
A short note on tries R. Inkulu

• A trie stores a collection C of keys, where each key is a string. The ADT of a trie has the following three
operations: (i) whether a a query string belongs to C, (ii) inserting a new string into C, and (iii) deleting a
string from C. The word trie is derived from retrieval. For a fixed alphabet Σ, every string in C is defined
over Σ. We assume |Σ| is a constant.

Objective: Then, the data structure should take at most O(n) space to store all the strings in C, where n is
the sum of lengths of all the strings in C. To insert, delete, or to search for a key of length k, each of these
operations should take O(k) time.

• Digital (binary) search tree: A binary tree in which each node contains a unique key, and the (i+1)st-bit
of every key in the left subtree (resp. right subtree) of any node at any level i is equal to 0 (resp. 1).

Since every key in C is stored exactly at one node, the space complexity is as desired. The search and
insert operations are same as for BST search and delete, except that subtree to search/insert is determined
by a bit in the search key. Considering the search key is compared with the key stored at every node along
the search path, the search/insertion algorithm takes O(k2) time. Here k is the number of bits in the input
key. The deletion algorithm first searches for the given key. If the key is at a leaf, then that node is deleted
from the tree. However, when the input key is located at any internal node v, the deleted key is replaced
by a key from any leaf ℓ in the subtree rooted at v before ℓ gets removed from the tree. Hence, the deletion
algorithm also takes O(k2) time. The tries defined below improve these time complexities.

• Binary trie: This is a binary tree with only leaf nodes storing keys. A unique key is stored at each leaf
node. The internal nodes help in guiding the search: for any node v at any level i, the (i+1)st-bit of every
key stored in the left subtree (resp. right subtree) of any node at any level i is equal to 0 (resp. 1). Hence,
in searching for any key k, the (i+1)st-bit of k is used in branching at node belonging to any level i. And,
as usual, an unsuccessful search falls off the binary trie. From this, it is immediate that the search time for
a query string of length k is O(k). To facilitate storing keys of different lengths, each at a unique leaf of a
binary trie, a special symbol (ex. $) can be appended to every key. Essentially, this special symbol forces
each key to be at a unique leaf node.

Compressed binary trie: This trie improves the space of a binary trie by pruning every node that has only
one child. This is achieved by applying the following till no node with single child exists in the tree: for
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a node v with its parent v.p and its only child v.c, make v.c as a child of v.p and remove v. Besides, with
every internal node v, a bit number i is saved with v; that is, at v, the ith-bit of a key is used for branching
at v. This leaves each edge of the tree implicitly labeled with a string. For example, in the right figure,
the edge joining the root and its left child has 00 label; this says, the prefix of every key stored in the left
subtree of the root is 00; and, the branching at the left child of root is based on bit number 3 of the key.
For any leaf node ℓ that is deleted, while walking along the path P from ℓ to root, P is compressed by
removing nodes with one child on P . Due to these path compressions, by induction, if n keys are stored
in a trie, than that trie has at most n − 1 internal nodes. Like in binary tries, the query time in searching
for a key of length k is O(k).

• Multiway trie: Any node will have at most |Σ| number of children. At any node on the jth level, branching
is determined by (j + 1)st digit of the key. Hence, the ith-child of an internal node in level j points to the
subtrie having keys whose (j + 1)st digits are the same. Depending on the application, a branching node
may be implemented as an array, as a BBST, or as a hash table. Again, typically, a special symbol (ex. $)
is appended to each key, so that to store keys of different lengths at leaves of the trie.
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Compressed multiway trie: This is a multiway trie, but nodes with one child are compressed. This require
saving the digit number based on which branching happens at each node. (Instead, in some implementa-
tions, number of levels of branching to be skipped is stored with the node.) Assuming |Σ| is a constant,
the total number of nodes is at most a constant multiple of the number of leaves in the trie. Hence, for a set
C of strings, this trie takes O(

∑
si∈C |si|) space. And, each edge is labeled with a string; however, instead

of storing a string s with any edge e, to save space, two pointers, pointing into the input corresponding to
first and last digits of s are saved with e. The same is with the leaves: none of the leaf nodes store strings;
instead, each refers to a location in the input. It is immediate that the time to search for a query string
of length k takes O(k) time. For any node v, concatenation of strings associated to each edge along the
simple path from root to v in that order is called the path label of v.

- Homework: Given a collection S of strings in lexicographic order, preprocess S, so that to output the location of any query string P in the

lexicographic ordering of S ∪ P in O(|P |) time.
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• Objective: Given a text string T of length n, preprocess T and build a data structure so that to answer
queries of the following form: given a pattern string P , determine whether P is a substring of T .

Observation: A string P is a substring of T if and only if P is a prefix of some suffix of T .

A suffix trie (also called, a suffix tree) T of T is a compressed ordered multiway trie comprising all suffixes
of T . The T is appended with a special symbol $ not in T . This helps in no suffix of T being a proper
prefix of another suffix of T ; in turn, every suffix of T occurring at a distinct leaf node of T and each leaf
node of T storing a unique suffix of T . As mentioned, this also lets a trie storing keys of different lengths,
each at a unique leaf node. Hence, a suffix tree of T has exactly n+1 leaves, one for each suffix of T and
one for $. And, since it is a compressed multiway trie, every internal node has at least two children. Every
edge e of T has two pointers into T , delimiting the non-empty substring of T that e is labeled with. (In
the below figure, edges are labeled with strings only for convenience.) Each leaf ℓ of T refers to an index
in T from where the suffix corresponding to ℓ starts. Further, the inorder traversal of T lists leaf nodes of
T such that suffixes referred by those leaf nodes are in lexicographic order. Hence, this trie is an ordered
trie.
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A naive algorithm to compute a suffix trie, inserts ith-suffix into current suffix trie Ti−1 in the ith step. To
form trie Ti, algorithm starts from the root and follows the unique path matching digits in the ith-suffix. If
the traversal does not end at an internal node, algorithm creates an internal node v and initiates branching
at v and (re-)labels edges appropriately. This algorithm takes O(|T |2) time to construct a suffix tree T
of T , and T consumes O(|T |) space. Using T , determining whether P is a substring of T takes O(|P |)
time.

