A simple experiment to estimate π

R. Inkulu
http://www.iitg.ac.in/rinkulu/

Significance of π

- 1 radian is defined as the angle subtended when the length of the arc is r; naturally, with 2π radians of angle at the center leads to perimeter being $2 \pi r$.
- area of a circle is πr^{2}

Well known approximations of π are

- $\frac{22}{7}$ (accuracy 2.10^{-4})
- $\frac{355}{113}$ (accuracy 8.10^{-8})

Unit grid vs area of circle

Let C be a circle of radius r centered at $(0,0)$; let the plane be tesselated with unit squares. Any such unit square can either be -

- interior to C
- exterior to C
- neither interior nor exterior to $C \rightarrow$ this leads to approximation

Unit grid vs area of circle

Let C be a circle of radius r centered at $(0,0)$; let the plane be tesselated with unit squares. Any such unit square can either be -

- interior to C
- exterior to C
- neither interior nor exterior to $C \rightarrow$ this leads to approximation

$$
\pi=\lim _{r \rightarrow \infty} \sum_{x=-r}^{r} \sum_{y=-r}^{r}\left\{\begin{array}{l}
1 \text { if } \sqrt{x^{2}+y^{2}} \leq r \\
0 \text { if } \sqrt{x^{2}+y^{2}}>r
\end{array}\right.
$$

Srinivasa Ramanujan's rapidly converging infinite series of π

$$
\frac{1}{\pi}=\frac{2 \sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4 k)!(1103+26390 k)}{(k!)^{4}(396)^{4 k}}
$$

* this computes a eight more decimal places of π with each term in the series

Polygon approximation to a circle

Let P_{n} and P^{n} respectively denote the perimeters of inscribed and circumscribed n-sided polygons with respect to circle C. Then,

- $P^{2 n}=\frac{2 p_{n} P_{n}}{p_{n}+P_{n}}$
- $P_{2 n}=\sqrt{p_{n} P_{2 n}}$

As $n \rightarrow \infty, P^{n}$ or P_{n} approximates the perimter of C.

- If a short needle of length ℓ is dropped on paper that is ruled with equally spaced lines of distance $d \geq \ell$, then the probability p that the needle comes to lie in a position where it crosses one of the lines is exactly $\frac{2 \ell}{\pi d}$.

- If α is the angle made by the needle with horizontal when it falls, then the probability that it crosses a horizontal line is $\frac{\ell \sin \alpha}{d}$.
- Hence, $p=\frac{1}{\pi / 2} \int_{0}^{\frac{\pi}{2}} \frac{\ell \sin \alpha}{d}=\frac{2}{\pi} \frac{\ell}{d}$.
- Let p_{i} be the probability that the needle crosses exactly i lines. The probability that it crosses at least one line is $p_{1}+p_{2}+p_{3} \ldots$.

Buffon's needle: without using calculus

- Let p_{i} be the probability that the needle crosses exactly i lines. The probability that it crosses at least one line is $p_{1}+p_{2}+p_{3} \ldots$.
- The expected number of crossings of a needle of length ℓ is $E[\ell]=1\left(p_{1}\right)+2\left(p_{2}\right)+3\left(p_{3}\right)+\ldots=p_{1}$.
* since $\ell \leq d$, all terms except p_{1} are 0 .

Buffon's needle: without using calculus

- Let p_{i} be the probability that the needle crosses exactly i lines. The probability that it crosses at least one line is $p_{1}+p_{2}+p_{3} \ldots$.
- The expected number of crossings of a needle of length ℓ is $E[\ell]=1\left(p_{1}\right)+2\left(p_{2}\right)+3\left(p_{3}\right)+\ldots=p_{1}$.
* since $\ell \leq d$, all terms except p_{1} are 0 .
- Due to linearity of expectation $E[\ell] \propto \ell$, i.e., $E[\ell]=c \ell$ for some constant c.

- For any horizontal line ℓ^{\prime}, if ℓ^{\prime} crosses P_{n}, then ℓ^{\prime} crosses C; analogously, if ℓ^{\prime} crosses C then ℓ^{\prime} crosses P^{n}. Hence, $E\left[P_{n}\right] \leq E[C] \leq E\left[P^{n}\right]$.

Buffon's needle: without using calculus (cont)

- For any horizontal line ℓ^{\prime}, if ℓ^{\prime} crosses P_{n}, then ℓ^{\prime} crosses C; analogously, if ℓ^{\prime} crosses C then ℓ^{\prime} crosses P^{n}. Hence, $E\left[P_{n}\right] \leq E[C] \leq E\left[P^{n}\right]$.
- When circle C is chosen with diameter $d, E[C]=2$; leading to c.perimeter $\left(P_{n}\right) \leq 2 \leq \operatorname{c}$.perimter $\left(P^{n}\right)$.

Buffon's needle: without using calculus (cont)

- For any horizontal line ℓ^{\prime}, if ℓ^{\prime} crosses P_{n}, then ℓ^{\prime} crosses C; analogously, if ℓ^{\prime} crosses C then ℓ^{\prime} crosses P^{n}. Hence, $E\left[P_{n}\right] \leq E[C] \leq E\left[P^{n}\right]$.
- When circle C is chosen with diameter $d, E[C]=2$; leading to c.perimeter $\left(P_{n}\right) \leq 2 \leq \operatorname{c.perimter}\left(P^{n}\right)$.
- As $n \rightarrow \infty$, perimeter $\left(P_{n}\right)=\operatorname{perimeter}\left(P^{n}\right)=\pi d$; therefore $c=\frac{2}{\pi d}$.

Buffon's needle: without using calculus (cont)

- For any horizontal line ℓ^{\prime}, if ℓ^{\prime} crosses P_{n}, then ℓ^{\prime} crosses C; analogously, if ℓ^{\prime} crosses C then ℓ^{\prime} crosses P^{n}. Hence, $E\left[P_{n}\right] \leq E[C] \leq E\left[P^{n}\right]$.
- When circle C is chosen with diameter $d, E[C]=2$; leading to c.perimeter $\left(P_{n}\right) \leq 2 \leq \operatorname{c}$.perimter $\left(P^{n}\right)$.
- As $n \rightarrow \infty$, perimeter $\left(P_{n}\right)=\operatorname{perimeter}\left(P^{n}\right)=\pi d$; therefore $c=\frac{2}{\pi d}$.

Hence, $E[\ell]=p=\frac{2}{\pi} \frac{\ell}{d}$.

Since p is proven to be equal to $\frac{2}{\pi} \frac{\ell}{d}$, to estimate π, drop a needle of length ℓ on paper that is ruled with equally spaced parallel lines of distance $d \geq \ell$ for n times (with n sufficiently large), leading to needle intersecting any of ruled lines be m times out of these n times, then π is $\frac{2 \ell n}{d m}$.

References

目 Proofs from THE BOOK by Martin Aigner and Günter M. Ziegler. \leftarrow has a great collection of elegant proofs

Thanks!

