
A few special numbers R. Inkulu1

• The recurrence relation for Fibonacci numbers is,

fi =


0 if i = 0,

1 if i = 1,

fi−1 + fi−2 if i ≥ 2.

- The ordinary generating function of this sequence is G(x) = f0x
0 + f1x

1 + . . ..

Since fi + fi+1 = fi+2 for i ≥ 2,
G(x)− xG(x)− x2G(x) = x, i.e., G(x) = x

1−x−x2 = x
(1−αx)(1−βx) for α = 1+

√
5

2 and β = 1−
√
5

2 .

The 1+
√
5

2 is known as the golden ratio, denoted by ϕ. Naturally, 1−
√
5

2 is known as the conjugate of the
golden ratio, denoted by ϕ̂.

Specifically, x

(1−ϕx)(1−ϕ̂x)
= 1√

5
( 1
1−ϕx− 1

1−ϕ̂x
) = 1√

5
((1+(ϕx)+(ϕx)2+. . .)−(1+(ϕ̂x)+(ϕ̂x)2+. . .)).

Therefore, fn = [xn]G(x) = 1√
5
(ϕn − ϕ̂n) = 1√

5
((1+

√
5

2 )n − (1−
√
5

2 )n).

- Aliter:

Since fn = fn−1 + fn−2 is a linear homogenous recurrence relation with degree two, its solution must be
of form α1r

n
1 + α2r

n
2 when r1 ̸= r2.

Here, α1 and α2 are real numbers, r1 and r2 are the roots of the characteristic equation r2 − r − 1 = 0 of
the recurrence relation. Solving the characteristic equation yields r1 = ϕ and r2 = ϕ̂.

Since f0 = 0 and f1 = 1, α1 + α2 = 0 and α1ϕ+ α2ϕ̂ = 1. Solving these two equations, α1 = 1√
5

and

α2 = − 1√
5
.

Therefore, fn = 1√
5
ϕn − 1√

5
ϕ̂n.

- Observation: For any n, fn+1 is the number of ordered multisets consisting of 1s and 2s such that the sum
of elements of each such set is equal to n. For example, since 4 can be written as 1 + 1 + 1 + 1, 1 + 1 +
2, 1 + 2 + 1, 2 + 1 + 1, 2 + 2, f5 is equal to five.

- Significant (in)equalities:∑n
i=0 fi = fn+2 − 1∑n−1
i=0 f2i+1 = f2n∑n
i=0 f

2
i = fnfn+1 → leading to Fibonacci spiral

1with the help of note taken by Sawinder Kaur (TA) in a lecture
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fn+1fn−1 − f2
n = (−1)n ← Cassini’s theorem

ϕn = ϕfn + fn−1

fn ≥ ϕn−2

• The recurrence relation for Catalan numbers is,

Cn =


0 if n = 0,

1 if n = 1,∑n−1
i=1 CiCn−i if n ≥ 2.

The ordinary generating function of this sequence is G(x) = C0x
0 + C1x

1 + C2x
2 + . . ..

Then, G(x)− x
= C2x

2 + C3x
3 + . . .

=
∑

n≥2Cnx
n

=
∑

n≥2
∑n−1

i=1 CiCn−ix
n

=
∑

n≥2
∑n−1

i=1 Cix
iCn−ix

n−i

= (
∑

i≥1Cix
i)(

∑
j≥1Cjx

j)

= (G(x))2.

Therefore, G(x)2 −G(x) + x = 0, i.e., G(x) = 1±
√
1−4x
2 .

If G(x) = 1+
√
1−4x
2 , G(0) = 1; however, C0 = 0. Hence, G(x) = 1

2 − 1
2(1− 4x)1/2.

Using extended binomial theorem, G(x) = 1
2 − 1

2(
∑

k≥0
(1/2

k

)
(−4x)k).

Therefore, [xn]G(x) = −1
2

(
1/2
n

)
(−4)n.

But,
(
1/2
n

)
= (1/2)(1/2−1)(1/2−2)...(1/2−(n−1))

n!

=
(1/2)(−1/2)(−3/2)...(−( 2n−3

2
))

n!

= 1
2n

(−1)n(1)(3)...(2n−3)
n!

= 1
2n (−1)n−1 1

n!
(2n−2)!

(2)(4)...(2n−2)

= 1
2n (−1)n−1 1

n!
(2n−2)!

2n−1(n−1)!

= 2
4n (−1)n−1 (2n−2)!

n!(n−1)!
= 2

4nn(−1)n−1
(
2n−2
n−1

)
.

Hence, [xn]G(x) = −1
2

2
4nn(−1)n−1

(
2n−2
n−1

)
(−1)n4n = (−1)2n

n

(
2n−2
n−1

)
= 1

n

(
2n−2
n−1

)
.
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If the recurrence is defined as,

Cn =


1 if n = 0,

2 if n = 1,∑n−1
i=1 CiCn−i if n ≥ 2.

substituting n+ 1 for n in the above, Cn = [xn]G(x) = 1
n+1

(
2n
n

)
.

Due to Stirling,
√
2πn(ne )

ne(
1

12n
− 1

360n3 ) < n! <
√
2πn(ne )

ne
1

12n ; from these inequalities, Cn is Ω( 4n

n3/2 ):
1

n+1

√
4πn( 2n

e
)2n

2πn(n
e
)2n

= 1
n+1

4n√
πn

= 4n

n3/2 (
1√
π
(1− 1

1+n)).

