
 1

A Fully Dynamic Reachability
Algorithm for Directed Graphs with an

Almost Linear Update Time
by Liam Roditty and Uri Zwick at STOC 04

presented by R. Inkulu

 2

Reachability

21

4

3

8

5

6 7

 3

Reachability Tree from a Vertex

1

2

4

3

5

10

6

9 8

7

11

11

54107

2 9 8 3

1

75
in-tree (1) :
SCCs which
can reach 1

Root vertex

out-tree (1) : SCCs
which
can be reached from 1

 4

Strongly Connected Component (SCC)

Inter-component edge

21

4

3

8

5

6 7

A
B

C
D

courtesy : CLRS

Intra-component edge

 5

Strong Component Graph

Inter-component edge

A
B

C
D

 6

Reachability Tree among SCCs

1

2

4

3

5

10

6

9 8

7

11

49 8 10

12357

11 in-tree

Root vertex

out-tree (1)

6

 7

SCCs under Arc Insertions

21

4

3

8

5

6 7

A
B

C
D

A doesn’t change

C & D merge

 8

SCCs under Arc Deletions

21

4

3

8

5

6 7

A

B

C
D

A remains same B splits into two

 9

Reachability under Arc Insertions
and Deletions

21

4

3

8

5

6 7

A
B

C

D

Deleting (5,6) causes C to be
unreachable from any vertex in B

Inserting (5,8) causes vertices
in D to be reachable from C

 10

Overview of the Algorithm

• Fully Dynamic Strong Connectivity
– Maintaining SCCs under arc insertions and

deletions using Component Forest (side effect :
persistency)

– SCC splits/merges from Component Forest
• Decremental Maintenance of Reachability Trees

– SCC splitting and updating the inter-component
Arcs

– Reconnecting the possibly unconnected tree
• Fully Dynamic Reachability Algorithm

 11

Fully Dynamic Strong Connectivity

 12

Component Forest

1

2

35

4

6

1

2

35

4

6

1

2

35

4

6

1

2

35

4

6

1

3

4

5

6

2

A

B

C

G0 G1 G2 G3

 13

Maintaining SCCs under Insertions

1

2

35

4

6

1

2

35

4

6

1

2

35

4

6

1

2

35

4

6

G0 G1 G2 G3

1

2

35

4

6

1

2

3

4

5,6
3,4,5,6

1

2

2,3,4,5,6

1

H1 H2 H3 H4

Dynamic
Edge Sets

 14

Maintaining SCCs under Deletions

1

2

35

4

6

1

2

35

4

6

1

2

35

4

6

1

2

35

4

6

G0 G1 G2 G3

H1 H2 H3 H4

1

2

3

4

5

6

3,4,5,6

1

2

2,3,4,5,6

11

2

35

4

6

Dynamic
Edge Sets

 15

Finding SCCs in the given Graph

1

3

2

4

5

7

6

8

LL[1]=1

LL[2]=1

LL[3]=1 LL[4]=3

LL[5]=4

LL[7]=7

LL[6]=6

LL[8]=6

LL[v] – lowest dfs numbered vertex in the same SCC as ‘v’
reachable via a sequence of 0 or more tree Arcs and 0 or 1
cross or back Arcs

courtesy : The design and analysis of computer algorithms
by Aho, Hopcroft, Ullman

 16

Analysis of Fully Dynamic SCC
Maintenance

(m : # of Arcs n : # of vertices)

• O(mα(m, n)) worst-case insert operation
• O(mα(m, n)) amortized deletion operation
• O(1) to query whether two vertices belong to the

same SCC in a given version of the graph (using
LCA algorithm)

• O(|SCC|) to list the vertices of a SCC
• O(m+n) space

 17

Decompositions of SCCs

7

1

2

3

4

5

6

7

13

1
2
3
4
5

6

v’

12

11

10
9

8

14

16
17

15

0 51 2 3 4

 18

Analysis of Component Forest

• O(n) amortized time to maintain the pointers
from the old to new forest

• O(1) worst-case time to find the SCCs to
which one SCC from the previous version got
split

