any horizontal line ℓ' , if ℓ' crosses P_n , then ℓ' crosses C; analogously, if ℓ' crosses C then ℓ' crosses P^n . Hence, $E[P_n] \leq E[C] \leq E[P^n]$.
- When circle *C* is chosen with diameter *d*, *E*[*C*] = 2; leading to *c.perimeter*(*P_n*) ≤ 2 ≤ *c.perimter*(*Pⁿ*).
- As $n \to \infty$, $perimeter(P_n) = perimeter(P^n) = \pi d$; therefore $c = \frac{2}{\pi d}$.

Hence,
$$E[\ell] = p = \frac{2}{\pi} \frac{\ell}{d}$$
.

(Estimating π)

Estimating π

Since *p* is proven to be equal to $\frac{2}{\pi} \frac{\ell}{d}$, to estimate π , drop a needle of length ℓ on paper that is ruled with equally spaced parallel lines of distance $d \ge \ell$ for *n* times (with *n* sufficiently large), leading to needle intersecting any of ruled lines be *m* times out of these *n* times, then π is $\frac{2\ell n}{dm}$.

References

a great collection of elegant proofs

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Thanks!