• A function f(n) is monotonically increasing (resp. monotonically decreasing) if m ≤ n implies f(m) ≤
f(n) (resp. f(m) ≥ f(n)). A function f(n) is strictly increasing (resp. strictly decreasing) if m < n
implies f(m) < f(n) (resp. f(m) > f(n)).

Let f(x) be a positive monotonically increasing continuous function. By approximating the area under
f(x) by two step functions, the following inequalities are derived.

*
∫ n
m−1 f(x)dx ≤ ∑n

k=m f(k) ≤
∫ n+1
m f(x)dx.

(The left (resp. right) ineq is due to the left (resp. right) subfigure of Fig. 1.)

* f(m) +
∫ n
m f(x)dx ≤ ∑n

k=m f(k) ≤ f(n) +
∫ n
m f(x)dx.

(The left (resp. right) ineq is due to the left (resp. right) subfigure of Fig. 1.)

The second one is preferred as it does not rely on the integral values outside [m,n].

m− 1 m m+ 1 n− 2 n− 1 n

f(m)

f(m+ 1)

f(n− 1)
f(n)

x

f(x)

m− 1 m m+ 1 n− 2 n− 1 n

f(m)

f(m+ 1)

f(n− 1) f(n)
f(x)

x
n+ 1

Figure 1: Approximating a summation with an integral.

- An example: Noting that lg(k) is a monotonically increasing continuous function,
n ln (n)− n+ 1 ≤ ∑n

i=1 ln (i) ≤ n ln (n)− n+ 1 + ln (n). ——— (1)

Hence, nn

en−1 ≤ n! ≤ nn+1

en−1 . ———- (1b)
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• From (1), we know lg (n!)− n ln (n) + n ≤ 1 + ln (n).
We claim there exists a positive constant α such that (ln(n!)− n lnn+ n− 1

2 lnn) ≈ α.
Then, eα ≈ e(ln(n!)−(n+

1
2
) lnn+n) = n!en

nn+1/2 . ——- (2a)

That is, n! ≈ eαnn+ 1
2 e−n. —— (2b)

From Wallis’ inequality, when n is asymptotically large, (2)(4)(6)...(2n)

(1)(3)(5)...(2n−1)
√
2n

≈
√

π
2

⇒ (2nn!)2

(2n)!
1√
2n

≈
√

π
2 .

Substituting (2b), 22ne2αn2n+1e−2n

eα(2n)2n+1
2 e−2n

1√
2n

≈
√

π
2 ⇒ eα ≈

√
2π.

Substituting (2a), eα = n!en

nn+1/2 ≈
√
2π ⇒ n! ≈

√
2πn(ne )

n.

This is known as the Stirling’s approximation of n!. As n grows, Stirling’s approximation betters in
approximating n! to (1b).

• The recurrence relation for Harmonic numbers is,

Hn =

{
1 if n = 1,

an−1 +
1
n if n ≥ 2.

If f(k) is a positive monotonically decreasing continuous function, then

–
∫ n+1
m f(x)dx ≤ ∑n

k=m f(k) ≤
∫ n
m−1 f(x)dx

– f(n) +
∫ n
m f(x)dx ≤ ∑n

k=m f(k) ≤ f(m) +
∫ n
m f(x)dx —— (3)

Noting that 1/k is a monotonically decreasing function, from (3), 1
n + ln (n) ≤ ∑n

k=1
1
k ≤ 1 + ln (n).

—— (4)

* Aliter: Split [1, n] into ⌊lg n⌋+ 1 pieces and upper-bound the contribution of each piece by 1:

Hn =
n∑

k=1

1

k
≤
⌊lgn⌋∑
i=0

2i−1∑
j=0

1

2i + j

≤
⌊lgn⌋∑
i=0

2i−1∑
j=0

1

2i

=

⌊lgn⌋∑
i=0

1

2i
(2i − 1 + 1)

= lg n+ 1
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• The sum of first n Harmonic numbers is,
∑n

k=1Hk

=
∑n

k=1

∑k
j=1

1
j

= 1 + (1 + 1
2) + (1 + 1

2 + 1
3) + . . .+ (1 + 1

2 + . . .+ 1
n)

= n+ 1
2(n− 1) + 1

3(n− 2) + . . .+ 1
n(n− (n− 1))

=
∑n

j=1
1
j (n− j + 1)

=
∑n

j=1(
n+1
j − j

j )

= (n+ 1)(
∑n

j=1
1
j )− (

∑n
j=1 1)

= (n+ 1)Hn − n.

• An application: We had seen two proofs, one by Euclid and the other by Christian Goldbach, to show
there are infinitely many primes. Here is another proof of the same by Leonhard Euler. Let n be a positive
integer. Also, let π(n) be the number of primes less than or equal to n. Below, p denotes a prime number.

lnn ≤(from the left ineq in (4))
∑n

k=1
1
k ≤(a), see below Πp≤n(

∑
k≥0

1
pk
) = Πp≤n(

1
1− 1

p

) = Π
π(n)
k=1

pk
pk−1 ≤

Π
π(n)
k=1 (1 +

1
pk−1) ≤

(since pk≥k+1) Π
π(n)
k=1 (1 +

1
k ) = Π

π(n)
k=1 (

k+1
k ) = π(n) + 1.

For every integer i, if i has a prime decomposition comprising a subset of primes that are less than or
equal to n, then 1

i contributes to the RHS of inequality (a).

Since lnn strictly monotonically increases with n, π(n) must also increase with n.
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