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Reachability Tree from a Vertex
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Strongly Connected Component (SCC)
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Strong Component Graph
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Reachability Tree among SCCs
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SCCs under Arc Insertions
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SCCs under Arc Deletions
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Reachability under Arc Insertions 
and Deletions 
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Overview of the Algorithm

• Fully Dynamic Strong Connectivity
– Maintaining SCCs under arc insertions and 

deletions using Component Forest (side effect : 
persistency)

– SCC splits/merges from Component Forest
• Decremental Maintenance of Reachability Trees

– SCC splitting and updating the inter-component 
Arcs

– Reconnecting the possibly unconnected tree
• Fully Dynamic Reachability Algorithm
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Fully Dynamic Strong Connectivity
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Component Forest
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Maintaining SCCs under Insertions
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Maintaining SCCs under Deletions
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Finding SCCs in the given Graph
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Analysis of Fully Dynamic SCC 
Maintenance

(m : # of Arcs     n : # of vertices)

• O(mα(m, n)) worst-case insert operation
• O(mα(m, n)) amortized deletion operation
• O(1) to query whether two vertices belong to the 

same SCC in a given version of the graph (using 
LCA algorithm)

• O(|SCC|) to list the vertices of a SCC
• O(m+n) space
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Decompositions of SCCs
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Analysis of Component Forest

• O(n) amortized time to maintain the pointers 
from the old to new forest

• O(1) worst-case time to find the SCCs to 
which one SCC from the previous version got 
split
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Decremental Maintenance of 
Reachability Trees
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Reachability Tree from a Vertex
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Determining Reachability Out Tree
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Resulting Reachability Out Tree
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SCC decomposition after Arc Deletions 
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Reconnecting the disconnected Out Tree
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SCC in Decremental Reachability 
Algorithm
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SCC Split in the Decremental 
Maintenance 
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Analysis of Decremental Maintenance of 
Reachability Tree

• O (m + n log n) in the worst-case
– O (m + n log n) in worst-case to maintain the 

SCC data structures under edge deletions
– O(m) in worst-case to reconnect the possibly 

disconnected tree by inspecting every edge only 
once in each direction

• O(1) worst-case time to check whether the 
root vertex is a witness to reach vertex v 
from vertex u
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Fully Dynamic Reachability Algorithm
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In and Out Trees under Insertions
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In and Out Trees under Deletions
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Reachability Trees after recent Insert
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Analysis of Fully Dynamic 
Reachability Algorithm

• O(m + n log n) amortized update time
• O(n) worst-case reachability query time
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Comparison with the other 
Deterministic Fully Dynamic 

Reachability Algorithms

Authors Amortized Update 
Time

Reachability 
Query Time

[C.Demetrescu, 
D.Leiserson]
[L.Roditty]

O(n2) O(1)

[L.Roditty, 
U.Zwick]

O(m√n) O(√n)

This Paper O(m + n log n) O(n)
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Conclusion
• Concluding Remarks from the paper

– How to reduce the update time to O(m)
• Possible Improvements

– After finding SCCs under edge insertions/deletions, how 
about maintaining transitive closure matrices on those 
SCCs

– Merge the information from all the reachability trees by 
constructing a reachability matrix to get better query 
time (useful when the number of queries after each 
update operation is relatively large)

– Rather than maintaining at most n reachability trees, is 
there any way to be selective in choosing the root 
vertices so that the total number of reachability trees are 
reduced without disturbing the correctness of the 
algorithm

– Is this applicable in determining bi-connected 
components??
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