 19

Decremental Maintenance of
Reachability Trees

 20

Reachability Tree from a Vertex

1

2

4

3

5

10

6

9 8

7

11

11

54107

2 9 8 3

1

75
in-tree (1) :
SCCs which
can reach 1

Root vertex

out-tree (1) : SCCs
which
can be reached from 1

 21

Determining Reachability Out Tree

v14

Root SCC

r

v15

v1

v13

v3

v5

v4

v10

v11

v12

v7
v
6

v2
v8

v9

Active2

Active1

Inactive5

Active4

Active3

Active

v17
v16

 22

Resulting Reachability Out Tree

Root SCC

r

v1

v3

v5

v4

v10

v11

v12

v7
v
6

v2
v8

v9

Active2

Active1

Inactive5

Active4

Active3v15

v13v14

v3

Active

v17
v16

 23

SCC decomposition after Arc Deletions

Root SCC

r

v1

v3

v5

v4

v10

v11

v12

v
6

v2

v8 v9

Active1

Inactive5

Active4

Active3

v15

v13v14

v3

Active
Inactive 11

Active 12

Inactive 13Active 10

v16v17

 24

Reconnecting the disconnected Out Tree

Root SCC

r

v1

v3

v5

v4

v10

v11

v12

v7

v
6

v2

v8 v9

Active1

Inactive5

Active4

Active3

v15

v13v14

v3

Active
Inactive 11

Active 12

Inactive 13Active 10

v16v17

 25

SCC in Decremental Reachability
Algorithm

SCC1

v1 v5v4v3v2

In
ter-com

p
on

en
t A

rcs
en

terin
g v1

Active vertices in SCC1

u1

u2

u3

u4

 26

SCC Split in the Decremental
Maintenance

SCC1

v1 v5v4v3v2

SCC2

 27

Analysis of Decremental Maintenance of
Reachability Tree

• O (m + n log n) in the worst-case
– O (m + n log n) in worst-case to maintain the

SCC data structures under edge deletions
– O(m) in worst-case to reconnect the possibly

disconnected tree by inspecting every edge only
once in each direction

• O(1) worst-case time to check whether the
root vertex is a witness to reach vertex v
from vertex u

 28

Fully Dynamic Reachability Algorithm

 29

In and Out Trees under Insertions

2

4

56

7

1 3

2

4

56

7

1 3

2

4

56

7

1 3

2

4

56

7

1 3

4

56

7

1 3

2

G0 G1
G2 G3 G4

123

7 4

123

6

4

5

467

5

123 123

4567

1

7

3
4

2

1

R0 R1
R2 R3 R4

 30

In and Out Trees under Deletions

2

4

56

7

1 3

2

4

56

7

1 3

2

4

56

7

1 3

2

4

56

7

1 3

4

56

7

1 3

2

G0’ G1’ G2’ G3’ G4’

4

5

1

7

2

1

7

3

1

2

4567

3
1

2
7

3
1

2

4

5

6

R0 ’ R1 ’ R2 ’ R3 ’ R4 ’

 31

Reachability Trees after recent Insert

123

7 4

123

4567

R1
R2

1

7

2

1

7

3

1

2

4567

3
1

2

R1 ’ R2 ’ R3 ’

Before Delete

After Delete

 32

Analysis of Fully Dynamic
Reachability Algorithm

• O(m + n log n) amortized update time
• O(n) worst-case reachability query time

 33

Comparison with the other
Deterministic Fully Dynamic

Reachability Algorithms

Authors Amortized Update
Time

Reachability
Query Time

[C.Demetrescu,
D.Leiserson]
[L.Roditty]

O(n2) O(1)

[L.Roditty,
U.Zwick]

O(m√n) O(√n)

This Paper O(m + n log n) O(n)

 34

Conclusion
• Concluding Remarks from the paper

– How to reduce the update time to O(m)
• Possible Improvements

– After finding SCCs under edge insertions/deletions, how
about maintaining transitive closure matrices on those
SCCs

– Merge the information from all the reachability trees by
constructing a reachability matrix to get better query
time (useful when the number of queries after each
update operation is relatively large)

– Rather than maintaining at most n reachability trees, is
there any way to be selective in choosing the root
vertices so that the total number of reachability trees are
reduced without disturbing the correctness of the
algorithm

– Is this applicable in determining bi-connected
components??

 35

Resources Referred

• H. Gabow. Path-based depth-first search for strong and bi-connected
components. Information Processing Letters, 74(3-4):107-114, 2000.

• S. Baswana, R.Hariharan, and S.Sen. Improved decremental
algorithms for transitive closure and all-pairs shortest paths. In
Proceedings of the 34th Annual ACM Symposium on Theory of
Computing, Montreal, Canada, pages 117-123, 2002.

• L.Roditty and U.Zwick. Improved dynamic reachability algorithms for
directed graphs. In Proceedings of FOCS’02, pages 679-689, 2002.

• L.Roditty. A faster and simpler fully dynamic transitive closure. In
Proceedings of SODA’03, pages 404-412, 2003.

• S.Even and Y.Shiloach. An on-line Arc-detection problem. Journal of
the ACM, 28(1):1-4, 1981.

• D.Harel and R.Tarjan. Fast Algorithms for Finding Nearest Common
Ancestors. SIAM Journal on Computing, 13:338-355, 1984