• A generalized suffix trie T of text strings T1 and T2 is a suffix trie comprising suffixes of both T1 and T2

at its leaves. This could be accomplished by constructing a suffix trie T ′ for T1$T2#, and pruning every
node v of T ′ if the path label of v has symbols from both T1 and T2. Let T be the resulting trie. Each
leaf of T represents either a suffix from one of the two strings or a suffix that occurs in both the strings,
and every suffix of T1 and every suffix of T2 is at a leaf of T . This definition can be extended by obvious
means so that the generalized suffix trie comprises suffixes of more than two strings at its leaves.

• A few more applications of suffix tries:

- Find the longest substring of T that appears at least m > 1 times in T :

While traversing the suffix trie, find an internal node v with number of children greater than or equal to m
and the path label of v is the longest. This algorithm takes O(|T |) time.

(A variant of this problem is the longest repeated substring problem. In this problem, m is not given, but
the substring of interest occurs at least twice.)
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- Find the longest common substring of strings T1 and T2:

Compute a generalized suffix trie T for T1 and T2. With a depth-first traversal of T , mark each internal
node v of T with 1 (resp. 2) if Tv has at least one leaf representing a suffix from T1 (resp. T2). With
another traversal of T , identify an internal node of T which is marked with both 1 and 2 and for which
the path label is of maximum length. This takes O(|T1| + |T2|) time. (There is a well-known dynamic
programming (DP) based algorithm for this problem, which uses only O(min(|T1|, |T2|) space, but takes
O(|T1| · |T2|) time. And, with a slight modification, that DP based algorithm can compute a longest
common subsequence of two input strings.)

- Finding all even-lengthed maximal palindromes in T :

i+ 1
n− i+ 1

a b c f

f c b a a b c d

2k

T

T r

here, L is a b c, and k is 3

Reverse text T to obtain T r. Compute a generalized suffix trie T for T and T r. Preprocess T in linear
time to answer lowest common ancestor queries in O(1) worst case time. With a depth-first traversal of
T , for every i ∈ [1, n− 1], with i, store a pointer to leaf node vi+1,T of T that represents the suffix si+1,T

starting at i + 1 in T and a pointer to leaf node vn−i+1,T r that represents the suffix sn−i+1,T r starting at
n − i + 1 in T r. And, for every i ∈ [1, n − 1], find the lowest common ancestor v of nodes vi+1,T and
vn−i+1,T r in T . If the path label L of v has nonzero length k (implying L of length k is a prefix of both
si+1,T and sn−i+1,T r ), then there is a maximal palindrome of length 2k whose mid point is in between i
and i+ 1 digits of T . This algorithm takes O(|T |) time.
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• When |Σ| is not necessarily a constant, the suffix trie for a string T requires O(|T | · |Σ|) space, and
searching for a pattern P using this trie takes O(|P |) time. The algorithms by Weiner or McCreight to
compute suffix tries take linear time when |Σ| is a constant; however, these algorithms maintain several
auxiliary data structures. On the other hand, the famous Ukkonen’s (online) algorithm is complicated and
takes linear time when |Σ| is a constant. The algorithm by Farach is an optimal algorithm for all alphabet
sizes, but it is also complicated.

Hence, as an alternative, a data structure called suffix array was proposed, which is space efficient, even
when |Σ| is not a constant. A suffix array comprises indices of all the suffixes of T$ listed in lexicographic
order. A suffix array of T$ could be computed by listing indices stored at the leaves of suffix trie of T$
by traversing it in inorder. Naturally, the size of suffix array is O(|T |). For example, the suffix array
corresponding to banana$ is 6 5 3 1 0 4 2. Given a suffix array A of T$, to determine whether a query
string P is a substring of T , one could do a binary search in A and find the smallest index i such that
P is a prefix of suffix corresponding to suffix index stored in A[i]. Obviously, the query algorithm takes
O(|P | lg |T |) time. The ith entry of a longest common prefix (LCP) array stores the LCP of the ith and
(i+1)st suffixes in the sorted order of suffixes. For example, the LCP array corresponding to suffix array
of banana$ is 0 1 3 0 0 2. With the help of LCP arrays, the query time can be improved to O(|P |+lg |T |)
(details omitted). Though the pattern matching queries on suffix tries are answered in only O(|P |) time,
where |P | is the length of the pattern string, suffix arrays are space-efficient.

There are simpler linear time algorithms to compute suffix array of T directly (without using suffix trie
to compute it). And, there are linear time algorithms to compute a suffix trie of T given the suffix array
corresponding to T . The other advantages of suffix arrays include an implicit data structure, |Σ| does
not play a role in time and space complexities (esp., useful if |Σ| is large and cannot be considered as a
constant), better cache locality, and efficient parallel implementations. Considering these advantages, to
store suffixes of a string, in practice, suffix arrays are preferred over suffix trees.
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